JPS63271923A - Heat treatment of compound semiconductor substrate - Google Patents

Heat treatment of compound semiconductor substrate

Info

Publication number
JPS63271923A
JPS63271923A JP10526587A JP10526587A JPS63271923A JP S63271923 A JPS63271923 A JP S63271923A JP 10526587 A JP10526587 A JP 10526587A JP 10526587 A JP10526587 A JP 10526587A JP S63271923 A JPS63271923 A JP S63271923A
Authority
JP
Japan
Prior art keywords
arsenic
compound semiconductor
semiconductor substrate
heat treatment
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10526587A
Other languages
Japanese (ja)
Inventor
Yoshimichi Hasegawa
長谷川 好道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10526587A priority Critical patent/JPS63271923A/en
Publication of JPS63271923A publication Critical patent/JPS63271923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the scattering of arsenic from a compound semiconductor substrate by a method wherein a heat treatment is conducted in the state in which the compound semiconductor substrate, having arsenic as a constituent element, is closely fixed to the ion-implanted surface of the silicon wafer on which arsenic is ion-implanted. CONSTITUTION:A compound semiconductor substrate 6, having arsenic as a constituent element, is closely fixed to a silicon wafer 7. Arsenic is ion-implanted on one surface of the silicon wafer 7, the arsenic-implanted surface 7a is closely fixed to the compound semiconductor substrate 6, they are introduced into a furnace in the closely fixed state, and a heat treatment is conducted. At this point, it is desirable that the implanting quantity of arsenic for the silicon wafer 7 is at least in excess of the arsenic contained in the compound semiconductor substrate 6. As a result, the scattering of arsenic from the compound semiconductor substrate 7 can be suppressed effectively, the operation of a heat treatment can be conducted easily, and the cost of operation also can be cut down.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体、特に蒸気圧の高いヒ素を474
成元素とするガリウムヒ素(Ga AS )などの化合
物半導体を熱処理する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention uses compound semiconductors, particularly arsenic having a high vapor pressure,
The present invention relates to a method of heat treating a compound semiconductor such as gallium arsenide (Ga AS ) as a constituent element.

〔従来の技術〕[Conventional technology]

化合物半導体のうち、ヒ素(As >を構成元素とする
半導体はヒ素が蒸気圧の高い元素であるため、熱処理中
にヒ素が飛散して化学量論的組成が変動し、結晶欠陥な
どの品質劣化を生じる。このため、従来より以下に示す
ような熱処理方法が提案されている。
Among compound semiconductors, semiconductors with arsenic (As >) as a constituent element have a high vapor pressure, so arsenic scatters during heat treatment and the stoichiometric composition changes, resulting in quality deterioration such as crystal defects. Therefore, the following heat treatment methods have been proposed.

第1は、AsH2を混合したガスを炉内に導入し、熱分
解でASSi20ら生じるヒ素(As )の分圧を、そ
の分解圧以上に保つ方法(特公昭60−40694号)
である。第2の方法は、第2図に示されているものであ
る。すなわち、ガリウムヒ素などの化合物半導体基板1
0表裏両面に、基板1よりも径の大きな多結晶ガリウム
ヒ素保護板2.3をO〜5IrlIr1の距離で対向さ
せた状態で熱処理を行う(特開昭55−56637号)
方法である。第3の方法は、第3図に示されているもの
である。すなわち、イオン注入されたガリウムヒ素基板
4をガリウムヒ素の多結晶(ガリウムヒ素単結晶、粉末
またはガリウムヒ素を含む絶縁物でもよい)からなる治
具5に載着すると共に、炉内のヒ素の分圧を一定値に維
持するように調整しなから熱処理を行う(特公昭60−
43658号)方法である。第4は、イオン注入された
ガリウムヒ素基板に対し、これ以上に多量にイオン注入
されて11傷領域が多い別のガリウムヒ素基板を密着さ
せて熱処理を行う(特開昭56−50520号)方法で
ある。
The first is a method in which a gas mixed with AsH2 is introduced into the furnace and the partial pressure of arsenic (As) produced from ASSi20 during thermal decomposition is maintained at a level higher than the decomposition pressure (Japanese Patent Publication No. 40694/1983).
It is. The second method is shown in FIG. That is, a compound semiconductor substrate 1 such as gallium arsenide
Heat treatment is performed on both the front and back surfaces of the substrate 1 with polycrystalline gallium arsenide protective plates 2.3 having a larger diameter than the substrate 1 facing each other at a distance of 0 to 5IrlIr1 (Japanese Unexamined Patent Publication No. 55-56637).
It's a method. A third method is shown in FIG. That is, the ion-implanted gallium arsenide substrate 4 is mounted on a jig 5 made of gallium arsenide polycrystal (gallium arsenide single crystal, powder, or an insulator containing gallium arsenide), and the arsenic in the furnace is removed. Heat treatment is performed after adjusting the pressure to maintain a constant value (Special Publication Act 1986-
43658) method. The fourth method is to heat-treat the ion-implanted gallium arsenide substrate by placing another gallium arsenide substrate in close contact with the ion-implanted gallium arsenide substrate, which has been implanted with a larger amount of ions and has many 11 scratch areas (Japanese Unexamined Patent Publication No. 56-50520). It is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、炉内をヒ素の雰囲下に調整する上記の方
法は、理論的には可能であってもその制御を実際に行う
のが難しく、現実的ではない。一方、ガリウムヒ素基板
に対して同材質のガリウムヒ素からなる保護板を使用す
る上記第2ないし第4の方法にあっては、ガリウムヒ素
が高価であるところから製造中値が高騰する。
However, although the above method of adjusting the inside of the furnace to an arsenic atmosphere is theoretically possible, it is difficult to control it in practice and is not practical. On the other hand, in the second to fourth methods described above, in which a protective plate made of the same material as gallium arsenide is used for the gallium arsenide substrate, the manufacturing cost increases because gallium arsenide is expensive.

そこで本発明は、難しい制御を不要とし、しかも安価に
行うことができる化合物半導体基板の熱処理方法を提供
することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for heat treatment of a compound semiconductor substrate that does not require difficult control and can be performed at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る化合物半導体基板の熱処理方法は、少なく
とも片面にヒ素(AS >がイオン注入されたシリコン
ウェーハのイオン注入面に、ヒ素を構成元素とする化合
物半導体(例えばガリウムヒ素)基板を密着させた状態
で熱処理することを特徴とする。
The method for heat treatment of a compound semiconductor substrate according to the present invention includes closely adhering a compound semiconductor (e.g., gallium arsenide) substrate containing arsenic as a constituent element to the ion-implanted surface of a silicon wafer that has been ion-implanted with arsenic (AS) on at least one side. It is characterized by being heat treated in the state.

〔作用〕[Effect]

本発明に係る化合物半導体基板の熱処理方法は、以」こ
のように構成されるので、シリコンウェーハに注入され
たヒ素は化合物半導体基板からヒ素が飛散するのを防止
するように作用する。
Since the method for heat treatment of a compound semiconductor substrate according to the present invention is configured as described above, the arsenic implanted into the silicon wafer acts to prevent arsenic from scattering from the compound semiconductor substrate.

〔実施例〕〔Example〕

以下、添付図面の第1図を参照して、本発明の詳細な説
明する。
Hereinafter, the present invention will be described in detail with reference to FIG. 1 of the accompanying drawings.

第1図は本発明の一実施例に係る熱51!!理状態を示
す側面図である。ガリウムヒ素のようにヒ素を−の構成
元素とする化合物半導体基板6が、シリコンウェーハ7
に密着されている。化合物半導体6は下面にはケイ素(
Si )などの不純物があらかじめイオン注入されてお
り、このイオン注入時のj1傷を回復するためアニール
処理に供されるものでおる。シリコンウェーハ7は一般
に半導体つ工−ハとして使用されているものであり、そ
の厚さは特に限定されないが、その径は少くとも化合物
半導体基板6と同径(好ましくは大径)のものが使用さ
れる。
FIG. 1 shows a heat 51! according to an embodiment of the present invention. ! FIG. A compound semiconductor substrate 6 containing arsenic as a negative constituent element, such as gallium arsenide, is a silicon wafer 7.
is closely followed. The compound semiconductor 6 has silicon (
Impurities such as Si) are ion-implanted in advance, and annealing is performed to recover the j1 damage caused by the ion implantation. The silicon wafer 7 is generally used as a semiconductor wafer, and its thickness is not particularly limited, but a silicon wafer 7 having at least the same diameter as the compound semiconductor substrate 6 (preferably a large diameter) is used. be done.

このシリコンウェーハ7の片面にはヒ素がイオン注入さ
れており、そのヒ素注入面7aは化合物半導体基板6に
密着され、密着状態でアニール処理を行う炉内に導入さ
れて熱処理が行われる。ここで、シリコンウェーハ7に
対するヒ素の注入量は特に限定されないが、化合物半導
体基板6からのヒ素の飛散を抑制する点から、少なくと
も化合物半導体基板6中のヒ素の含有量以上であること
が好ましい。しかしながら、熱処理条件、化合物半導体
基板6のイオン注入条件等により基板6からのヒ素の飛
散が容易に抑制できる場合には、化合物半導体基板6中
のヒ素含有mよりも少ない注人足であってもよい。
Arsenic is ion-implanted into one side of the silicon wafer 7, and the arsenic-implanted surface 7a is brought into close contact with the compound semiconductor substrate 6, and the silicon wafer 7 is introduced into a furnace for annealing treatment while in close contact with the compound semiconductor substrate 6, where it is heat-treated. Here, the amount of arsenic implanted into the silicon wafer 7 is not particularly limited, but from the viewpoint of suppressing the scattering of arsenic from the compound semiconductor substrate 6, it is preferably at least the content of arsenic in the compound semiconductor substrate 6. However, if the scattering of arsenic from the substrate 6 can be easily suppressed by heat treatment conditions, ion implantation conditions of the compound semiconductor substrate 6, etc., even if the amount of arsenic is less than the arsenic content m in the compound semiconductor substrate 6. good.

このように、化合物半導体基板6がシリコンウェーハ7
のヒ素注入面7aに密着した状態では、シリコンウェー
ハ7のIl:素性入面7aはヒ素イAンの注入による1
1は多いので、注入面78に:おけるヒ素の分解圧は相
対的に高く、化合物半導体基板6のヒ素の分解圧は相対
的に低くなる。そのため、化合物半導体基板6からのヒ
素の飛散が抑制されるので、基板6の化学ω論的組成の
変動を防止でき、結晶欠陥などの品質劣化を防止するこ
とができる。また、炉内にヒ素を導入して、その濃度を
調整する必要がないから熱処理操作が容易となる。また
、シリコンウェーハ7にヒ素のみをイオン注入して化合
物半導体基板6の保ffl+、4とし、高価なガリウム
等を用いる必要がないので、安価に熱処理することがで
きる。
In this way, the compound semiconductor substrate 6 is transferred to the silicon wafer 7.
When the silicon wafer 7 is in close contact with the arsenic implanted surface 7a, the Il: elemental implanted surface 7a of the silicon wafer 7 is
1 is large, the decomposition pressure of arsenic at the injection surface 78 is relatively high, and the decomposition pressure of arsenic in the compound semiconductor substrate 6 is relatively low. Therefore, since the scattering of arsenic from the compound semiconductor substrate 6 is suppressed, it is possible to prevent variations in the schemiochemical composition of the substrate 6, and to prevent quality deterioration such as crystal defects. Furthermore, since there is no need to introduce arsenic into the furnace and adjust its concentration, the heat treatment operation becomes easier. Furthermore, only arsenic is ion-implanted into the silicon wafer 7 to stabilize the compound semiconductor substrate 6, and since there is no need to use expensive gallium or the like, heat treatment can be performed at low cost.

本発明は上記実施例に限定されるものではなく、種々の
変形が可能である。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、シリコンウェーハの両面にヒ素を注入し、この
両面に化合物半導体基板6を密着して、サンドイッチ状
態で熱処理してもよい。この場合は、シワコンウェーハ
の必要枚数は減じるから、操作性が向上しさらに安価と
することができる。
For example, arsenic may be implanted into both surfaces of a silicon wafer, and the compound semiconductor substrate 6 may be closely attached to both surfaces, and the wafer may be heat-treated in a sandwich state. In this case, the required number of wrinkled wafers is reduced, so the operability is improved and the cost can be further reduced.

また、熱処理される化合物半導体基板として【よ、ヒ素
を構成元素として含むものであれば他の元素は特に限定
されない。
Further, other elements are not particularly limited as long as the compound semiconductor substrate to be heat-treated contains arsenic as a constituent element.

(発明の効果) 以上、詳細に説明した通り、本発明に係る化合物半導体
基板の熱処理方法によれば、シリコンウェーハのヒ素(
As >イオン注入面に化合物半導体);を板を密若さ
けるので、化合物半導体基板からのヒ素の飛散を効果的
に抑制できると共に、熱処理操作が容易で運転経費も安
価とすることができる効果がある。
(Effects of the Invention) As described above in detail, according to the method for heat treatment of a compound semiconductor substrate according to the present invention, arsenic (
Since the plate is closely spaced with As > compound semiconductor on the ion-implanted surface, scattering of arsenic from the compound semiconductor substrate can be effectively suppressed, and the heat treatment operation is easy and operating costs are low. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱処理における側面図、第2図J
3よび第3図は従来技術の各側を示す側面図でおる。 6・・・化合物半導体基板、7・・・シリコンウェーハ
、7a・・・イオン注入面。 本   発   明 第1図 従   来   例 第  2  図 従   来   例 第  3  図
Fig. 1 is a side view of heat treatment according to the present invention, Fig. 2 J
3 and 3 are side views showing each side of the prior art. 6... Compound semiconductor substrate, 7... Silicon wafer, 7a... Ion implantation surface. Present invention Figure 1 Conventional example Figure 2 Conventional example Figure 3

Claims (1)

【特許請求の範囲】 1、少なくとも片面にヒ素がイオン注入されたシリコン
ウェーハの前記イオン注入面に、ヒ素を構成元素とする
化合物半導体基板を密着させた状態で熱処理することを
特徴とする化合物半導体基板の熱処理方法。 2、前記化合物半導体基板はガリウムヒ素基板である特
許請求の範囲第1項記載の化合物半導体基板の熱処理方
法。
[Claims] 1. A compound semiconductor characterized in that a compound semiconductor substrate containing arsenic as a constituent element is heat-treated in a state in which a compound semiconductor substrate containing arsenic as a constituent element is brought into close contact with the ion-implanted surface of a silicon wafer in which arsenic is ion-implanted on at least one side. Heat treatment method for substrates. 2. The method for heat treatment of a compound semiconductor substrate according to claim 1, wherein the compound semiconductor substrate is a gallium arsenide substrate.
JP10526587A 1987-04-28 1987-04-28 Heat treatment of compound semiconductor substrate Pending JPS63271923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10526587A JPS63271923A (en) 1987-04-28 1987-04-28 Heat treatment of compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10526587A JPS63271923A (en) 1987-04-28 1987-04-28 Heat treatment of compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS63271923A true JPS63271923A (en) 1988-11-09

Family

ID=14402829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10526587A Pending JPS63271923A (en) 1987-04-28 1987-04-28 Heat treatment of compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS63271923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454725A (en) * 1987-08-26 1989-03-02 Sony Corp Heat treating method for compound semiconductor substrate
JP2006339396A (en) * 2005-06-02 2006-12-14 Kwansei Gakuin Ion implantation annealing method, method of manufacturing semiconductor element, and semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454725A (en) * 1987-08-26 1989-03-02 Sony Corp Heat treating method for compound semiconductor substrate
JP2006339396A (en) * 2005-06-02 2006-12-14 Kwansei Gakuin Ion implantation annealing method, method of manufacturing semiconductor element, and semiconductor element

Similar Documents

Publication Publication Date Title
JPH04152518A (en) Manufacture of semiconductor device
EP0111085B1 (en) Ion implantation process for compound semiconductor
JPS63271923A (en) Heat treatment of compound semiconductor substrate
US7754585B2 (en) Method of heat treatment of silicon wafer doped with boron
JPS62150714A (en) Treatment of iii-v group compound semiconductor material
JPS6130030A (en) Method of annealing multi-element semiconductor
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
JPS6444023A (en) Heat treatment
JPS6472533A (en) Manufacture of single crystal semiconductor substrate
JPS55151333A (en) Fabricating method of semiconductor device
KR920007193B1 (en) Anealing method of semiconductor elements
JPS6043658B2 (en) Manufacturing method of semiconductor device
JPH077009A (en) Heat treatment method of compound semiconductor
JPS60227416A (en) Annealing method of semiconductor substrate
JP2574630B2 (en) Silicon substrate quality stabilization treatment method
JPH05166817A (en) Annealing method of compound semiconductor device
JPH01281721A (en) Method for preventing contamination of compound semiconductor wafer
JPS61207016A (en) Formation of gallium arsenide conductive layer
JPH06295865A (en) Production of high resistance compound semiconductor
JPS59217334A (en) Annealing method of compound semiconductor substrate
JPS58112328A (en) Manufacture of semiconductor device
JPH0480878B2 (en)
JPS62108516A (en) Solid growth method for polycrystalline semiconductor film
JPS6455846A (en) Semiconductor device
JPS60193332A (en) Method of annealing compound semiconductor substrate