JPS63244889A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63244889A
JPS63244889A JP62080113A JP8011387A JPS63244889A JP S63244889 A JPS63244889 A JP S63244889A JP 62080113 A JP62080113 A JP 62080113A JP 8011387 A JP8011387 A JP 8011387A JP S63244889 A JPS63244889 A JP S63244889A
Authority
JP
Japan
Prior art keywords
layer
impurity
semiconductor
type
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62080113A
Other languages
Japanese (ja)
Other versions
JP2634812B2 (en
Inventor
Hitoshi Nishio
仁 西尾
Hideo Yamagishi
英雄 山岸
Akihiko Hiroe
広江 昭彦
Masataka Kondo
正隆 近藤
Keizo Asaoka
圭三 浅岡
Yoshinori Yamaguchi
美則 山口
Kazunaga Tsushimo
津下 和永
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62080113A priority Critical patent/JP2634812B2/en
Publication of JPS63244889A publication Critical patent/JPS63244889A/en
Application granted granted Critical
Publication of JP2634812B2 publication Critical patent/JP2634812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve photoelectric conversion efficiency at high illuminance by forming a high-concentration P-type semiconductor layer on the light- receiving surface side of a part in which a grading layer is shaped to the P-I interface or N-I interface section of a multiple junction type solar cell using a wide band-gas semiconductor impurity layer on the window side. CONSTITUTION:The semiconductor of an amorphous group such as the hydride film, a fluoride film, etc., of silicon, silicon carbide, SiN, SiGe, SiSn, etc., and an amorphous or polycrystalline group containing crystallites is employed as an unsingle crystal silicon semiconductor. A wide band gap semiconductor is used as a window layer material in the unsinglar crystal silicon group semiconductor, a P-I-N type or N-l-P type photosensor is manufactured from the semiconductor, and doubled or quadrupled, thus forming a multiple junction type photosensor. The so-called graded layers 5, 15 in which impurity concentration is reduced toward an I layer are shaped on the P-I or N-I interfaces A, B of the photosensor, and high-concentration impurity layers 3, 13 are formed on the light-receiving surface side of a wide band gap layer.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体装置に関し、特に光電変換の半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device, and particularly to a photoelectric conversion semiconductor device.

[従来の技術] 第2図は、受光面側に、a−8ic:I−Iのように、
バンドギャップの広い半導体層を用いたp−1−n型非
晶質による多重接合型太陽電池を示していて、ここで図
示したように、バンドギャップの広いp型半導体層(4
)とi型半導体層(6)との間に、バンドギャップ及び
不純物濃度がi型半導体層(6)に向かって段階的に減
少しているようないわゆるグレーディングギャップ層【
5)を設けることにより、太陽電池の光電変換効率が向
上することは一般によく知られている。
[Prior art] In Fig. 2, on the light-receiving surface side, like a-8ic:I-I,
This shows a p-1-n type amorphous multi-junction solar cell using a wide bandgap semiconductor layer.
) and the i-type semiconductor layer (6), there is a so-called grading gap layer in which the band gap and impurity concentration gradually decrease toward the i-type semiconductor layer (6).
It is generally well known that the photoelectric conversion efficiency of solar cells is improved by providing 5).

ところで、本発明者は実験により、上記構造の太陽電池
においては、・バンドギャップの広いp型半導体層(4
)の不純物濃度を通常の115ないしl/10程度にま
で減少することにより、蛍光灯下のような低い照度の光
源のもとで光電変換効率を改善できるということを見出
だした。
By the way, the present inventor has experimentally found that in a solar cell with the above structure: a p-type semiconductor layer with a wide band gap (4
) has been found to be able to improve the photoelectric conversion efficiency under low illumination light sources such as under fluorescent lamps by reducing the impurity concentration to about 115 to 1/10 of the usual level.

[発明が解決しようとする問題点コ ところが、太陽光のように高い照mlのもとでは、透明
電極(2)と、この不純物層であるp型半導体層(4)
との間の接触抵抗が著しく大きくなり、これによる電圧
降下が大きくなるため、光電変換効率は逆に低下し、又
、太陽電池を措成する各p−1−n接合の間に存在する
p−n界面が逆接合となるため、ここでも電圧降下が起
きるという問題があった。
[Problems to be Solved by the Invention] However, under high illuminance such as sunlight, the transparent electrode (2) and the p-type semiconductor layer (4), which is an impurity layer,
The contact resistance between the p-1 and p-n junctions that make up the solar cell becomes significantly large, and the resulting voltage drop increases, so the photoelectric conversion efficiency decreases. Since the -n interface is a reverse junction, there is also a problem in that a voltage drop occurs here.

この発明は、上記問題を解決するためになされたもので
あり、高照度のもとでも光電変換効率の低下することの
ない半導体装置を提供することを目的とする。
The present invention was made to solve the above problem, and an object of the present invention is to provide a semiconductor device whose photoelectric conversion efficiency does not deteriorate even under high illuminance.

[問題点を解決するための手段] この発明の半導体装置は、受光面側に、活性層である真
性半導体のi層よりもバンドギャップの広いp層あるい
はn層の不純物層を有するp−1−n型あるいはn−1
−p型光起電力素子を多重に接合した非単結晶のシリコ
ン系半導体装置であって、少なくとも一つ以上の広バン
ドギャップ不純物層の更に受光面側に、該不純物層と同
じ導電型でかつ不純物濃度の高い高濃度不純物層を設け
るとともに、該広バンドギャップ層のp−1あるいはn
−i界面に、p層からi層あるいはn層からi層に向か
って不純物濃度を減少させてバンドギャップを狭くした
グレーディング層を設けている。
[Means for Solving the Problems] The semiconductor device of the present invention has a p-1 impurity layer on the light-receiving surface side, which has a p-layer or an n-layer impurity layer having a wider bandgap than an i-layer of an intrinsic semiconductor that is an active layer. -n type or n-1
- A non-single-crystal silicon-based semiconductor device in which p-type photovoltaic elements are bonded in multiple layers, in which at least one wide bandgap impurity layer is further disposed on the light-receiving surface side, and is of the same conductivity type as the impurity layer. In addition to providing a high concentration impurity layer with a high impurity concentration, p-1 or n of the wide bandgap layer
A grading layer whose bandgap is narrowed by decreasing the impurity concentration from the p layer to the i layer or from the n layer to the i layer is provided at the -i interface.

[作用コ 上記のごとく、受光面側の透明導電膜と広バンドギャッ
プ不純物層との間に、該広バンドギャップ不純物層と同
じ導電型でかつ、不純物濃度の高い高濃度不純物層を設
けたので、広バンドギャップ不純物層と透明導¥ri膜
とにおけるオーミックス性が改善されて接触抵抗が低下
するため、高照度での光電変換効率が向上するようにな
る。
[Operation: As described above, a high concentration impurity layer having the same conductivity type as the wide bandgap impurity layer and having a high impurity concentration is provided between the transparent conductive film on the light receiving surface side and the wide bandgap impurity layer. Since the ohmic properties between the wide bandgap impurity layer and the transparent conductive RI film are improved and the contact resistance is reduced, the photoelectric conversion efficiency at high illuminance is improved.

[実施例コ この発明における非単結晶シリコン系半導体としては、
例えば、シリコン、シリコンカーバイド。
[Example 1] As a non-single crystal silicon semiconductor in this invention,
For example, silicon, silicon carbide.

SiN、5iGe、5iSn等の水素化膜、フッ素化膜
等、一般に光起電力素子に使用されるアモルファス系。
Amorphous films commonly used in photovoltaic devices, such as hydrogenated films and fluorinated films such as SiN, 5iGe, and 5iSn.

微結晶を含むアモルファス又は多結晶系の半導体があげ
られる。
Examples include amorphous or polycrystalline semiconductors containing microcrystals.

非単結晶シリコン系半導体は、窓層材料として広バンド
ギャップ半導体が用いられ、p−1−n型あるいはn−
1−p型の光起電力素子とされ、更に一般に2重ないし
4重にされ、多重接合型光起電力素子が形成される。多
重接合型光起電力素子を形成する各非単結晶シリコン系
半導体の厚さは、特に限定されず、通常光起電力素子に
使用される範囲のものであればよい。
In non-single crystal silicon semiconductors, wide bandgap semiconductors are used as window layer materials, and p-1-n type or n-type semiconductors are used.
It is a 1-p type photovoltaic device, and is generally doubled or quadrupled to form a multi-junction photovoltaic device. The thickness of each non-single-crystal silicon semiconductor forming the multi-junction photovoltaic device is not particularly limited, and may be within the range normally used for photovoltaic devices.

この発明においては、多重接合型光起電力素子のp−i
又はn−i界面にi層に向かって不純物濃度を減少させ
た、いわゆるグレーディング層を設け、更に透明導電膜
及びp−n逆接合部におけるオーミックス性を改善する
ため、広バンドギャップ層の受光面側に高濃度の不純物
層を設けている。
In this invention, the p-i of a multi-junction photovoltaic device is
Alternatively, a so-called grading layer is provided at the n-i interface with the impurity concentration decreasing toward the i layer, and in order to further improve the ohmic properties at the transparent conductive film and the p-n reverse junction, a wide bandgap layer is used for light reception. A highly concentrated impurity layer is provided on the surface side.

p−i又はn−i界面部とは、第1図に示すように、p
−i又はn−i界面部、B又は、これと接するp型半導
体層(4)、(14)又はグレーディング層(5)、(
15)であってもよく、又、総てのp−1又はn−i界
面にグレーディング層を設けなくてもよい。又、受光面
の高濃度広バンドギャップ半導体層である不純物層とは
、(3)、(13)であり、それぞれ、p型半導体層(
4)、(14)と同じ導電型を示す。p−1又はn−i
界面部分がp型半導体層又はn型半導体層の一部から形
成される場合、その層の厚さは、最大でp型半導体層ま
たはn型半導体層の厚さまで採用される。通常この層の
厚さは、IOないし700人程堆積ある。広バンドギャ
ップ高濃度不純物層としては、不純物層(広バンドギャ
ップ層)と同じIOないし300人であるのが好ましく
、n型半導体の場合はp型半導体等のドーパントを用い
るのがよく、この場合の厚さとしては、10ないし30
0人であるのが望ましい。 。
The p-i or n-i interface refers to the p-i or n-i interface, as shown in
-i or n-i interface, B or the p-type semiconductor layer (4), (14) in contact with it, or the grading layer (5), (
15), and it is not necessary to provide a grading layer at all p-1 or n-i interfaces. Moreover, the impurity layer which is a high concentration wide bandgap semiconductor layer on the light receiving surface is (3) and (13), respectively, and the p-type semiconductor layer (
4), shows the same conductivity type as (14). p-1 or n-i
When the interface portion is formed from a part of the p-type semiconductor layer or the n-type semiconductor layer, the thickness of the layer is up to the thickness of the p-type semiconductor layer or the n-type semiconductor layer. Typically, the thickness of this layer is about IO or 700 deposits. The wide bandgap high concentration impurity layer is preferably the same as the impurity layer (wide bandgap layer) or 300%, and in the case of an n-type semiconductor, it is preferable to use a dopant such as a p-type semiconductor. The thickness is 10 to 30
It is desirable that there be 0 people. .

又、このときの不純物濃度としては、電極との接触抵抗
が十分に低くなる程度まで必要であるが、不純物の種類
や高不純物層の厚さにより異なる。
Further, the impurity concentration at this time is required to a degree that the contact resistance with the electrode is sufficiently low, but it varies depending on the type of impurity and the thickness of the highly impurity layer.

不純物がp型あるいはドーパントである場合、通常、隣
接するp型半導体層あるいはn型半導体層の5倍以上の
濃度が必要であり、IOないし50倍にするのが望まし
い。
When the impurity is a p-type or dopant, the concentration usually needs to be 5 times or more that of the adjacent p-type semiconductor layer or n-type semiconductor layer, and preferably IO to 50 times.

以下この発明の半導体装置の1実施例として第1図に示
した太陽電池によりその構成を説明する。
The structure of the solar cell shown in FIG. 1 will be explained below as an embodiment of the semiconductor device of the present invention.

平行平板容量結合型グロー放電装置を用い、下記条件に
上半導体各層を次の順序でもって成膜形成して有効面積
1 、0 am”の太陽電池を作成した。
Using a parallel plate capacitively coupled glow discharge device, each upper semiconductor layer was formed in the following order under the following conditions to create a solar cell with an effective area of 1.0 am''.

(作成手順) ガラス基板(1)/Snowによる透明電極(2)/厚
さ40人の高濃度n型半導体層(3)/厚さ120人の
p型半導体Fm<4’)/厚さ60人のグレーディング
層(5)/厚さ700人のn型半導体層(6)/厚さ6
0人のn型半導体層(7)/厚さ40人の高濃度n型半
導体層(13)/厚さ120人のp型半導体層(14)
/厚さ60人のグレーディング層(H5)/厚さ600
0人のn型半導体層(16)/厚さ400人の微結晶化
のn型半導体層07)/裏面電極(8) (成膜条件) p型半導体層: S:H4150SCCM 、OH4/35SCCM 。
(Creation procedure) Glass substrate (1) / Transparent electrode by Snow (2) / High concentration n-type semiconductor layer (3) with a thickness of 40 people / P-type semiconductor Fm<4') with a thickness of 120 people / Thickness 60 Human grading layer (5) / Thickness 700 people N-type semiconductor layer (6) / Thickness 6
0 person n-type semiconductor layer (7) / 40 people thick high concentration n-type semiconductor layer (13) / 120 people thick p-type semiconductor layer (14)
/Thickness 60 people grading layer (H5)/Thickness 600
N-type semiconductor layer (16) with a thickness of 400 mm / microcrystalline n-type semiconductor layer 07) with a thickness of 400 mm / back electrode (8) (film formation conditions) p-type semiconductor layer: S: H4150SCCM, OH4/35SCCM.

B tI(s(1000ppml:HtTで希釈したも
の)/100SCCM 、Ha1500 S C,CM
 、 50+W/cm”。
B tI(s (1000 ppml: diluted with HtT)/100 SCCM, Ha1500 SC, CM
, 50+W/cm”.

1.0トン n型半導体層: S:)14150 S CCM 、50mW/cm”、
 1.0 トンn型半導体層: S:H4150SCCM 、PH3/100SCCM 
1.0 ton n-type semiconductor layer: S:) 14150 S CCM, 50 mW/cm",
1.0 ton n-type semiconductor layer: S:H4150SCCM, PH3/100SCCM
.

50 mW/cm”、 1 、0 トン高濃度n型半導
体層: S:H/10SCCM 、BxHs1500SCCM 
50 mW/cm", 1,0 ton high concentration n-type semiconductor layer: S:H/10SCCM, BxHs1500SCCM
.

50 a+W/am”、 I 、 Oトン微結晶化n型
半導体!iJ: S:H/1 0SCCM   、PHs/200SCC
M   。
50 a+W/am”, I, O ton microcrystalline n-type semiconductor!iJ: S:H/10SCCM, PHs/200SCC
M.

Hz1500 S CCM 、500mW/c+a”、
■、0 トン上記のごとく作成した太陽電池と、比較の
為に、高濃度n型半導体層の形成を行わない従来の太陽
電池とをソーラーシュミレータを用い10100l/c
IIl″でもって実測した出力特性を次表に示す。
Hz1500 S CCM, 500mW/c+a”,
■, 0 tons For comparison, the solar cell produced as described above and a conventional solar cell in which a high concentration n-type semiconductor layer is not formed were tested using a solar simulator at 10,100 l/c.
The output characteristics actually measured with IIl'' are shown in the following table.

実施例  従来例 η     8.47  6.39 Voe      1.64  1.45Jsc(mA
/cm2)  7.61  7.6OFF      
67.8  58.0この表よりわかるように、従来例
の太陽電池と実施例による太陽電池は、高照度で充電変
換効率が向上した。
Example Conventional example η 8.47 6.39 Voe 1.64 1.45 Jsc (mA
/cm2) 7.61 7.6OFF
67.8 58.0 As can be seen from this table, the conventional solar cell and the solar cell according to the example had improved charging conversion efficiency under high illuminance.

[発明の効果] 以上説明したように、窓側に広バンドギャップ半導体不
純物層を用いた多重接合型太陽電池のp−1界面あるい
はn−i界面部分にグレーディング層を備えたものに、
更に受光面側に諷濃度p型半道tk ! 、かル++ 
+−ψシI=)h  恵昭面下でのう1雷穿換効率が向
上する。
[Effects of the Invention] As explained above, a multi-junction solar cell using a wide bandgap semiconductor impurity layer on the window side has a grading layer at the p-1 interface or n-i interface,
In addition, there is a p-type half-way tk on the light-receiving surface side! , Cal++
+-ψshiI=)h The efficiency of lightning perforation improves by one more under the Eisho-men.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置により作成した太陽電池
の1実施例を示す構成図、第2図は、従来の太陽電池の
構成図である。 l・・・ガラス基板、2・・・透明電極、3.13・・
・高濃度n型半導体層、4.14・・・p型半導体層、
5.15・・・グレーディングギャップ層、6.H6・
・・n型半導体層、7・・・n型半導体層、8・・・裏
面電極、17・・・微結晶化n型半導体層。
FIG. 1 is a block diagram showing one embodiment of a solar cell made using the semiconductor device of the present invention, and FIG. 2 is a block diagram of a conventional solar cell. l...Glass substrate, 2...Transparent electrode, 3.13...
・High concentration n-type semiconductor layer, 4.14...p-type semiconductor layer,
5.15... Grading gap layer, 6. H6・
... n-type semiconductor layer, 7... n-type semiconductor layer, 8... back electrode, 17... microcrystallized n-type semiconductor layer.

Claims (4)

【特許請求の範囲】[Claims] (1)受光面側に、活性層である真性半導体のi層より
もバンドギャップの広いp層あるいはn層の不純物層を
有するp−i−n型あるいはn−i−p型光起電力素子
を多重に接合した非単結晶のシリコン系半導体装置であ
って、少なくとも一つ以上の広バンドギャップ不純物層
の受光面側に、該不純物層と同じ導電型でかつ不純物濃
度の高い高濃度不純物層を設けるとともに、該広バンド
ギャップ層のp−iあるいはn−i界面に、p層からi
層あるいはn層からi層に向かって不純物濃度を減少さ
せてバンドギャップを狭くしたグレーディング層を設け
たことを特徴とする半導体装置。
(1) A p-i-n type or n-i-p type photovoltaic element that has a p-layer or n-layer impurity layer on the light-receiving surface side, which has a wider band gap than the i-layer of the intrinsic semiconductor that is the active layer. A non-single-crystal silicon-based semiconductor device in which a high concentration impurity layer having the same conductivity type as the impurity layer and having a high impurity concentration is provided on the light-receiving surface side of at least one wide bandgap impurity layer. and at the p-i or n-i interface of the wide bandgap layer, from the p layer to the i
1. A semiconductor device comprising a grading layer whose impurity concentration is decreased from the n-layer to the i-layer to narrow the bandgap.
(2)上記広バンドギャップ層が、a−SiC:Hであ
る特許請求の範囲第1項に記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the wide bandgap layer is a-SiC:H.
(3)上記高濃度不純物層の不純物濃度が、上記不純物
ドープ層の不純物濃度の5ないし50倍である特許請求
の範囲第1項ないし第2項のいずれかの項に記載の半導
体装置。
(3) The semiconductor device according to any one of claims 1 to 2, wherein the impurity concentration of the high concentration impurity layer is 5 to 50 times the impurity concentration of the impurity doped layer.
(4)上記高濃度不純物層の厚さが10ないし300Å
である特許請求の範囲第1項ないし第3項のいずれかの
項に記載の半導体装置。
(4) The thickness of the high concentration impurity layer is 10 to 300 Å
A semiconductor device according to any one of claims 1 to 3.
JP62080113A 1987-03-31 1987-03-31 Semiconductor device Expired - Lifetime JP2634812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080113A JP2634812B2 (en) 1987-03-31 1987-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080113A JP2634812B2 (en) 1987-03-31 1987-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63244889A true JPS63244889A (en) 1988-10-12
JP2634812B2 JP2634812B2 (en) 1997-07-30

Family

ID=13709131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080113A Expired - Lifetime JP2634812B2 (en) 1987-03-31 1987-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2634812B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419273A1 (en) * 1994-06-01 1996-02-01 Forschungszentrum Juelich Gmbh Thin film solar cell and process for its manufacture
EP0828301A3 (en) * 1996-09-05 1999-07-14 Canon Kabushiki Kaisha Photovoltaic element and method of and apparatus for manufacturing the same
TWI483406B (en) * 2010-05-18 2015-05-01 Au Optronics Corp Photovoltaic cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer
JPS58171869A (en) * 1982-04-02 1983-10-08 Sanyo Electric Co Ltd Photovoltaic device
JPS59163876A (en) * 1983-03-08 1984-09-14 Agency Of Ind Science & Technol Amorphous silicon solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer
JPS58171869A (en) * 1982-04-02 1983-10-08 Sanyo Electric Co Ltd Photovoltaic device
JPS59163876A (en) * 1983-03-08 1984-09-14 Agency Of Ind Science & Technol Amorphous silicon solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419273A1 (en) * 1994-06-01 1996-02-01 Forschungszentrum Juelich Gmbh Thin film solar cell and process for its manufacture
DE4419273C2 (en) * 1994-06-01 1998-11-26 Forschungszentrum Juelich Gmbh Thin film solar cell
EP0828301A3 (en) * 1996-09-05 1999-07-14 Canon Kabushiki Kaisha Photovoltaic element and method of and apparatus for manufacturing the same
TWI483406B (en) * 2010-05-18 2015-05-01 Au Optronics Corp Photovoltaic cell

Also Published As

Publication number Publication date
JP2634812B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
US7030413B2 (en) Photovoltaic device with intrinsic amorphous film at junction, having varied optical band gap through thickness thereof
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
EP0494088B1 (en) Photovoltaic device
JP2589462B2 (en) Photoelectric device
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
JP2846651B2 (en) Photovoltaic device
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
US20180254361A1 (en) Embedded junction in hetero-structured back-surface field for photovoltaic devices
EP0099720B1 (en) Photovoltaic device
US4926230A (en) Multiple junction solar power generation cells
JPH0795603B2 (en) Photovoltaic device
JP2719036B2 (en) Amorphous photoelectric conversion device and method of manufacturing the same
JPH0693519B2 (en) Amorphous photoelectric conversion device
EP0248953A1 (en) Tandem photovoltaic devices
JPS63244889A (en) Semiconductor device
US4857115A (en) Photovoltaic device
JPH065765B2 (en) Photoelectric conversion device
JPH0122991B2 (en)
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPS62256481A (en) Semiconductor device
JP4124309B2 (en) Photovoltaic device manufacturing method
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JP3197674B2 (en) Photovoltaic device
JP4253966B2 (en) Amorphous thin film solar cell

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term