KR920004966B1 - Activating method of ion-implanted ga as substrate - Google Patents

Activating method of ion-implanted ga as substrate Download PDF

Info

Publication number
KR920004966B1
KR920004966B1 KR1019880016680A KR880016680A KR920004966B1 KR 920004966 B1 KR920004966 B1 KR 920004966B1 KR 1019880016680 A KR1019880016680 A KR 1019880016680A KR 880016680 A KR880016680 A KR 880016680A KR 920004966 B1 KR920004966 B1 KR 920004966B1
Authority
KR
South Korea
Prior art keywords
thin film
ion
substrate
gaas substrate
activating
Prior art date
Application number
KR1019880016680A
Other languages
Korean (ko)
Other versions
KR900010907A (en
Inventor
박형무
편광의
Original Assignee
한국 전기통신공사
이해욱
재단법인 한국전자통신연구소
경상현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국 전기통신공사, 이해욱, 재단법인 한국전자통신연구소, 경상현 filed Critical 한국 전기통신공사
Priority to KR1019880016680A priority Critical patent/KR920004966B1/en
Publication of KR900010907A publication Critical patent/KR900010907A/en
Application granted granted Critical
Publication of KR920004966B1 publication Critical patent/KR920004966B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The activating method of an ion-implanted GaAs substrate comprises (a) ion-implanting a silicon ion (Si+) on the semi-insulating GaAs substrate (1) under 70-120 KeV and 1012-1013 atoms/cm2 condition, (b) depositing SiO2 or Si3N4 dielectric thin film (3) of 100-500 angstrom thickness on the substrate by the chemical deposition or sputtered deposition, (c) depositing a heat-resistant W or Mo thin film (4) of 100-500 angstrom thickness on the film (3), and (d) activating the substrate at 800-950 deg.C for 20-30 min. The method is used for forming an activating layer in the mfr. of the semiconductor device.

Description

이온 주입된 GaAs 기판의 활성화 방법Activation method of ion implanted GaAs substrate

제 1a 도는 실리콘 이온 주입 공정도.1a or silicon ion implantation process diagram.

제 1b 도는 유전체 박막 증착 공정도.FIG. 1B is a process diagram of dielectric thin film deposition.

제 1c 도는 내열성 금속 증착후의 활성화 공정도.Figure 1c or activation process diagram after heat resistant metal deposition.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반절연 GaAs 기판 2 : n이온 주입층1: semi-insulating GaAs substrate 2: n-ion implanted layer

3 : 유전체 박막 4 : 금속박막3: dielectric thin film 4: metal thin film

본 발명은 GaAs 반도체 소자 제조시의 활성층 형성에 사용되는 활성화 공정에 관한 것이다.The present invention relates to an activation process used for forming an active layer in the manufacture of GaAs semiconductor devices.

종래에 개발된 이온 주입 GaAs 기판의 활성화 방법을 살펴보면, 크게 세종류로 구분할 수 있다. 첫째는 GaAs 기판과 열팽창 계수가 유사한 유전체 박막을 이온 주입된 GaAs 기판위에 증착한 후 불활성 가스 분위기에서 활성화시키는 방법이며, 둘째는 이온 주입된 GaAs 기판 표면에 반절연 GaAs 기판이나, 같은 조건으로 이온 주입된 GaAs 기판을 맞대어 불활성 가스 분위기에서 활성화시키며 셋째는 휘발하기 쉬운 As원소를 보충하기 위하여 밀봉막 없이 AsH3, H2의 과압(Over - pressure)에서 활성화 하는 방법이 있다. 이러한 활성화 방법을 살펴보면 첫째 방법은 GaAs 기판과 열팽창 계수가 비슷하고 밀도가 높은 박막을 선택한 후 계면 스트레스를 줄이기 위해 막의 두께를 1000Å 이하로 제한하게 된다.Looking at the activation method of the conventionally implanted ion implanted GaAs substrate can be classified into three types. First, a dielectric thin film having a similar thermal expansion coefficient to a GaAs substrate is deposited on an ion implanted GaAs substrate and then activated in an inert gas atmosphere. Second, a semi-insulated GaAs substrate is implanted on an ion implanted GaAs substrate surface under the same conditions. The GaAs substrate is then activated in an inert gas atmosphere, and the third method is to activate it at the over-pressure of AsH 3 and H 2 without a sealing film to compensate for As element, which is easily volatilized. In the activation method, the first method selects a thin film having a similar thermal expansion coefficient and high density to the GaAs substrate, and then limits the film thickness to 1000 Å or less in order to reduce interfacial stress.

이러한 방법은 각 박막마다 스트레스에 따른 최대 증착막의 두께가 제한되고 스트레스에 의한 활성화율 및 이동도의 효율이 저하하게 된다. 두번째 방법은 맞대어진 GaAs 기판으로부터 휘발되는 성분을 보충하고자 하는 의도이나, 그 효과가 확실하지 않고 양측면과 뒷면을 통하여 As 원자가 휘발되는 단점이 있다. 세번째 방법은 현재 많이 사용되고 있는 방법이나, 공정 조건이 까다롭고 아르신(Arsine : AsH3) 가스를 사용함으로 위험하며, 공정의 재현성이 불확실하다.In this method, the thickness of the maximum deposited film is limited for each thin film and the efficiency of activation and mobility due to stress is reduced. The second method is intended to replenish the volatilized components from the butted GaAs substrate, but its effect is not certain and the As atoms are volatilized through both sides and the back side. The third method is currently widely used, but the process conditions are difficult, and it is dangerous to use Arsine (Arsine: AsH 3 ) gas, and the reproducibility of the process is uncertain.

본 발명의 목적은 상기의 문제점을 해결하기 위한 이온 주입된 GaAs 기판의 활성화 방법을 제공하는데 있으며, 그 방법으로서 상기 첫번째 방법을 보완하여 다음과 같이 구성하였다. 첫째 종래의 방법에서는 As 원자의 휘발을 방지하기 위하여 일정 두께 이상의 밀봉막을 증착하였으나, 이로 인한 계면의 스트레스로 인하여 좋은 활성화 결과를 얻지 못하였으나, 본 발명에서는 유전체 박막이 GaAs 기판과 내열성 금속 사이의 반응을 저지키 위한 완충막 역할을 하도록 하여 그 두께를 100-500Å 정도로 얇게 할 수 있어 유전체막에 의한 계면 스트레스를 최소화할 수 있어서, 기판 손상을 최소화 하게 된다. 둘째 유전체 박막에 의해 휘발성 As 원자의 외부확산(out diffusion)을 일차 저지할 수 있으며, 이차로 증착된 치밀한 내열성 금속 박막에 의해 외부확산이 완전히 저지되게 된다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method of activating an ion implanted GaAs substrate to solve the above problems. First, in the conventional method, a sealing film having a predetermined thickness or more is deposited to prevent volatilization of As atoms, but due to the stress at the interface, good activation results are not obtained. In the present invention, the dielectric thin film reacts between the GaAs substrate and the heat resistant metal. By acting as a buffer to prevent the thickness of the thickness can be reduced to about 100-500Å to minimize the interfacial stress caused by the dielectric film, thereby minimizing substrate damage. Second, the first thin film can prevent out-diffusion of volatile As atoms, and the second diffuse thin film is completely prevented from being diffused by the dense heat-resistant metal thin film.

이하 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 제 1a 도는 실리콘 이온 주입 공정도이고, 제 1b 도는 유전체 박막 증착 공정도이고, 제 1c 도는 내열성 금속 증착후의 활성화 공정도이며, 도면에서 1은 반절연 GaAs 기판을, 2는 n 이온 주입층을, 3은 유전체 박막을, 4는 금속박막을 각각 나타낸다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1a is a silicon ion implantation process diagram, FIG. 1b is a dielectric thin film deposition process diagram, and FIG. 1c is an activation process diagram after heat-resistant metal deposition, in which 1 is a semi-insulating GaAs substrate, 2 is an ion implantation layer, and 3 is a dielectric. A thin film and 4 are metal thin films, respectively.

제 1 공정(제 1a 도)에서는 반절연 (S. I.) GaAs 기판(1)Si이온을 70-120KeV, 1012-1013atmos/com2의 조건으로 이온 주입한다. 제 2 공정(제 1b 도)에서는 상기 이온 주입된 기판상에 화학 증착이나 스퍼터링 방법에 의해 SiO2또는 Si3N4막(3)을 100-500Å 두께로 증착한다. 이때 플라즈마 화학 증착에 의한 SiO2나 Si3N4의 증착조건은 압력 0.5-1Torr, SiH450-100SCCM, N2O 또는 NH3300-700SCCM, 기판온도는 350-450℃ RF 전력은 100-200W이며, 이온빔에 의한 스퍼터링 공정조건은 압력 10-5-10-4Toor , Ar 7-12SCCM, 가속전압 125-500eV이다. 제 3 공정 (제 1c 도)에서는 상기 유전체 박막상에 화학증착 또는 스퍼터링 방법에 의해 내열성 금속인 텅스텐(W) 또는 몰리브덴 (Mo)을 100-500Å 두께로 증착한다. 이때의 화학증착에 의한 텅스텐의 증착 조건은 압력 0.2-1Torr, WF62-5SCCM, SiH4100-500SCCM, Ar 800-1200SCCM, 기판온도는 350℃-450℃이며, 이온빔 스퍼터링에 의한 텅스텐, 몰리브덴의 증착조건은 압력 10-5-10-4Too, Ar 7-12SCCM, 가속전압 125-500eV이다. 제 4 공정은 800-950℃ 온도범위에서 20-30분 동안 활성화하는 공정이다.In the first step (Fig. 1A), semi-insulated (SI) GaAs substrate 1 + Si ions are implanted under the conditions of 70-120 KeV, 10 12 -10 13 atmos / com 2 . In the second step (FIG. 1B), the SiO 2 or Si 3 N 4 film 3 is deposited to a thickness of 100-500 kV on the ion implanted substrate by chemical vapor deposition or sputtering. At this time, the deposition condition of SiO 2 or Si 3 N 4 by plasma chemical vapor deposition is 0.5-1Torr, SiH 4 50-100SCCM, N 2 O or NH 3 300-700SCCM, substrate temperature is 350-450 ℃ and RF power is 100- 200W, the sputtering process conditions by the ion beam is pressure 10 -5 -10 -4 Toor, Ar 7-12SCCM, acceleration voltage 125-500eV. In the third process (FIG. 1C), a heat resistant metal, tungsten (W) or molybdenum (Mo), is deposited on the dielectric thin film by chemical vapor deposition or sputtering to a thickness of 100 to 500 kPa. At this time, the deposition conditions of tungsten by chemical vapor deposition are 0.2-1 Torr, WF 6 2-5SCCM, SiH 4 100-500SCCM, Ar 800-1200SCCM, substrate temperature is 350 ℃ -450 ℃, and tungsten and molybdenum by ion beam sputtering. The deposition conditions were 10 -5 -10 -4 Too, Ar 7-12SCCM, and acceleration voltage 125-500eV. The fourth process is to activate for 20-30 minutes in the 800-950 ℃ temperature range.

상기와 같이 본 발명은 반절연 GaAs의 활성화 공정을 위해 GaAs 기판상에 유전체 박막과 금속막을 증착시킴으로써 계면의 스트레스를 최소화하여 기판손상을 최소화하고, As의 휘발을 완전히 저지할 수 있는 유용한 발명이다.As described above, the present invention is a useful invention capable of minimizing substrate damage by minimizing stress at an interface by depositing a dielectric thin film and a metal film on a GaAs substrate for an activation process of semi-insulated GaAs, and completely preventing volatilization of As.

Claims (3)

이온 주입된 GaAs 기판의 활성화 방법에 있어서, 반절연 GaAs 기판상에 실리콘(+Si) 이온을 70 내지 120KeV, 1012내지 1013atoms/cm2의 조건으로 이온 주입하는 제 1 공정 ; 상기 제 1공정후, 이온 주입층상에 SiO2유전체 박막을 100 내지 500Å 두께로 증착하는 제 2 공정 ; 상기 제 2 공정후의 유전체 박막상에 내열성 텅스텐(W) 금속박막을 100 내지 500Å 두께로 증착하는 제 3 공정 ; 및 상기 제 3공정후, 800 내지 950℃의 온도범위에서 상기 기판을 활성화 하는 제 4 공정으로 이루어지는 것을 특징으로 하는 이온 주입된 GaAs 기판의 활성화 방법.A method for activating an ion implanted GaAs substrate, comprising: a first step of ion implanting silicon ( + Si) ions onto a semi-insulated GaAs substrate under conditions of 70 to 120 KeV and 10 12 to 10 13 atoms / cm 2 ; After the first step, a second step of depositing a SiO 2 dielectric thin film on the ion implantation layer to a thickness of 100 to 500 Å; A third step of depositing a heat-resistant tungsten (W) metal thin film on the dielectric thin film after the second step with a thickness of 100 to 500 GPa; And a fourth step of activating the substrate at a temperature in the range of 800 to 950 ° C. after the third step. 제 1 항에 있어서, 상기 제 2 공정의 유전체 박막 증착 공정에서 SiO2유전체 대신에 Si3N4유전체를 사용하는 것을 특징으로 하는 이온 주입된 GaAs 기판의 활성화 방법.2. The method of claim 1 wherein a Si 3 N 4 dielectric is used in place of the SiO 2 dielectric in the dielectric thin film deposition process of the second process. 제 1 항에 있어서, 상기 제 3 공정의 금속박막 증착 공정에서 텅스텐(W) 금속 대신에 몰리브덴(Mo)금속을 사용하는 것을 특징으로 하는 이온 주입된 GaAs 기판의 활성화 방법.2. The method of claim 1, wherein molybdenum (Mo) metal is used instead of tungsten (W) metal in the metal thin film deposition process of the third step.
KR1019880016680A 1988-12-14 1988-12-14 Activating method of ion-implanted ga as substrate KR920004966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880016680A KR920004966B1 (en) 1988-12-14 1988-12-14 Activating method of ion-implanted ga as substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880016680A KR920004966B1 (en) 1988-12-14 1988-12-14 Activating method of ion-implanted ga as substrate

Publications (2)

Publication Number Publication Date
KR900010907A KR900010907A (en) 1990-07-11
KR920004966B1 true KR920004966B1 (en) 1992-06-22

Family

ID=19280164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880016680A KR920004966B1 (en) 1988-12-14 1988-12-14 Activating method of ion-implanted ga as substrate

Country Status (1)

Country Link
KR (1) KR920004966B1 (en)

Also Published As

Publication number Publication date
KR900010907A (en) 1990-07-11

Similar Documents

Publication Publication Date Title
US4640004A (en) Method and structure for inhibiting dopant out-diffusion
US4829363A (en) Structure for inhibiting dopant out-diffusion
US5925574A (en) Method of producing a bipolar transistor
US4597163A (en) Method of improving film adhesion between metallic silicide and polysilicon in thin film integrated circuit structures
KR910006702B1 (en) Manufacturing method of self-aligned mesfet with t-type gate
WO1986002488A1 (en) Coating of iii-v and ii-vi compound semiconductors
EP0473194A2 (en) Method of fabricating a semiconductor device, especially a bipolar transistor
EP0113983B1 (en) Fabricating a semiconductor device by means of molecular beam epitaxy
KR920004966B1 (en) Activating method of ion-implanted ga as substrate
KR100198652B1 (en) Method of manufacturing electrode in semiconductor device
US5877031A (en) Method for forming a metallic barrier layer in semiconductor device
EP0169020B1 (en) A process for ion implantation activation in a compound semiconductor crystal
KR920007514B1 (en) Activating method of ion-implanted gaas substrate
JPS6366415B2 (en)
US4668306A (en) Method of manufacturing a semiconductor device having unhomogeneous distribution of impurity concentration
JPH0786199A (en) Fabrication of silicon carbide semiconductor device
KR950013798B1 (en) Channel activating method of gaas field effect transistor
US5162242A (en) Method for annealing compound semiconductor devices
JPH05251378A (en) Manufacture of semiconductor device
US4708883A (en) Annealing process
JPS6043658B2 (en) Manufacturing method of semiconductor device
JPH0421335B2 (en)
JP2928929B2 (en) Impurity doping method
KR19990045196A (en) Semiconductor device manufacturing method
JPH03229427A (en) Manufacture of mos-type semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980313

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee