JPS61134913A - Magnetoresistance type thin film head - Google Patents

Magnetoresistance type thin film head

Info

Publication number
JPS61134913A
JPS61134913A JP25672284A JP25672284A JPS61134913A JP S61134913 A JPS61134913 A JP S61134913A JP 25672284 A JP25672284 A JP 25672284A JP 25672284 A JP25672284 A JP 25672284A JP S61134913 A JPS61134913 A JP S61134913A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
bias
mre
mre17
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25672284A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Toshio Fukazawa
深沢 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25672284A priority Critical patent/JPS61134913A/en
Publication of JPS61134913A publication Critical patent/JPS61134913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Abstract

PURPOSE:To eliminate Barkhausen noises due to discontinuous magnetic wall movement by constituting a pat, which faces an MRE, of a conductor thin film for bias of a YMR head with soft magnetic materials at least. CONSTITUTION:Preliminarily, a bias current is flowed to the first conductor thin film 13 to generate a bias magnetic filed, and the magnetic balance point of an Ni-Fe film of an MRE17 is set to a point B in the figure. The reproducing sensitivity and the linear responsiveness are most excellent in this set bias position. an address magnetic field flowed from a magnetic recording medium passes a front yoke 20 and a rear yoke 21 and acts upon the MRE17, and the variance of the resistance of the MRE17 is detected as the variance of voltage if a sense current is flowed to the MRE17 at this time. Since the MRE17 is adjacent to a soft magnetic thin film 15 constituting the conductor thin film 13 for bias, magnetic wall do not exist, and thus, the Barkhausen noise is not generated at the reproducing time to obtain the reproduced output of high S/N.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体として磁気テープ、磁気ディスク
を利用した磁気記録装置において高記録密度化、高信頼
性化、低価格化等の要請が強まる中で従来のバルク材料
で作製される磁気ヘッドに代り、薄膜作製技術、フォト
リングラフィ技術を駆使して、狭ギャップ、狭トラック
マイチトラック化を実現し、かつ上記要請をも満足する
磁気抵抗型薄膜ヘッドに関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applicable to magnetic recording devices that use magnetic tapes and magnetic disks as magnetic recording media, as there is an increasing demand for higher recording density, higher reliability, lower cost, etc. In place of conventional magnetic heads fabricated from bulk materials, we have developed a magnetoresistive thin film that utilizes thin film fabrication technology and photolithography technology to realize narrow gaps and narrow tracks, and that also satisfies the above requirements. It is related to the head.

従来の技術 最近、磁気記録装置においてトラック密度の向上に伴う
トラック幅の短縮と磁気テープ走行速度の低速化などか
ら再生ヘッドとして磁気抵抗素子(以後MREと呼ぶ)
t−使った磁気抵抗型薄膜ヘッド(以後MRヘッドと呼
ぶ)が広く使用されつTransducer 、IEE
E、Trang Mag、7150頁)〉第6図におい
て非磁性基板61上にMREとしてパーーvoイ(Ni
 −Fe ) 、 Ni−Co合金の様な強磁性薄膜5
2を短冊状に形成せしめ、磁気記録媒体53に近接して
、磁気記録媒体63に記録されている情報を読み出すも
のが基本的かつ従来がら使用されている代表的構造であ
る。
BACKGROUND OF THE INVENTION Recently, magnetoresistive elements (hereinafter referred to as MREs) have been used as playback heads in magnetic recording devices due to shorter track widths and slower magnetic tape running speeds due to improved track density.
Magnetoresistive thin film heads (hereinafter referred to as MR heads) using T-transducer, IEE
E, Trang Mag, page 7150) In FIG.
-Fe), ferromagnetic thin film such as Ni-Co alloy 5
A basic and conventionally used typical structure is one in which the magnetic recording medium 2 is formed into a rectangular shape and is placed close to the magnetic recording medium 53 to read information recorded on the magnetic recording medium 63.

以下MREの動作について述べる。即ち、磁気記録媒体
53からの信号磁界はMRE52の磁化を回転させ、こ
れに従ってMRE 62の抵抗が変化する。この時にM
RE52に電通54a、64b全通してセンス電流I3
を流しておくとMRE52の抵抗変化は、電圧変化に変
換され出力として検知される。
The operation of the MRE will be described below. That is, the signal magnetic field from the magnetic recording medium 53 rotates the magnetization of the MRE 52, and the resistance of the MRE 62 changes accordingly. At this time M
The sense current I3 is passed through RE52 through all of the electric currents 54a and 64b.
When the voltage is allowed to flow, the change in resistance of the MRE 52 is converted into a change in voltage and detected as an output.

一般にMREの抵抗変化ΔRは、センス電流の向遣と、
MREの磁化の向きとがなす角度をθ。
Generally, the resistance change ΔR of the MRE is determined by the direction of the sense current,
θ is the angle formed by the direction of magnetization of the MRE.

最大抵抗変化をΔRma工とした時、以下の第(1)式
のように表わせる。
When the maximum resistance change is ΔRma, it can be expressed as the following equation (1).

ΔR=ΔRmaxcO32θ    ・・・・・・・−
・・・・(1)また、MRE内の信号磁束密度BIli
9.MREの飽和磁束密度f B3とした時、近似的に
第(2)式が成立する。
ΔR=ΔRmaxcO32θ ・・・・・・−
...(1) Also, the signal magnetic flux density BIli in the MRE
9. When the saturation magnetic flux density of the MRE is f B3, equation (2) approximately holds true.

第(1)式、第?)式より以下の第(3)式が導れる。Equation (1), ? ), the following equation (3) can be derived.

即ち、MRE62は磁界変化に対して第6図のような抵
抗変化を示す。そしてMRE 52の抵抗変化による出
力を高感度化および直線応答化する目的で、磁気平衡点
を第6図のB点の位置にするためのバイアス磁界を普通
印加する。
That is, the MRE 62 exhibits resistance changes as shown in FIG. 6 in response to changes in the magnetic field. For the purpose of increasing the sensitivity and linear response of the output due to the resistance change of the MRE 52, a bias magnetic field is usually applied to bring the magnetic equilibrium point to the position of point B in FIG.

第5図に示した従来の磁気抵抗型薄膜ヘッドには、以下
に述べるような問題点があり、特に高記録密度を有する
磁気記録装置においては使用されていない。
The conventional magnetoresistive thin film head shown in FIG. 5 has the following problems and is not used particularly in magnetic recording devices with high recording density.

(1)磁気記録媒体上の隣接した磁化からの洩漏磁界に
影響される0 C2)  基本的に開磁路構成となっているため再生感
度が低い。
(1) Affected by leakage magnetic fields from adjacent magnetizations on the magnetic recording medium 0C2) Reproduction sensitivity is low because it basically has an open magnetic circuit configuration.

(s)MREは常に、磁気記録媒体と常に接することか
ら、耐摩耗性、耐久性に問題がある。
(s) Since MRE is always in contact with a magnetic recording medium, there are problems with wear resistance and durability.

(4)近年、高密度記録用の媒体として、金属蒸着テー
プが開発され、この蒸着テープの記録磁性層は導電性を
有しているため、MREに流すべきセンス電流がテープ
磁性層に流れることになる。この結果、MRヘッドとし
て満足すべき再生出力が得られないばかりか、マルチト
ラック構造が不可能である。
(4) In recent years, metal-deposited tape has been developed as a medium for high-density recording, and since the recording magnetic layer of this metal-deposited tape has conductivity, the sense current that should be sent to the MRE flows to the tape magnetic layer. become. As a result, not only a satisfactory reproduction output as an MR head cannot be obtained, but also a multi-track structure is impossible.

また、以上に示された問題点を改良するヘッドとして、
第7図に示されたように、磁気記録媒体からの信号磁界
をMRHに導くためのヨークを有すHeads 、I 
EEE、Trans Mag 17 、2884頁))
第7図において、強磁性基板101上にS z02ある
いはAl2O3などの第1の絶縁層102をスパッタ法
などにより形成し、次いで、その上にMREにバイアス
磁界を印加するための第1の導体薄膜103が形成され
る。導体材料としてCrF地のAuあるいはA1などを
使用しフォトリングラフィ技術によって所定の形状にパ
ターン化される。その後、SiO、5L02などの第2
絶縁層10475;蒸着、スパッタなどで形成される。
In addition, as a head that improves the problems shown above,
As shown in FIG. 7, Heads, I
EEE, Trans Mag 17, p. 2884))
In FIG. 7, a first insulating layer 102 of Sz02 or Al2O3 is formed on a ferromagnetic substrate 101 by sputtering or the like, and then a first conductive thin film for applying a bias magnetic field to the MRE is formed thereon. 103 is formed. Au or Al on CrF is used as the conductive material and patterned into a predetermined shape by photolithography. After that, a second layer such as SiO, 5L02, etc.
Insulating layer 10475; formed by vapor deposition, sputtering, etc.

この第2絶縁層104上にMRE105としてのNi−
Fe薄膜を電子ビーム蒸着、スパッタ法などで形成した
後、このNi−Fe  薄膜はフォトリングラフィ技術
によってパターン化される。この時、Ni −Fe薄膜
は磁界中蒸着などによシ、磁化容易軸をトラック幅方向
に誘起される。
On this second insulating layer 104, Ni-
After forming an Fe thin film by electron beam evaporation, sputtering, or the like, this Ni--Fe thin film is patterned by photolithography. At this time, the easy axis of magnetization of the Ni--Fe thin film is induced in the track width direction by deposition in a magnetic field or the like.

次に、MRE106にセンセ電流を流すための第2導体
薄膜(図示せず)が形成され、パターン化される。これ
らの上に第3の絶縁層106が形成された後、磁気記録
媒体からの信号磁界IMRE106に導くための強磁性
薄膜、例えばNi−Fe薄膜あるいはFe −AI −
Si薄膜、アモルファス軟磁性薄膜が形成され、7オ)
 IJングラフィ技術によって前部ヨーク部10了a、
後部ヨーク部107bが構成される。この時、前部ヨー
ク部107aおよび後部ヨーク部10アbはMRE10
5と絶縁層106t−介して一部オーバラノプしておシ
、磁気記録媒体からの信号磁界がMRII:105に導
かれやすいように構成される。次いで、Sio *Si
o2などのバッシベーシゴン膜108が形成され、その
後、接着剤などによってガラス、セラミック等の保護基
板109が接着される。以上の工程後、テープ摺動面を
ラップし、磁気ヘッドが完成される。第7図における1
10は磁気テープであシAはテープ走行方向である。
Next, a second conductive thin film (not shown) for passing a sense current through the MRE 106 is formed and patterned. After a third insulating layer 106 is formed on these, a ferromagnetic thin film, such as a Ni-Fe thin film or Fe-AI-
A Si thin film and an amorphous soft magnetic thin film are formed, and 7o)
The front yoke part 10 has been created using IJ printing technology.
A rear yoke portion 107b is configured. At this time, the front yoke part 107a and the rear yoke part 10ab are MRE10
5 and an insulating layer 106t, so that the signal magnetic field from the magnetic recording medium is easily guided to the MRII 105. Then Sio *Si
A Bassibasigon film 108 such as O2 is formed, and then a protective substrate 109 made of glass, ceramic, etc. is bonded with an adhesive or the like. After the above steps, the tape sliding surface is wrapped to complete the magnetic head. 1 in Figure 7
10 is a magnetic tape, and A is the tape running direction.

以上のように、YMI’t Hは閉磁路構造となってい
る。即ち、磁気記録媒体からの信号磁束は前部ヨーク部
から流入し、MRE105から後部ヨーク部1o7b、
強磁性基板101へと流れ、磁気記録媒体110へ還流
する。このため、第6図に示し、た従来例に比べ、再生
感度が高く、また、ギヤツブ部絶縁層を薄く形成できる
ため、より短波信号の再生が可能になる。
As described above, YMI't H has a closed magnetic circuit structure. That is, the signal magnetic flux from the magnetic recording medium flows from the front yoke part, and flows from the MRE 105 to the rear yoke part 1o7b,
It flows to the ferromagnetic substrate 101 and returns to the magnetic recording medium 110. Therefore, compared to the conventional example shown in FIG. 6, the reproduction sensitivity is higher, and since the gear part insulating layer can be formed thinner, shorter wave signals can be reproduced.

また、MRE105が磁気記録媒体110から離れた位
置にあるため、耐摩耗性、耐久性の問題が解決されるば
かりでなく、金属蒸着テープの使用が可能になるなどの
長所を有している。
Furthermore, since the MRE 105 is located away from the magnetic recording medium 110, it not only solves the problems of wear resistance and durability, but also has advantages such as being able to use metal-deposited tape.

発明が解決しようとする問題点 しかしながら上記した構成では、高記録密度化に従って
、MREが微小パターン化されると、不連続な磁壁移動
に起因するバルクハウゼンノイズが顕著になる。比較的
大きな形状をもつMREでは、ローカルに発生する不連
続な磁壁移動は、試料全体にわたって平均化されるため
、MREは外部磁界に対して第6図のようになだらかな
抵抗変化を示す。しかし、MRKが微小パターン化され
ると、不連続な磁壁移動は平均化されず、MR特性にそ
のまま反映され、第8図のようなバルクハ伴って、MR
Eを微小化していくと、バルクハウゼンノイズを発生し
、良好な信号再生を実現できない問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, when the MRE is formed into a fine pattern as recording density increases, Barkhausen noise caused by discontinuous domain wall movement becomes noticeable. In an MRE having a relatively large shape, the locally occurring discontinuous domain wall movement is averaged over the entire sample, so the MRE exhibits a gentle resistance change in response to an external magnetic field as shown in FIG. 6. However, when MRK is micropatterned, the discontinuous domain wall movement is not averaged and is directly reflected in the MR characteristics, resulting in a bulk pattern as shown in Figure 8.
When E was made smaller, Barkhausen noise was generated, which caused the problem that good signal reproduction could not be achieved.

本発明は以上の点に鑑み、狭トラツク化により、トラッ
ク密度を上げ、さらに狭ギャップ化により、周波数特性
の高帯域化を図9、磁気テープ磁気記録再生装置におけ
る高密度記録、高信頼性を実現する薄膜再生ヘッドに関
するもので、特に信号磁界をMREに導くためのヨーク
を有するMRヘッドの、低ノイズ化を目的としたもので
ある。
In view of the above points, the present invention has been developed to increase the track density by narrowing the tracks, and to increase the band of frequency characteristics by narrowing the gap. The present invention relates to a thin-film reproducing head to be realized, and is particularly aimed at reducing noise in an MR head having a yoke for guiding a signal magnetic field to an MRE.

問題点を解決するための手段 この目的を達成するために本発明の磁気抵抗型薄膜ヘッ
ドは、強磁性基板を下部磁性層とし、ヨークとして動作
する強磁性薄膜を前部ヨーク、後部ヨーク忙分割され、
その両磁性層間にMRKを形成する。即ち磁気テープか
らの信号磁束は前部ヨークから流入し、前部ヨーク−M
RE=後部ヨークと流れ、バックギャップ部で下部磁性
層である強磁性基板に流入し、最終的に磁気テープに還
流する閉磁路構造を基本構造とし、上記MREにバイア
ス磁界を印加するための、バイアス用導体薄膜の少なく
とも、MRK:に対向する部分を、NL−Fe 、 F
e −AI −Si あるいはCo −Z r −Nb
アモルフファス膜などの軟磁性材料で構成される。
Means for Solving the Problems To achieve this objective, the magnetoresistive thin film head of the present invention uses a ferromagnetic substrate as the lower magnetic layer, and divides the ferromagnetic thin film that acts as a yoke into a front yoke and a rear yoke. is,
MRK is formed between both magnetic layers. That is, the signal magnetic flux from the magnetic tape flows from the front yoke, and
The basic structure is a closed magnetic circuit structure in which RE = flows with the rear yoke, flows into the ferromagnetic substrate which is the lower magnetic layer at the back gap part, and finally returns to the magnetic tape, and in order to apply a bias magnetic field to the MRE, At least the portion of the bias conductor thin film facing MRK: is made of NL-Fe, F
e -AI -Si or Co -Z r -Nb
It is made of soft magnetic material such as an amorphous film.

即ち、MREは、バイアス用導体薄膜を構成している軟
磁性膜と静磁的結合を行っていることになる。
That is, the MRE is magnetically coupled to the soft magnetic film that constitutes the bias conductor thin film.

作  用 MREと軟磁性薄膜が互い忙対向するような積層構造を
有する磁性薄膜は、中間層が例えば20人〜1000A
の膜厚の時それぞれの磁性膜は、静磁結合するため1、
単層膜と異った磁区構造を持つようになる。即ち、2層
構造を有するMRKは、微細パターン化されると、その
作製条件を通電に選ぶことによシ、各層か互いに、磁化
容易軸方向に反平行に磁化された磁区構造をもたせるこ
とが可能である。このようなMREには本質的に磁壁移
動は存在しないから、不連続な磁壁移動に伴うバルクハ
ウゼンノイズは皆無となる。
In a magnetic thin film having a laminated structure in which the MRE and the soft magnetic thin film face each other, the intermediate layer has a conductivity of, for example, 20 to 1000 amps.
When the film thickness is 1, each magnetic film is magnetostatically coupled.
It has a magnetic domain structure different from that of a single layer film. That is, when an MRK having a two-layer structure is finely patterned, by selecting the manufacturing conditions such as energization, each layer can have a magnetic domain structure in which the layers are magnetized antiparallel to each other in the direction of the easy axis of magnetization. It is possible. Since domain wall motion essentially does not exist in such MRE, there is no Barkhausen noise caused by discontinuous domain wall motion.

さらに、たとえ、磁壁が発生しても、多層構造の場合磁
壁移動をほとんど伴わすK、磁化が一斉回転する傾向が
あるため、単層膜で構成されたMREに比べてバルクハ
ウゼンノイズの発生ヲ抑えることが可能となる。
Furthermore, even if a domain wall occurs, in the case of a multilayer structure, the K and magnetization, which are almost always accompanied by domain wall movement, tend to rotate all at once, so Barkhausen noise is less likely to occur compared to an MRE composed of a single layer. It is possible to suppress it.

実施例 本発明の一実施例について以下、図面と共に説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例における磁気抵抗型薄膜磁
気ヘッドのバイアス用導体薄膜の要部拡大図、第2図は
本発明の磁気抵抗型薄膜磁気ヘッドの平面図、第3図は
そのx −x’断面図である。
FIG. 1 is an enlarged view of a main part of a bias conductor thin film of a magnetoresistive thin film magnetic head according to an embodiment of the present invention, FIG. 2 is a plan view of the magnetoresistive thin film magnetic head of the present invention, and FIG. It is the x-x' cross-sectional view.

第1図〜第3図において、Mn 〜Zn単結晶フェライ
トなどの強磁性基板1oはまず、GC砥石。
In FIGS. 1 to 3, a ferromagnetic substrate 1o such as Mn to Zn single crystal ferrite is first used as a GC grindstone.

あるいはダイヤモンドペーストなどで光学研磨される。Alternatively, it is optically polished using diamond paste or the like.

そしてこの基板上に第1の絶縁層111例えばA12o
3膜あるいはS 102膜がスパータ法など釦よって強
磁性基板1o上に全面形成される。この膜厚によってフ
ロントギャップ部12のギャップ長がコントロールされ
る。この第1の絶縁層11上にMREにバイアス磁界を
印加するための第1の導体薄膜13が形成される。この
ときまずOr下地のAuあるいはA1などを蒸着し、後
工程で形成されるMREに対向している部分音エツチン
グにより除去して、2つの非磁性層14a、14bに分
割する。この時エツチングされる部分の長さは、対向す
るMREの長さよりも少し短かめにしておくマルチヘッ
ドの場合は、同様に設けられたMREと対向する部分で
すべてバイアス用導体薄膜は分割されることになる。次
に、Ni −Fe 、 Fe−AI −St 、 Co
 −Zr−Nbなどの軟磁性薄膜15を形成し、エツチ
ングにより、分割されたそれぞれのバイアス用導体薄M
’eブリッジして、接続するように、対向するMREと
同じ長さの矩形パターンにパターン化される。
Then, on this substrate, a first insulating layer 111, for example, A12O
3 film or S102 film is formed on the entire surface of the ferromagnetic substrate 1o by a method such as a sputter method. The gap length of the front gap portion 12 is controlled by this film thickness. A first conductive thin film 13 for applying a bias magnetic field to the MRE is formed on the first insulating layer 11. At this time, Au or Al as an Or base is first deposited and removed by partial tone etching facing the MRE formed in a later step, thereby dividing the layer into two nonmagnetic layers 14a and 14b. The length of the part to be etched at this time should be slightly shorter than the length of the opposing MRE.In the case of a multi-head, the bias conductor thin film is divided in all the parts facing the MRE provided in the same way. It turns out. Next, Ni-Fe, Fe-AI-St, Co
- Form a soft magnetic thin film 15 such as Zr-Nb, and divide each bias conductor thin film M by etching.
'e is patterned into a rectangular pattern of the same length as the opposing MRE to bridge and connect.

この時、軟磁性薄膜は、磁場中蒸着や磁場中アニールな
どの適当な処理によって、第4図の概念図に示すように
矢印Fの長さ方向(トラック幅方向)に磁化容易軸が設
定される。尚、矢印M11M2は磁化方を示すものであ
り、また14は非磁性層である。
At this time, the axis of easy magnetization of the soft magnetic thin film is set in the length direction (track width direction) of arrow F, as shown in the conceptual diagram of Fig. 4, by an appropriate process such as deposition in a magnetic field or annealing in a magnetic field. Ru. Note that arrows M11M2 indicate the magnetization direction, and 14 is a nonmagnetic layer.

その後、S io 、 S io2などの第2絶縁層1
6が膜厚600人〜10oO人程度で形成される。次い
でこの第2の絶縁層16上にMRE17として動作する
Ni −F@薄膜を膜厚300人〜600人程度形成し
、フォトリングラフィ技術忙よって幅10〜20μ鳳長
さはほぼトラック幅の所定の形状に微細パターン化され
る。この時も、磁化容易軸はトラック幅方向に設定され
る。第2の絶縁層16の膜厚は、バイアス用導体薄膜1
3とMRE17の絶縁性および対向する軟磁性薄膜16
との静磁的結合から決定され、50o人〜1000Aが
適当である。
After that, the second insulating layer 1 such as S io , S io2
6 is formed with a film thickness of about 600 to 1000. Next, a Ni-F@ thin film that operates as the MRE 17 is formed on the second insulating layer 16 to a thickness of about 300 to 600 layers, and the width is 10 to 20 μm depending on the photolithography technology, and the length is approximately the same as the track width. It is finely patterned into the shape of . At this time as well, the axis of easy magnetization is set in the track width direction. The thickness of the second insulating layer 16 is the same as that of the bias conductor thin film 1.
3 and the insulating properties of MRE 17 and the opposing soft magnetic thin film 16
It is determined from the magnetostatic coupling with 500A to 1000A is appropriate.

次にMRElyにセンス電流を流すための第2の導体薄
膜18a、18bが形成される。これらの上に第3の絶
縁層19が形成された後、磁気記録媒体からの信号磁界
fcMRE17に導くための強磁性薄膜、例えばNi 
−Fe、 Fe −AI −3i膜、C。
Next, second conductive thin films 18a and 18b are formed to allow a sense current to flow through MREly. After a third insulating layer 19 is formed on these, a ferromagnetic thin film, for example Ni, is formed to guide the signal magnetic field fcMRE 17 from the magnetic recording medium.
-Fe, Fe-AI-3i film, C.

−Zr−Nbアモルファス膜が形成され、フォトリング
ラフィ技術によって前部ヨーク20.後部ヨーク21が
構成される。
-Zr-Nb amorphous film is formed on the front yoke 20. by photolithography technique. A rear yoke 21 is configured.

次いでS io 、S io2などのバッンベーション
膜22が形成されその後、接着剤などによってガラス。
Next, a banvation film 22 such as S io and S io2 is formed, and then the glass is bonded with an adhesive or the like.

セラミック等の保護基板23が接着される。以上の工程
後、テープ摺動面がラップされてヘッドが完成する。
A protective substrate 23 made of ceramic or the like is bonded. After the above steps, the tape sliding surface is wrapped to complete the head.

次に、本実施例に示された磁気抵抗型薄膜磁気ヘッドの
動作について説明する。
Next, the operation of the magnetoresistive thin film magnetic head shown in this embodiment will be explained.

あらかじめ、第1の導体薄膜13にバイアス電流を流し
バイアス磁界を発生させ、MRE17のNi−Fe膜の
磁気平衡点を第6図のB点の位置に設定しておく。この
設定バイアス位置は、再生感度、直線応答性が最もすぐ
れているところである。
In advance, a bias current is applied to the first conductive thin film 13 to generate a bias magnetic field, and the magnetic equilibrium point of the Ni--Fe film of the MRE 17 is set at the position of point B in FIG. This set bias position is where reproduction sensitivity and linear response are the best.

磁気記録媒体から流入した信号磁界は前部ヨーク20.
後部ヨーク21を通ってMRE17に作用する。この時
MRE17にセンス電流を通じておくとMRE17の抵
抗変化は電圧変化として検知される。MRE17は、バ
イアス用導体薄膜13を構成する軟磁性薄膜15と隣接
しているため、本質的に磁壁が存在せず、再生時忙、バ
ルクハウゼンノイズを発生することはなく、高S/N 
の再生出力が得られることになる。
The signal magnetic field flowing in from the magnetic recording medium is applied to the front yoke 20.
It acts on the MRE 17 through the rear yoke 21. At this time, if a sense current is passed through the MRE 17, a change in resistance of the MRE 17 is detected as a change in voltage. Since the MRE 17 is adjacent to the soft magnetic thin film 15 constituting the bias conductor thin film 13, there is essentially no domain wall, and no Barkhausen noise is generated during reproduction, resulting in a high S/N.
This results in a playback output of .

なお、本実施例においては、バイアス用導体薄膜13は
MRE17の対向する部分のみを軟磁性材料にしたが、
バイアス用導体薄膜全体を軟磁性材料で構成しても同様
な効果が得られる。即ち、少くともMREに対向する部
分のみを軟磁性材料で構成すれば良い。
In this embodiment, only the portion of the bias conductor thin film 13 that faces the MRE 17 is made of soft magnetic material.
A similar effect can be obtained even if the entire bias conductor thin film is made of a soft magnetic material. That is, at least only the portion facing the MRE may be made of a soft magnetic material.

発明の効果 以上のように本発明によればYMRヘッドのバイアス用
導体薄膜の少なくともMREと対向する部分を軟磁性材
料で構成することKより、MREと対向する軟・磁性材
料は、静磁結合により、磁化容易軸に反平行に磁化され
た磁区構造を有するようになる。このようなMREでは
、磁壁移動は存在しないから、不連続な磁壁移動に起因
するバルクハウゼンノイズを発生せず、高S/N の信
号再生が可能になる。
Effects of the Invention As described above, according to the present invention, at least the portion of the bias conductor thin film of the YMR head that faces the MRE is made of a soft magnetic material. As a result, it has a magnetic domain structure that is magnetized antiparallel to the easy axis of magnetization. In such MRE, since there is no domain wall movement, Barkhausen noise due to discontinuous domain wall movement is not generated, and signal reproduction with high S/N is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気抵抗型薄膜ヘッ
ドのバイアス用導体薄膜部の要部拡大図、第2図は同磁
気抵抗型薄膜ヘッドの平面図、第3図は第2図のx−x
’線断面図、第4図は対向する軟磁性薄膜の消磁状態に
おける磁区構造を示す概念図、第6図は従来のMRヘッ
ドの概略斜視図、第6図はMREの磁界強度と抵抗変化
を示す特性図、第7図は従来のYMRヘッドの断面図、
第8図はバルクハウゼンノイズを発生する微細パターン
MREの磁界強度と抵抗変化を示す特性図である0 13・・・・・バイアス用導体薄膜、14&、14b・
・・・・・非磁性層、16・・・・・・軟磁性薄膜、1
7・・・・・・磁気抵抗素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 第5図 第6図 /’l/2Eに611加すb石ル辱の3叡さ第7図 第8図 。
FIG. 1 is an enlarged view of the main part of the bias conductor thin film portion of a magnetoresistive thin film head in an embodiment of the present invention, FIG. 2 is a plan view of the same magnetoresistive thin film head, and FIG. 3 is the same as that shown in FIG. x-x
Figure 4 is a conceptual diagram showing the magnetic domain structure of opposing soft magnetic thin films in a demagnetized state. Figure 6 is a schematic perspective view of a conventional MR head. Figure 6 shows magnetic field strength and resistance change of MRE. The characteristics diagram shown in Fig. 7 is a cross-sectional view of a conventional YMR head.
Figure 8 is a characteristic diagram showing the magnetic field strength and resistance change of a fine pattern MRE that generates Barkhausen noise.
...Nonmagnetic layer, 16...Soft magnetic thin film, 1
7... Magnetoresistive element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Figure 5 Figure 6 Figure 6/'l/2E 611 added to the three wisdoms of stone insult Figure 7 Figure 8.

Claims (1)

【特許請求の範囲】[Claims] 強磁性基板上に、強磁性金属材料の磁気抵抗素子と前記
磁気抵抗素子にセンス電流を流す一対の電極と、磁気記
録媒体からの信号磁束を前記磁気抵抗素子へ導くための
強磁性金属材料で構成されたヨークと、前記磁気抵抗素
子にバイアス磁界を印加するバイアス電流を流すために
、前記磁気抵抗素子に対向して設けられたバイアス用導
体薄膜を備えており、前記バイアス用導体薄膜の少なく
とも、前記磁気抵抗素子に対向する部分に軟磁性磁気材
料を形成したことを特徴とする磁気抵抗型薄膜ヘッド。
A magnetoresistive element made of a ferromagnetic metal material, a pair of electrodes for passing a sense current through the magnetoresistive element, and a ferromagnetic metal material for guiding a signal magnetic flux from a magnetic recording medium to the magnetoresistive element on a ferromagnetic substrate. and a bias conductor thin film provided opposite to the magnetoresistive element in order to flow a bias current for applying a bias magnetic field to the magnetoresistive element, and at least one of the bias conductor thin films is provided. . A magnetoresistive thin film head, characterized in that a soft magnetic material is formed in a portion facing the magnetoresistive element.
JP25672284A 1984-12-05 1984-12-05 Magnetoresistance type thin film head Pending JPS61134913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25672284A JPS61134913A (en) 1984-12-05 1984-12-05 Magnetoresistance type thin film head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25672284A JPS61134913A (en) 1984-12-05 1984-12-05 Magnetoresistance type thin film head

Publications (1)

Publication Number Publication Date
JPS61134913A true JPS61134913A (en) 1986-06-23

Family

ID=17296539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25672284A Pending JPS61134913A (en) 1984-12-05 1984-12-05 Magnetoresistance type thin film head

Country Status (1)

Country Link
JP (1) JPS61134913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903158A (en) * 1988-07-28 1990-02-20 Eastman Kodak Company MR head with complementary easy axis permanent magnet
JPH03179215A (en) * 1989-12-07 1991-08-05 Hitachi Ltd Magnetic encoder
EP0669609A2 (en) * 1994-02-28 1995-08-30 Commissariat A L'energie Atomique Magnetic read head with magnetoresistive element and improved biasing means
US5557491A (en) * 1994-08-18 1996-09-17 International Business Machines Corporation Two terminal single stripe orthogonal MR head having biasing conductor integral with the lead layers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903158A (en) * 1988-07-28 1990-02-20 Eastman Kodak Company MR head with complementary easy axis permanent magnet
JPH03179215A (en) * 1989-12-07 1991-08-05 Hitachi Ltd Magnetic encoder
EP0669609A2 (en) * 1994-02-28 1995-08-30 Commissariat A L'energie Atomique Magnetic read head with magnetoresistive element and improved biasing means
FR2716741A1 (en) * 1994-02-28 1995-09-01 Commissariat Energie Atomique Magnetic reading head with magnetoresistive element and advanced polarization means.
EP0669609A3 (en) * 1994-02-28 1995-10-18 Commissariat Energie Atomique Magnetic read head with magnetoresistive element and improved biasing means.
US5557491A (en) * 1994-08-18 1996-09-17 International Business Machines Corporation Two terminal single stripe orthogonal MR head having biasing conductor integral with the lead layers
US5653013A (en) * 1994-08-18 1997-08-05 International Business Machines Corporation Two terminal single stripe orthogonal MR head

Similar Documents

Publication Publication Date Title
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
GB2146482A (en) Thin film magnetic head
JPH064832A (en) Combine thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JPH0845030A (en) Magneto-resistive magnetic head
JPH06274833A (en) Magneto-resistance effect type magnetic head
JPH0473210B2 (en)
JP2614203B2 (en) Magnetoresistance head
JPS61134912A (en) Thin film type magnetic head
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JP3565925B2 (en) Magnetoresistive head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPH026490Y2 (en)
JP2755186B2 (en) Magnetoresistive head
JPS61196418A (en) Thin film magnetic head
JPH07320235A (en) Magneto-resistance effect type head and its production
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH05242433A (en) Magnetic head
JPS6258410A (en) Magnetoresistance effect type magnetic head
JPH0346885B2 (en)
JP2001155311A (en) Magneto-resistance effect type thin film magnetic head
JPH07326023A (en) Magnetic head and magnetic storage device using the same
JPH05182146A (en) Thin-film magnetic head
JPH06103539A (en) Magneto-resistance effect type head
JPH09180133A (en) Spin valve type magnetic head