JPS6043658B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6043658B2
JPS6043658B2 JP54119881A JP11988179A JPS6043658B2 JP S6043658 B2 JPS6043658 B2 JP S6043658B2 JP 54119881 A JP54119881 A JP 54119881A JP 11988179 A JP11988179 A JP 11988179A JP S6043658 B2 JPS6043658 B2 JP S6043658B2
Authority
JP
Japan
Prior art keywords
heat treatment
pressure
implanted
gaas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54119881A
Other languages
Japanese (ja)
Other versions
JPS5643735A (en
Inventor
毅 小沼
俊夫 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54119881A priority Critical patent/JPS6043658B2/en
Publication of JPS5643735A publication Critical patent/JPS5643735A/en
Publication of JPS6043658B2 publication Critical patent/JPS6043658B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明はイオン注入した半導体装置の熱処理方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heat treating a semiconductor device into which ions have been implanted.

一般にイオン注入した半導体装置は注入したイオンを
活性化するため及び注入時に発生した結晶損傷を回復せ
しめるため熱処理する必要がある。
Generally, a semiconductor device into which ions have been implanted needs to be subjected to heat treatment in order to activate the implanted ions and to recover from crystal damage caused during implantation.

シリコン(Si)等の単体半導体では高温熱処理で表面
解離が起つて化学量論的組成が変化することがないため
熱処理には表面保護膜を必要としないか或は必要として
も簡単な表面保護膜で充分である。 一方、化合物半導
体は高温熱処理で表面の解離が起り化学量論的組成が変
化するので、これを防ぐためには適当な保護膜でおおう
か、或は化合物を構成する元素の雰囲気中で熱処理する
方法がとられている。
Single semiconductors such as silicon (Si) do not require a surface protective film during heat treatment, or even if necessary, a simple surface protective film because surface dissociation occurs during high-temperature heat treatment and the stoichiometric composition does not change. is sufficient. On the other hand, when compound semiconductors are subjected to high-temperature heat treatment, their surface dissociation occurs and the stoichiometric composition changes, so in order to prevent this, it is necessary to cover them with an appropriate protective film, or to heat-treat them in the atmosphere of the elements that make up the compound. is taken.

化合物半導体として、ガリウム砒素(GaAs)につい
て説明すると、GaAsの場合、保護膜としてはシリコ
ン酸化膜(Si00)やシリコン窒化膜(Si。N0)
が一般に用いられている。又、化合物を構成する元素の
雰囲気中で熱処理する方法としては第1図に示す様に、
反応管1内に砒素を飽和したガリウムGa/GaAs2
を、基台3に試料のGaAs4を設置し、試料とほゞ平
衡に近いM圧を供給して、試料の化学量論的組成からの
ずれを防ぐ方法或は基板を構成する元素でイオン注入し
た基板を覆い、基板の組成変化を抑制する方法(特願昭
50−12419号明細書)等がある。 保護膜を用い
て熱処理する場合には、適当な保護膜を用いることによ
り高温熱処理(列えば900℃)が可能となり、活性化
率が向上し、注入時の損傷を回復せしめることが可能で
あるが、保護膜と基板の熱膨脹係数の差による結晶欠陥
の発生、結晶欠陥に伴う注入イオンの異常拡散等が発生
する。 一方、化合物を構成する元素の雰囲気で熱処理
する方法は、保護膜を用いないため熱膨脹係数の差によ
る歪による結晶欠陥は発生しない。
Explaining gallium arsenide (GaAs) as a compound semiconductor, in the case of GaAs, silicon oxide film (Si00) or silicon nitride film (Si.N0) is used as a protective film.
is commonly used. In addition, as shown in Figure 1, the method of heat treatment in the atmosphere of the elements constituting the compound is as follows.
Gallium Ga/GaAs2 saturated with arsenic in reaction tube 1
In this method, a GaAs4 sample is placed on the base 3 and an M pressure that is almost in equilibrium with the sample is supplied to prevent deviation from the stoichiometric composition of the sample, or ions are implanted with elements constituting the substrate. There is a method (Japanese Patent Application No. 12419/1982) of suppressing changes in the composition of the substrate by covering the substrate. When performing heat treatment using a protective film, using an appropriate protective film enables high-temperature heat treatment (for example, 900°C), improving the activation rate and making it possible to recover from damage during implantation. However, crystal defects occur due to the difference in thermal expansion coefficient between the protective film and the substrate, and abnormal diffusion of implanted ions occurs due to the crystal defects. On the other hand, the method of heat treatment in the atmosphere of the elements constituting the compound does not use a protective film, so crystal defects due to distortion due to differences in thermal expansion coefficients do not occur.

しかし、高温熱処理の場合、基板構成元素のいずれかの
空孔が発生し深い準位を形成する。 本発明は保護膜を
用いない熱処理方法の改良に関するもので上記欠点が除
去された化合物半導体の改良された熱処理方法を提供す
るもので活性化率を高め、結晶欠陥の発生を抑制し、注
入イオンの異常拡散を防止せしめる製造方法である。
However, in the case of high-temperature heat treatment, vacancies are generated in one of the substrate constituent elements to form a deep level. The present invention relates to an improved heat treatment method that does not use a protective film, and provides an improved heat treatment method for compound semiconductors that eliminates the above-mentioned drawbacks, increases the activation rate, suppresses the occurrence of crystal defects, and improves the efficiency of implanted ions. This is a manufacturing method that prevents abnormal diffusion of

以下、本発明をGaAsを例にとり図面と共に実施例
に基づいて説明する。実施例 1 第2図a−cは本発明の一実施例を示す製造工程断面
図である。
Hereinafter, the present invention will be explained based on drawings and examples, taking GaAs as an example. Embodiment 1 FIGS. 2a-2c are sectional views showing manufacturing steps of an embodiment of the present invention.

機械的、化学的に処理した半絶縁性GaAs基板5にシ
リコンSi+6をイオン注入する。
Silicon Si+6 is ion-implanted into a mechanically and chemically treated semi-insulating GaAs substrate 5.

注入条件は150KeVで、注入量3×1012c!R
t−2を室温で注入した。しかる後、多結晶GaAsか
らなる治具7に、イオン注入した試料を設置し、砒素圧
(As圧)2×1Cf!TOrrにして870℃で3扮
間水素雰囲気中で熱処理した。M圧は第1図で2の部分
に金属砒素を設置し、2の部分の温度を560℃に設定
して砒素圧を2×1σTOrrとした。
The implantation conditions were 150KeV and the implantation amount was 3×1012c! R
t-2 was injected at room temperature. Thereafter, the ion-implanted sample was placed in a jig 7 made of polycrystalline GaAs, and an arsenic pressure (As pressure) of 2×1 Cf! Heat treatment was performed at 870° C. for 3 days in a hydrogen atmosphere. For the M pressure, metal arsenic was installed in the part 2 in FIG. 1, and the temperature of the part 2 was set at 560° C., so that the arsenic pressure was 2×1σTOrr.

ホール効果により測定したキャリヤ濃度Nsは(2.8
±0.1)×1012cm1移動度μHは4500cI
t/V.secである。又注入層のキャリヤ濃度分布は
第3図の様になり、ほS゛論理曲線と一致した。又この
基板を用いてゲート長1μm1ゲート巾300μmのシ
ョットキゲートを有するFETを試作すると、ドレイン
−ソース間電圧■PS=3.1V、ドレイン電流1c.
=8mAで測定周波数f=4G比で雑音指数N.Fは1
.9dBであつた。本実施例でキャリヤ濃度、移動度が
高く、キャリヤ濃度分布に異常拡散がなく、FETのN
.Fが低いのは、基板構成元素であるGaの解離を多結
晶GaAsの治具で防止し、Asの解離を制御した砒素
圧で防止しているためと推定される。この方法は、多結
晶GaAsにより、試料とほ)゛平衡に近いGa圧を供
給し、外部からM圧を供給するものである。
The carrier concentration Ns measured by the Hall effect is (2.8
±0.1)×1012cm1 Mobility μH is 4500cI
t/V. sec. Further, the carrier concentration distribution in the injection layer was as shown in FIG. 3, and almost coincided with the S' logical curve. Furthermore, when a FET having a Schottky gate with a gate length of 1 μm and a gate width of 300 μm is prototyped using this substrate, the drain-source voltage PS=3.1V and the drain current 1c.
= 8mA, measurement frequency f = 4G ratio, noise figure N. F is 1
.. It was 9dB. In this example, the carrier concentration and mobility are high, there is no abnormal diffusion in the carrier concentration distribution, and the FET N
.. The reason why F is low is presumed to be because the dissociation of Ga, which is a constituent element of the substrate, is prevented by the polycrystalline GaAs jig, and the dissociation of As is prevented by the controlled arsenic pressure. In this method, polycrystalline GaAs is used to supply Ga pressure that is close to equilibrium with the sample, and M pressure is supplied from the outside.

従来の単に多結晶GaAs板或はGa,As粉末中に設
置して熱処理する方法と比較すると、従来の方法では高
温処理で多結晶GaAs板或はGaAs粉末から主に、
Asが蒸発し損壊し、特に態圧を供給する方法(第1図
)は基板にGa空孔が発生しない温度範囲であれば、本
発明と同様の効果が期待できるが、高温熱処理ではGa
の空孔が発生し注入イオンの異常拡散及びGa空孔発生
に伴うN.Fの増大.をきたす。
Compared to the conventional method of simply placing the polycrystalline GaAs plate or Ga, As powder in the heat treatment method, the conventional method mainly heat-treats the polycrystalline GaAs plate or GaAs powder by high-temperature treatment.
In particular, the method of supplying atmospheric pressure (Fig. 1), in which As evaporates and is destroyed, can be expected to have the same effect as the present invention as long as the temperature range does not generate Ga vacancies in the substrate.
vacancies are generated, abnormal diffusion of implanted ions and N. Increase in F. cause

第4図は実施例で熱処理900℃で3紛間行つたときの
本発明の方法で熱処理したときのキャリヤ濃度分布を第
4図aに、第1図の方法で行つたときのキャリヤ濃度分
布をbに示す。
Figure 4 shows the carrier concentration distribution when the heat treatment was carried out using the method of the present invention at 900°C for three times in an example, and Figure 4a shows the carrier concentration distribution when the heat treatment was carried out using the method shown in Figure 1. is shown in b.

第4図A,b・から明らかな様に、本発明の方法ではほ
とんどキャリヤ濃度分布は論理曲線に一致するが、第1
図の従来方法の場合はGa空孔を介してと椎測される増
速拡散が観測される。又FETを実施例と同様の方法を
試作し、雑音紙数を比較すると、本発明の方法ではN.
F=1.9dBに対し、第1図従来方法では、N.F=
2.5dBであつた。雑音指数が本発明の方法で熱処理
することにより、減少するのは、結晶欠陥の発生、特に
Ga空孔の発生を抑制しているため及び半絶縁性基板界
面近傍でのキャリヤ濃度が増速拡散がないため急峻であ
るためと考えられる。実施例では、外部から供給するA
s圧として、72×1cf!:TOrrの場合について
説明したが、M圧としては20T0rr〜500T0r
rが移動度、キャリヤ濃度分布FET(7)N.Fの点
で良好であつた。
As is clear from FIGS. 4A and 4B, in the method of the present invention, the carrier concentration distribution almost matches the logical curve, but the first
In the case of the conventional method shown in the figure, accelerated diffusion is observed via Ga vacancies. In addition, when an FET was prototyped using the same method as in the example and the number of noise sheets was compared, it was found that the method of the present invention had N.
F=1.9 dB, whereas in the conventional method shown in FIG. F=
It was 2.5dB. The noise figure is reduced by heat treatment according to the method of the present invention because the generation of crystal defects, especially Ga vacancies, is suppressed, and the carrier concentration near the semi-insulating substrate interface is reduced by accelerated diffusion. This is thought to be due to the fact that it is steep because there is no . In the embodiment, A supplied externally
As s pressure, 72×1cf! Although the case of TOrr was explained, the M pressure is 20T0rr to 500T0r.
r is the mobility, carrier concentration distribution FET (7) N. It was good in terms of F.

M圧が20r0rr以下では、砒素空孔によると思われ
るキャリヤ濃度の減少、N.Fの増大及び熱処理治具に
門用いた多結晶GaAsの損壊が見られた。又M圧が5
00T0rr以上では、砒素圧過剰によりGa空孔の発
生によると思われるキャリヤ濃度の異常拡散、移動度の
減少、FETを製作した場合にN.Fの増大をきたした
。j 実施例では、基板としてGaAsで説明したが、
他の化合物半導体、例えばGaP,GaAsl−XPx
,GaXAel−X,AsyPl−y等にも用いられる
When the M pressure is below 20r0rr, the carrier concentration decreases, which is thought to be due to arsenic vacancies, and the N. An increase in F and damage to the polycrystalline GaAs used in the heat treatment jig were observed. Also, the M pressure is 5
At 00T0rr or more, excessive arsenic pressure causes abnormal diffusion of carrier concentration, which is thought to be caused by the generation of Ga vacancies, decreases in mobility, and N. This resulted in an increase in F. j In the example, GaAs was used as the substrate, but
Other compound semiconductors, such as GaP, GaAsl-XPx
, GaXAel-X, AsyPl-y, etc.

又多結晶GaAsを治具を用いたがGaAsの粉末、G
a,Asを含有する絶縁物を用いても良い。又外部から
供給するAs圧として、金属砒素を用いたが、アルシン
(AsH3)の流量を変化せしめてAs圧を制御しても
良い。以上説明したように本発明は、イオン注入した化
合物半導体の熱処理方法に関するもので、イオン注入し
た化合物半導体を該化合物半導体の構成元素からなる単
結晶、多結晶、粉末或は構成元素を含有する絶縁物等に
設置し、前記イオン注入した化合物半導体の構成元素の
蒸気圧の高い元素の蒸気圧を外部から加えることにより
イオン注入層のイオンの電気活性化率、移動度を向上せ
しめ、キャリヤ濃度の異常拡散を防止し、この方法によ
るイオン注入した基板を用いることで雑音指数を減少せ
しめるものであり、その工業的価値は大である。
In addition, polycrystalline GaAs was prepared using a jig, but GaAs powder, G
An insulator containing a, As may also be used. Further, although metallic arsenic is used as the As pressure supplied from the outside, the As pressure may be controlled by changing the flow rate of arsine (AsH3). As explained above, the present invention relates to a method for heat treatment of an ion-implanted compound semiconductor, in which the ion-implanted compound semiconductor is processed into a single crystal, a polycrystal, a powder made of the constituent elements of the compound semiconductor, or an insulator containing the constituent elements. By applying from the outside the vapor pressure of an element with a high vapor pressure among the constituent elements of the ion-implanted compound semiconductor, the electrical activation rate and mobility of ions in the ion-implanted layer are improved, and the carrier concentration is increased. By preventing abnormal diffusion and using a substrate implanted with ions using this method, the noise figure can be reduced, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaAsの構成元素からなる雰囲気での
熱処理方法の一例を示す構成図、第2図a〜cは本発明
の一実施例を示す工程図、第3図は本発明の熱処理方法
で得られるキャリヤ濃度分布図、第4図は本発明ならび
に従来の熱処理方法で得られるキャリヤ濃度分布図であ
る。 5・・・・・・半絶縁情ρAAs基板、6・・・・・シ
リコンイン、7・・・・・・多結晶GaAs治具。
Figure 1 is a block diagram showing an example of a conventional heat treatment method in an atmosphere containing constituent elements of GaAs, Figures 2 a to c are process diagrams showing an embodiment of the present invention, and Figure 3 is a heat treatment method of the present invention. FIG. 4 is a carrier concentration distribution map obtained by the present invention and the conventional heat treatment method. 5...Semi-insulating ρAAs substrate, 6...Silicon in, 7...Polycrystalline GaAs jig.

Claims (1)

【特許請求の範囲】[Claims] 1 化合物半導体基板を該化合物半導体基板を構成する
元素からなる単結晶、多結晶、粉末或は化合物半導体基
板を構成する元素を含む絶縁物に設置し、前記化合物半
導体の構成元素のうち蒸気圧の高い元素の雰囲気を外部
から加えて、前記化合物半導体基板を熱処理することを
特徴とする半導体装置の製造方法。
1. A compound semiconductor substrate is placed on a single crystal, polycrystal, powder, or insulator containing the elements constituting the compound semiconductor substrate, and the vapor pressure of the constituent elements of the compound semiconductor is A method for manufacturing a semiconductor device, characterized in that the compound semiconductor substrate is heat-treated by applying an atmosphere containing a high element from the outside.
JP54119881A 1979-09-18 1979-09-18 Manufacturing method of semiconductor device Expired JPS6043658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54119881A JPS6043658B2 (en) 1979-09-18 1979-09-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54119881A JPS6043658B2 (en) 1979-09-18 1979-09-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5643735A JPS5643735A (en) 1981-04-22
JPS6043658B2 true JPS6043658B2 (en) 1985-09-30

Family

ID=14772541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54119881A Expired JPS6043658B2 (en) 1979-09-18 1979-09-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6043658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186014A (en) * 1984-03-06 1985-09-21 Agency Of Ind Science & Technol Forming method of n type layer on gaas semiconductor substrate
JPS61210639A (en) * 1985-03-15 1986-09-18 Toshiba Corp Method of improving quality of compound single crystal having volatile component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104770A (en) * 1978-02-03 1979-08-17 Sony Corp Heat treatment method for 3-5 group compound semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104770A (en) * 1978-02-03 1979-08-17 Sony Corp Heat treatment method for 3-5 group compound semiconductor

Also Published As

Publication number Publication date
JPS5643735A (en) 1981-04-22

Similar Documents

Publication Publication Date Title
US4116719A (en) Method of making semiconductor device with PN junction in stacking-fault free zone
US5015593A (en) Method of manufacturing semiconductor device
US3696276A (en) Insulated gate field-effect device and method of fabrication
JP2799304B2 (en) Method of forming contact conductive layer of semiconductor device and method of forming junction and contact conductive layer of semiconductor device
US4050967A (en) Method of selective aluminum diffusion
JPS6043658B2 (en) Manufacturing method of semiconductor device
US4224636A (en) Semiconductor device with thermally compensating SiO2 -silicate glass-SiC passivation layer
JPS6227727B2 (en)
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
CA1104267A (en) Method of making semiconductor devices
US4010290A (en) Method of fabricating an ensulated gate field-effect device
JPH0797567B2 (en) Method of forming thin film
JPS6130030A (en) Method of annealing multi-element semiconductor
KR960003850B1 (en) Manufacturing process of compound semiconductor device using alas protection layer
JPS6292327A (en) Semiconductor device and manufacture thereof
KR950013798B1 (en) Channel activating method of gaas field effect transistor
JPS61144822A (en) Formation of gaas conductive layer
JPS56162841A (en) Forming method for insulating film of compound semiconductor
JP3540918B2 (en) Method for manufacturing semiconductor device
KR920004966B1 (en) Activating method of ion-implanted ga as substrate
JPH09321041A (en) Protective film for semiconductor device and method for forming the same
JPH03229427A (en) Manufacture of mos-type semiconductor device
JP2528660B2 (en) Method for forming compound semiconductor conductive layer
JPH02129914A (en) Heat treatment of compound semiconductor wafer
JPS58112328A (en) Manufacture of semiconductor device