JPS59163876A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPS59163876A
JPS59163876A JP58036752A JP3675283A JPS59163876A JP S59163876 A JPS59163876 A JP S59163876A JP 58036752 A JP58036752 A JP 58036752A JP 3675283 A JP3675283 A JP 3675283A JP S59163876 A JPS59163876 A JP S59163876A
Authority
JP
Japan
Prior art keywords
layer
type
electrode
added
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58036752A
Other languages
Japanese (ja)
Inventor
Hajime Ichiyanagi
一柳 肇
Tadashi Igarashi
五十嵐 廉
Masayuki Ishii
石井 正之
Chuichi Kobayashi
忠一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58036752A priority Critical patent/JPS59163876A/en
Priority to GB08405687A priority patent/GB2137810B/en
Priority to DE3408317A priority patent/DE3408317C2/en
Priority to US06/587,702 priority patent/US4612559A/en
Priority to FR848403598A priority patent/FR2542503B1/en
Publication of JPS59163876A publication Critical patent/JPS59163876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve conversion efficiency by making the concentration of boron, Al, etc. constituting a P type layer higher than that of the I type layer side on the electrode side and increasing conductivity in an amorphous silicon solar cell of P-I-N structure. CONSTITUTION:A transparent glass substrate 1, a transparent electrode film 2 and an electrode 9 are formed to an amorphous silicon layer consisting of each layer of P type conduction layer 4, I type one 5 and N type one 6. Carbon or nitrogen is added to the P type layer 4, and a P1 layer 7, to which a large amount of a IIIb group element, such as boron, Al, etc. are added, and a P2 layer 8, to which a small amount of the element is added, are formed to the layer 4. When carbon or nitrogen is added, forbidden band width can be widened, and optical absorption in the P type layer can be reduced. However, boron, Al or the like is added because the series resistance of a solar cell is generated by resistance formed on a junction surface between the P type layer and the electrode. The conductivity of the P1 layer is high and the layer is fitted to a joining with the electrode, and the forbidden band width of the P2 layer is wide and optical absorption to the P2 layer is little.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は光エネルギーを電気エネルギーに変換するアモ
ルファスシリコン太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to an amorphous silicon solar cell that converts light energy into electrical energy.

(ロ)背景技術 近年クリーンで非枯褐性のエネルギーヲ利用する低コス
ト太陽電池として、アモルファスシリコン太陽電池が注
目されている。アモルファスシリコン太陽電池は、安価
な基板を用いて低温プロセスで形成する厚さ1μm以下
の薄膜で構成できるため、低コストで製造できる特徴が
ある。
(b) Background Art In recent years, amorphous silicon solar cells have attracted attention as low-cost solar cells that utilize clean, non-degradable energy. Amorphous silicon solar cells have the characteristic that they can be manufactured at low cost because they can be constructed from thin films with a thickness of 1 μm or less that are formed by low-temperature processes using inexpensive substrates.

このような低コストの特徴を生かすには、より一層の光
電変換効率を向上し、実用に供し得る性能にする必要が
ある。
In order to take advantage of such a low cost feature, it is necessary to further improve the photoelectric conversion efficiency and achieve a performance that can be put to practical use.

かい正孔を収集し易いようにp型層を光入射側に置いて
光の総合収集効率を高めるようにしている場合が多い。
In order to easily collect holes, a p-type layer is often placed on the light incident side to increase the overall light collection efficiency.

この場合、p型層と電極層界面部の電気抵抗を低減する
ことによって、太陽電池の直列抵抗を改善し、光電変換
効率を向上することが期待できる。また、p型層に禁止
帯幅の広い炭素または窒素を添加したアモルファスシリ
コン(以下a−3i :C:Hiたはa−3i :N:
Hと記す)を用いることによってp型層における光吸収
を少なくシ、アモルファスシリコン太陽電池において有
効なキヤ合構造太陽電池において、p型層の電極に接す
る領域の電導塵をi型層に接する領域より低くすること
により、太陽電池の直列抵抗を低減して曲線因子を改善
し、光電変換効率を向上させ得ることを見い出し本発明
を完成させたものである。
In this case, by reducing the electrical resistance at the interface between the p-type layer and the electrode layer, it is expected that the series resistance of the solar cell will be improved and the photoelectric conversion efficiency will be improved. In addition, amorphous silicon (hereinafter referred to as a-3i:C:Hi or a-3i:N:
In a composite structure solar cell, which is effective in amorphous silicon solar cells, the conductive dust in the region in contact with the electrode of the p-type layer is reduced by reducing the light absorption in the p-type layer, and the conductive dust in the region in contact with the electrode of the p-type layer is reduced in the region in contact with the i-type layer. We have completed the present invention by discovering that by lowering the resistance, the series resistance of the solar cell can be reduced, the fill factor can be improved, and the photoelectric conversion efficiency can be improved.

以下、p型層にa−5i :C:H膜を用いた実施例に
は透明導電膜、8はアモルファスシリコン層で基板側か
ら伝導型がp型(4)、i型(5)、n型(6)の順に
pI層(7)および02層(8)からなり、基板側に近
いPIJ’l (7)へのボロンまたはアルミニウムの
如’l 第111a族元素の添加量がp2  層(8)
への添加量より多くなっている。各層の膜厚は例えば、
21層80久、p、。
In the following, examples using a-5i:C:H film as the p-type layer include a transparent conductive film, 8 is an amorphous silicon layer, and the conductivity types are p-type (4), i-type (5), n-type from the substrate side. The type (6) consists of a pI layer (7) and a 02 layer (8) in this order, and the addition amount of group 111a elements such as boron or aluminum to the PIJ'l (7) near the substrate side is the p2 layer ( 8)
The amount added to The thickness of each layer is, for example,
21 layers 80 kyu, p.

層150Aでi型層、n型層はそれぞれ5000久、5
00Aである。9は金属電極であり、膜厚5000Aの
アルミニウムを用いた。10は入射する太陽光線を示す
In the layer 150A, the i-type layer and the n-type layer are 5,000 years old and 5,000 years old, respectively.
It is 00A. Reference numeral 9 denotes a metal electrode made of aluminum with a film thickness of 5000 Å. 10 indicates incident sunlight.

第2図は従来の構造例であり、p層は一層である。第1
表はp WJに炭素及びボロンを添加したアモルファス
シリコン層を用いた太陽電池の出力特性を、また第2表
はp層に窒素を添加したアモルファスシリコン層を用い
た太陽電池の出力特性を示す。炭素または窒素はそれぞ
れ膜中に30at%含まれ、合金化している。p型層の
電極に接する領域に、i型層に接する領域上り高濃度の
ボロンを添加した場合に曲線因子が著しく改善され、光
電変換効率の向」二がはかられていることが明らかであ
る。
FIG. 2 shows an example of a conventional structure, in which the p-layer is one layer. 1st
The table shows the output characteristics of a solar cell using an amorphous silicon layer in which carbon and boron are added to the p WJ, and Table 2 shows the output characteristics of a solar cell using an amorphous silicon layer in which nitrogen is added to the p layer. Carbon and nitrogen are each contained in the film at 30 at% and are alloyed. It is clear that when a high concentration of boron is added to the region in contact with the electrode of the p-type layer and the region in contact with the i-type layer, the fill factor is significantly improved and the photoelectric conversion efficiency is improved. be.

p型層に炭素または窒素のうちの少なくとも1めである
At least one of carbon and nitrogen is added to the p-type layer.

禁止帯幅は炭素または窒素の添加量を増すほど広くでき
、p型層における光吸収を低減することができる。また
、p型層と電極との接合面における電気抵抗にもとづく
太陽電池の直列抵抗を減少するために、ボロンまたはア
ルミニウムの如き第1[1a  族元素の添加量を増大
することができる。しかし、ボロンまたはアルミニウム
の如き第111a 族元素の添加量を増大するほど禁止
帯幅が狭められ、p型層における光吸収が大きくなる。
The forbidden band width can be increased as the amount of carbon or nitrogen added is increased, and light absorption in the p-type layer can be reduced. Furthermore, in order to reduce the series resistance of the solar cell based on the electrical resistance at the junction between the p-type layer and the electrode, the amount of Group 1 [1a elements such as boron or aluminum added can be increased. However, as the amount of Group 111a elements such as boron or aluminum added increases, the forbidden band width becomes narrower and light absorption in the p-type layer increases.

この結果、光電変換効率の低下をきたしてしまう。p型
層の電極に接する領域の電導塵をi型層に接する領域よ
り低くするのは、上記の問題点を解決するために、p型
層を禁止帯幅は比較的狭い5− が電導塵が高く、電極との接合に適したpI  層と、
禁止帯幅が広く、光吸収の少ないp2  層に分割する
ためである。
As a result, photoelectric conversion efficiency decreases. In order to solve the above problem, the conductive dust in the region of the p-type layer in contact with the electrode is made lower than that in the region in contact with the i-type layer. a pI layer that has a high pI layer and is suitable for bonding with an electrode;
This is because it is divided into a p2 layer which has a wide bandgap and little light absorption.

Pl  層の膜厚は50〜150′にであることがのぞ
ましい。膜厚が50λに満たないと、均質なpl  層
が得られず、所望の良好な電極との接合効果が得られな
いためであり、150Xを越えると、21層で光吸収量
が多くなるからである。
The thickness of the Pl layer is preferably 50 to 150'. This is because if the film thickness is less than 50λ, a homogeneous PL layer cannot be obtained and the desired good bonding effect with the electrode cannot be obtained, and if it exceeds 150X, the amount of light absorption increases with 21 layers. It is.

実施例では、p型層が電導塵の高い21層と、禁止帯幅
の広いp2  層の2層からなる場合について述べたが
、必要な場合は3層以上にすることも可能であり、ボロ
ンまたはアルミニウム等の第1na族元素の添加量を連
続的に変化させ、p型層の電極に接する領域の電導塵を
i型層に接する領域より高くしてもよい。
In the example, a case was described in which the p-type layer consists of two layers: the 21 layer with high conductivity dust and the p2 layer with a wide forbidden band width, but if necessary, it is possible to have three or more layers. Alternatively, the amount of addition of the first NA group element such as aluminum may be continuously changed to make the conductive dust in the region of the p-type layer in contact with the electrode higher than in the region in contact with the i-type layer.

本発明はi型層の組成や、多層構造における電極に接触
しないアモルファスシリコン層を制限するものではなく
、p型層を含むいずれの構造にも適用できる。
The present invention does not limit the composition of the i-type layer or the amorphous silicon layer that does not contact the electrode in a multilayer structure, and can be applied to any structure including a p-type layer.

第1表 (照射光: AM−1(] OOmM/C1n2) )
第2表 (照射光: AM−1(100mx/m”) )
Table 1 (Irradiation light: AM-1(]OOmM/C1n2))
Table 2 (Irradiation light: AM-1 (100mx/m”))

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるa−3i  太陽電池の一実施例
を示す断面図である。第2図は従来例である。 1;透明ガラス基板、2;透明導電膜、3;アモルファ
スシリコンN、4 j p型l、5 ; i型l、6H
n型層、’7ip1層、8;92層、9;金属電極、1
0.太陽光線。 特許出願人  工業技術院長 石板域− 才1シ ー」 才2図 □ 413− L′ フ r。
FIG. 1 is a sectional view showing one embodiment of an a-3i solar cell according to the present invention. FIG. 2 shows a conventional example. 1; Transparent glass substrate, 2; Transparent conductive film, 3; Amorphous silicon N, 4 j p-type l, 5; i-type l, 6H
n-type layer, '7ip1 layer, 8; 92 layers, 9; metal electrode, 1
0. Sun rays. Patent Applicant: Agency of Industrial Science and Technology, Director of the Board of Directors - Sai1 Sea'' Sai2 Figure □ 413-L' Fr.

Claims (1)

【特許請求の範囲】[Claims] (1)p型層を含むアモルファスシリコン太陽電池にお
いて、p型層を構成するボロン、アルミニウムの如きm
b  族元素のうちの少なくとも1種以上において、p
型層にボロン、アルミニウムの如きIUb  族元素の
少くとも1種および炭素、窒素の少くとも1種含有し、
その濃度がi型層に接する領域より電極に接する領域で
高くして電導度を高くしてなることを特徴とするアモル
ファスシリコン太陽電池。
(1) In an amorphous silicon solar cell containing a p-type layer, molar substances such as boron and aluminum constituting the p-type layer
In at least one or more of the group b elements, p
The mold layer contains at least one IUb group element such as boron and aluminum, and at least one of carbon and nitrogen,
An amorphous silicon solar cell characterized in that its concentration is higher in a region in contact with an electrode than in a region in contact with an i-type layer, thereby increasing conductivity.
JP58036752A 1983-03-08 1983-03-08 Amorphous silicon solar cell Pending JPS59163876A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58036752A JPS59163876A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell
GB08405687A GB2137810B (en) 1983-03-08 1984-03-05 A solar cell of amorphous silicon
DE3408317A DE3408317C2 (en) 1983-03-08 1984-03-07 Amorphous silicon solar cell
US06/587,702 US4612559A (en) 1983-03-08 1984-03-08 Solar cell of amorphous silicon
FR848403598A FR2542503B1 (en) 1983-03-08 1984-03-08 AMORPHOUS SILICON SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036752A JPS59163876A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS59163876A true JPS59163876A (en) 1984-09-14

Family

ID=12478463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036752A Pending JPS59163876A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS59163876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256481A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS63244889A (en) * 1987-03-31 1988-10-12 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS63244888A (en) * 1987-03-31 1988-10-12 Kanegafuchi Chem Ind Co Ltd Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256481A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS63244889A (en) * 1987-03-31 1988-10-12 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS63244888A (en) * 1987-03-31 1988-10-12 Kanegafuchi Chem Ind Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP6975368B1 (en) Solar cells and solar cell modules
Yang et al. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies
JP3490964B2 (en) Photovoltaic device
Hamakawa et al. New types of high efficiency solar cells based on a‐Si
JP2814351B2 (en) Photoelectric device
EP0265251A2 (en) Heterojunction p-i-n-photovoltaic cell
JPH0527278B2 (en)
US4612559A (en) Solar cell of amorphous silicon
JPS58139478A (en) Amorphous solar battery
US4977097A (en) Method of making heterojunction P-I-N photovoltaic cell
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPH0463550B2 (en)
EP0248953A1 (en) Tandem photovoltaic devices
JPS59163876A (en) Amorphous silicon solar cell
KR101562191B1 (en) High efficiency solar cells
JPS6111475B2 (en)
Wagner Physical aspects and technological realization of amorphous silicon thin film solar cells
JPS6074685A (en) Photovoltaic device
JPS6225275B2 (en)
KR20110092706A (en) Silicon thin film solar cell
JP2936269B2 (en) Amorphous solar cell
JPS636882A (en) Photocell of tandem structure
JPH0586677B2 (en)
JPS6143869B2 (en)