JP2936269B2 - Amorphous solar cell - Google Patents

Amorphous solar cell

Info

Publication number
JP2936269B2
JP2936269B2 JP1226516A JP22651689A JP2936269B2 JP 2936269 B2 JP2936269 B2 JP 2936269B2 JP 1226516 A JP1226516 A JP 1226516A JP 22651689 A JP22651689 A JP 22651689A JP 2936269 B2 JP2936269 B2 JP 2936269B2
Authority
JP
Japan
Prior art keywords
layer
junction
electrode layer
transparent electrode
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1226516A
Other languages
Japanese (ja)
Other versions
JPH0389558A (en
Inventor
英雄 山岸
圭三 浅岡
美則 山口
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1226516A priority Critical patent/JP2936269B2/en
Publication of JPH0389558A publication Critical patent/JPH0389558A/en
Application granted granted Critical
Publication of JP2936269B2 publication Critical patent/JP2936269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高効率アモルファス太陽電池の素子構造に
関する。
Description: TECHNICAL FIELD The present invention relates to an element structure of a high-efficiency amorphous solar cell.

[従来の技術] アモルファスシリコンとその合金が低コスト薄膜太陽
電池の構成材料として注目されている。しかし、これら
の材料を用いた太陽電池を屋外で長時間使用すること、
光電変換効率がしだいに低下することがStaebler−Wron
ski効果として良く知られている。この光劣化を軽減す
ることが大電力アモルファス太陽電池の実用化にとって
最も重要な課題となっている。
[Prior Art] Amorphous silicon and its alloys have attracted attention as constituent materials of low-cost thin-film solar cells. However, long-term outdoor use of solar cells using these materials,
Staebler-Wron says that the photoelectric conversion efficiency gradually decreases
Well known as the ski effect. Reducing the photodegradation is the most important issue for the practical use of high power amorphous solar cells.

さて、1つのp−i−n接合を有するシングル接合ア
モルファス太陽電池では、i層を薄くすることが光劣化
の軽減にとって効果的であることが知られている。しか
しながら、光活性層であるi層を薄くすることは、この
i層での光吸収量ひいては電池の発生電流を低下させ、
光電変換効率の低下を招くことになる。そこで、薄いi
層を含む複数のp−i−n接合を積層形成し、各接合間
をオーミック接続したいわゆるタンデム型太陽電池の採
用が考えられる。
Now, in a single-junction amorphous solar cell having one pin junction, it is known that thinning the i-layer is effective for reducing light degradation. However, reducing the thickness of the i-layer, which is a photoactive layer, reduces the amount of light absorbed by the i-layer and thus the current generated by the battery,
This leads to a decrease in photoelectric conversion efficiency. So, thin i
It is conceivable to employ a so-called tandem solar cell in which a plurality of pin junctions including layers are stacked and formed, and each junction is ohmic-connected.

第4図は、2つのp−i−n接合を有する従来の2段
タンデム型アモルファス太陽電池の断面模式図である。
FIG. 4 is a schematic cross-sectional view of a conventional two-stage tandem type amorphous solar cell having two pin junctions.

まず、ガラス基板(2)上に透明電極層(4)が形成
される。この透明電極層(4)の上にp型アモルファス
半導体層(11)、i型アモルファス半導体層(12)及び
n型アモルファス半導体層(13)を順次成膜してp−i
−n接合(10)を形成する。更にこの上にp層(21)、
i層(22)及びn層(23)を順次成膜して2段目のp−
i−n接合(20)を形成する。両p−i−n接合(10,2
0)の部分は、例えばいずれもアモルファスシリコンで
構成される。2段目のp−i−n接合(20)の更に上に
裏面外部電極層(40)が形成される。この裏面外部電極
層(40)は、通例不透明体で構成される。
First, a transparent electrode layer (4) is formed on a glass substrate (2). A p-type amorphous semiconductor layer (11), an i-type amorphous semiconductor layer (12), and an n-type amorphous semiconductor layer (13) are sequentially formed on the transparent electrode layer (4) to form p-i.
Forming an n-junction (10); Furthermore, a p-layer (21) is formed on
An i-layer (22) and an n-layer (23) are sequentially formed to form a p-
An i-n junction (20) is formed. Both pin junctions (10,2
The portion 0) is made of, for example, amorphous silicon. A back surface external electrode layer (40) is formed further above the second-stage pin junction (20). The back external electrode layer (40) is usually made of an opaque body.

両p−i−n接合(10,20)には、ガラス基板(2)
及び透明電極層(4)を順次通して光線が入射する。入
射側接合(10)のn層(13)と裏面側接合(20)のp層
(21)との間はオーミック接触であって、両接合(10,2
0)が直列接続されている。したがって、透明電極層
(4)と裏面外部電極層(40)との間に両接合(10,2
0)の光起電力の和が開放電圧として現れる。
A glass substrate (2) is used for both pin junctions (10, 20).
Then, a light beam enters through the transparent electrode layer (4) sequentially. An ohmic contact exists between the n-layer (13) of the incident-side junction (10) and the p-layer (21) of the back-side junction (20).
0) are connected in series. Therefore, both junctions (10,2) between the transparent electrode layer (4) and the back external electrode layer (40)
The sum of the photovoltaic power of 0) appears as an open circuit voltage.

この2段タンデム型アモルファス太陽電池では、光電
変換効率の向上と光劣化の軽減との実現が可能である。
すなわち、この太陽電池では、各接合(10,20)のi層
(12,22)の膜厚の和を前記シングル接合太陽電池の場
合のi層最適膜厚である400〜700nmと同程度以上にして
光電変換効率の向上をはかることができる。この際、各
i層(12,22)の膜厚シングル接合の場合のi層より小
さくすることができ、光劣化の軽減が実現可能である。
なお、p層(11,21)及びn層(13,23)の膜厚は、シン
グル接合の場合と同程度の10〜50nm程度である。
In the two-stage tandem-type amorphous solar cell, it is possible to improve photoelectric conversion efficiency and reduce light degradation.
That is, in this solar cell, the sum of the thicknesses of the i-layers (12, 22) of the respective junctions (10, 20) is at least about the same as the optimal i-layer thickness of 400 to 700 nm in the case of the single junction solar cell. Thus, the photoelectric conversion efficiency can be improved. At this time, the thickness of each i-layer (12, 22) can be made smaller than that of the i-layer in the case of a single junction, and light degradation can be reduced.
The thicknesses of the p-layer (11, 21) and the n-layer (13, 23) are about 10 to 50 nm, which is almost the same as that of the single junction.

第5図は、3つのp−i−n接合有する従来の3段タ
ンデム型アモルファス太陽電池の断面模式図である。
FIG. 5 is a schematic cross-sectional view of a conventional three-stage tandem-type amorphous solar cell having three pin junctions.

この太陽電池では、2段目のp−i−n接合(20)の
上にp層(31)、i層(32)及びn層(33)を順次成膜
して3段目のp−i−n接合(30)を形成した上で裏面
外部電極層(40)を形成している。したがって、3つの
p−i−n接合(10,20,30)が直列接続される。各接合
のi層(12,22,32)は、光入射側ほど薄くしている。こ
れらのi層(12,22,32)の膜厚は、2段タンデム型の場
合に比べていずれも小さくなっており、光劣化の軽減効
果が大きい。
In this solar cell, a p-layer (31), an i-layer (32) and an n-layer (33) are sequentially formed on the second-stage pin junction (20) to form a third-stage p-type junction. After forming the i-n junction (30), the back surface external electrode layer (40) is formed. Therefore, three pin junctions (10, 20, 30) are connected in series. The i-layer (12, 22, 32) of each junction is thinner toward the light incident side. The thickness of each of these i-layers (12, 22, 32) is smaller than that of the two-stage tandem type, and the effect of reducing the light deterioration is large.

[発明が解決しようとする課題] 以上に説明した従来のタンデム型アモルファス太陽電
池では、膜厚方向に形成された複数のp−i−n接合が
直列接続されていたために次の問題があった。
[Problems to be Solved by the Invention] In the conventional tandem-type amorphous solar cell described above, the following problems occur because a plurality of pin junctions formed in the film thickness direction are connected in series. .

すなわち、この太陽電池では、前記のように各接合の
i層膜厚の和を前記シングル接合太陽電池の場合のi層
膜厚と同程度以上にして光電変換効率の向上をはかって
いる。しかも、電流同一の直列条件で各接合の最適動作
点を決定する必要があり、各最適動作点に応じて各接合
のi層膜厚が決定される。ただし、アモルファスシリコ
ンは太陽光波長における吸収係数が大きい。以上のこと
から、従来のタンデム型アモルファス太陽電池では入射
側i層に比べて裏面側i層の膜厚を大きくして各接合の
電流バランスをとる必要があり、裏面側i層は、シング
ル接合の場合のi層より薄くすることができるものの、
かなり厚くなる。したがって、やはり膜厚の大きい裏面
側i層での光劣化によって電池全体の光電変換効率がし
だいに低下する傾向がある。これを避けようとして接合
数を極端に増やせば、裏面側i層の膜厚を小さくするこ
とができるものの、光活性層でないp層やn層の数が増
えてこれらの層の光吸収ロスが増加するから、かえって
光電変換効率が低下する。
That is, in this solar cell, as described above, the sum of the i-layer thicknesses of the respective junctions is made equal to or greater than the i-layer thickness in the case of the single-junction solar cell to improve the photoelectric conversion efficiency. In addition, it is necessary to determine the optimal operating point of each junction under the same series condition of the current, and the i-layer thickness of each junction is determined according to each optimal operating point. However, amorphous silicon has a large absorption coefficient at the wavelength of sunlight. From the above, in the conventional tandem-type amorphous solar cell, it is necessary to increase the thickness of the back side i-layer as compared with the incident side i-layer to balance the current of each junction. Although it can be thinner than the i-layer in the case of
It gets quite thick. Therefore, the photoelectric conversion efficiency of the entire battery tends to gradually decrease due to light deterioration in the backside i-layer having a large film thickness. If the number of junctions is extremely increased in order to avoid this, the thickness of the back-side i-layer can be reduced, but the number of p-layers and n-layers that are not photoactive layers increases, and the light absorption loss of these layers is reduced. Since it increases, the photoelectric conversion efficiency decreases.

また、時間や季節の違いに基づく太陽光のスペクトル
変化によって各接合の電流バランスが崩れる場合があっ
た。電流バランスが崩れていずれかの接合が最適動作点
からずれた状態では、電流が最も小さい接合で電池全体
の電流が制限され、場合によっては光電変換効率の大幅
な低下を招くことがあった。
In addition, the current balance at each junction may be disrupted due to a change in the spectrum of sunlight due to a difference in time or season. In a state where the current balance is lost and one of the junctions deviates from the optimum operating point, the current of the entire battery is limited by the junction having the smallest current, and in some cases, the photoelectric conversion efficiency is significantly reduced.

本発明は、以上の事情に鑑みてなされたものであっ
て、従来のタンデム型太陽電池以上に光安定性の高い高
効率アモルファス太陽電池を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly efficient amorphous solar cell having higher light stability than a conventional tandem solar cell.

[課題を解決するための手段] 本発明は、第1の透明電極層の上に第1のp−i−n
接合を設け、前記第1のp−i−n接合の上に、前記第
1のp−i−n接合と略同じ面積の第2の透明電極層を
介して、前記第p−i−n接合と略同じ面積の第2のp
−i−n接合を設け、前記第2のp−i−n接合の上
に、前記第2のp−i−n接合と略同じ面積の第3の透
明電極層、透光性絶縁層及び第4の透明電極層を順次介
して、前記第2のp−i−n接合と略同じ面積の第3の
p−i−n接合を設け、前記第3のp−i−n接合の上
に外部電極層を設け、前記第2の透明電極層及び前記第
4の透明電極層を電気的に接続し、かつ、前記第3の透
明電極層及び前記外部電極層を電気的に接続することに
より、並列接続した前記第2のp−i−n接合と前記第
3のp−i−n接合に、前記第1のp−i−n接合を直
列接続したアモルファス太陽電池である。
[Means for Solving the Problems] The present invention provides a first pin on a first transparent electrode layer.
A junction is provided, and the pin is formed on the first pin junction via a second transparent electrode layer having substantially the same area as the first pin junction. A second p having substantially the same area as the junction
A third transparent electrode layer, a light-transmitting insulating layer, and a substantially same area as the second pin junction on the second pin junction. A third pin junction having substantially the same area as the second pin junction is provided via the fourth transparent electrode layer in sequence, and a third pin junction is formed on the third pin junction. Providing an external electrode layer, electrically connecting the second transparent electrode layer and the fourth transparent electrode layer, and electrically connecting the third transparent electrode layer and the external electrode layer. Accordingly, the present invention is an amorphous solar cell in which the first pin junction is connected in series to the second pin junction and the third pin junction connected in parallel.

[作 用] 電気的に並列接続された両接合に透明電極層及び透光
性絶縁層を通して光線が入射する。これらの接合につい
ては、電圧同一の並列条件で最適動作点を決定する。各
接合電圧は、各接合を構成するアモルファス材料の電気
的な性質に主に依存するのであって、直列の場合の接合
電流に比較して入射光量に対する依存性が小さい。この
ため、本発明の場合には電流バランスを考慮する必要が
全くないばかりでなく、電圧マッチングを気遣う必要も
ない。したがって、光活性層であるi層の膜厚を比較的
自由に選ぶことができる。つまり、従来のタンデム型ア
モルファス太陽電池に比べて裏面側i層の膜厚をかなり
薄くすることができる。このようにしてi層を薄くして
電解を高めれば、このi層内の電子や正孔の密度を低減
でき、これらの捕獲、再結合速度の低減が実現できるか
ら、電池の光劣化を良く軽減することができる。しか
も、時間あるいは季節の違いによる太陽光のスペクトル
変化に基づく各接合の電流バランスの崩れを考慮する必
要もない。
[Operation] A light beam enters both junctions electrically connected in parallel through the transparent electrode layer and the translucent insulating layer. For these junctions, the optimal operating point is determined under the parallel condition of the same voltage. Each junction voltage mainly depends on the electrical properties of the amorphous material forming each junction, and is less dependent on the amount of incident light than the junction current in the case of a series connection. Therefore, in the case of the present invention, it is not necessary to consider the current balance at all, and it is not necessary to care about voltage matching. Therefore, the thickness of the i-layer, which is the photoactive layer, can be selected relatively freely. That is, the thickness of the back-side i-layer can be considerably reduced as compared with the conventional tandem-type amorphous solar cell. If the thickness of the i-layer is reduced and the electrolysis is enhanced in this manner, the density of electrons and holes in the i-layer can be reduced, and the capture and recombination rates can be reduced. Can be reduced. In addition, it is not necessary to consider the current balance of each junction that is broken due to the change in the spectrum of sunlight due to the difference in time or season.

[実施例] (参考例1) 第1図は、後から説明する本発明の実施例の参考例1
に係る2段並列アモルファス太陽電池の断面模式図であ
る。なお、参考例1は、実施例の説明のためのものであ
り、本願発明の技術的範囲に含まれるものではない。
Embodiment (Reference Example 1) FIG. 1 is a reference example 1 of an embodiment of the present invention described later.
1 is a schematic cross-sectional view of a two-stage parallel amorphous solar cell according to the present invention. Reference Example 1 is for the purpose of describing the embodiment, and is not included in the technical scope of the present invention.

透明電極層(4)を形成したガラス基板(2)上にp
型アモルファス半導体層(11)、i型アモルファス半導
体層(12)及びn型アモルファス半導体層(13)を順次
成膜してp−i−n接合(10)を形成する点は第4図の
2段タンデム型アモルファス太陽電池の場合と同様であ
るが、本実施例の場合は、この接合(10)の上に第2の
透明電極層(14)、透光性絶縁層(16)及び第3の透明
電極層(18)を形成した上で2段目のp−i−n接合
(20)を形成する。2段目の接合(20)は第4図の場合
と同様にp層(21)、i層(22)及びn層(23)の順で
成膜される。両p−i−n接合(10,20)の部分が例え
ばいずれもアモルファスシリコンで構成され、2段目の
接合(20)の更に上に裏面外部電極層(40)が形成され
る点は、第4図の場合と同様である。裏面外部電極層
(40)は不透明体で構成することができる。更に、第1
の透明電極層(4)と第3の透明電極層(18)との間及
び第2の透明電極層(14)と裏面外部電極層(40)との
間を電気的に接続する。この接続は、例えば各層端部を
利用して比較的容易に行うことができる。いわゆるスル
ーホールコンタクトを用いても良い。透明電極層(4,1
6,18)は、ITO、SnO2等の金属酸化物で構成することが
できる。ただし、第3の透明電極層(18)は、裏面側接
合(20)の形成の際にプラズマに暴露されることになる
から、耐プラズマ性に優れたものが好ましい。この透明
電極層(18)を複層膜にすることも可能である。絶縁層
(16)は光透過性に優れたものが好ましく、SiO2等が使
用できる。
P is placed on the glass substrate (2) on which the transparent electrode layer (4) is formed.
The point of forming a pin junction (10) by sequentially forming a p-type amorphous semiconductor layer (11), an i-type amorphous semiconductor layer (12) and an n-type amorphous semiconductor layer (13) is shown in FIG. This is the same as the case of the step tandem type amorphous solar cell, but in the case of the present embodiment, the second transparent electrode layer (14), the translucent insulating layer (16) and the third After forming the transparent electrode layer (18), a pin junction (20) of the second stage is formed. The second-stage junction (20) is formed in the order of the p-layer (21), the i-layer (22), and the n-layer (23) as in the case of FIG. The point that both of the pin junctions (10, 20) are made of, for example, amorphous silicon and that the back surface external electrode layer (40) is formed further above the second-stage junction (20) is that This is the same as the case of FIG. The back external electrode layer (40) can be made of an opaque body. Furthermore, the first
Are electrically connected between the transparent electrode layer (4) and the third transparent electrode layer (18) and between the second transparent electrode layer (14) and the back external electrode layer (40). This connection can be made relatively easily using, for example, the end of each layer. A so-called through-hole contact may be used. Transparent electrode layer (4,1
6,18) is, ITO, can be composed of metal oxides of SnO 2 or the like. However, since the third transparent electrode layer (18) is exposed to plasma when the back surface side junction (20) is formed, a material having excellent plasma resistance is preferable. The transparent electrode layer (18) can be formed as a multilayer film. The insulating layer (16) preferably has excellent light transmittance, and SiO 2 or the like can be used.

一方のp−i−n接合(10)には、ガラス基板(2)
及び透明電極層(4)を順次通して光線が入射する。裏
面側p−i−n接合(20)には、入射側の接合(10)、
第2の透明電極層(14)、透光性絶縁層(16)及び第3
の透明電極層(18)を順次通して光線が入射する。両接
合(10,20)は、p層側(11,21)がいずれも第1の透明
電極層(4)に電気的に接続されており、n層側(13,2
3)がいずれも裏面外部電極層(40)に接続されている
ので、透明電極層(4)と裏面外部電極層(40)とを通
して両接合(10,20)の光電流の和を取出すことができ
る。
On one pin junction (10), a glass substrate (2)
Then, a light beam enters through the transparent electrode layer (4) sequentially. The back side pin junction (20) has an incident side junction (10),
A second transparent electrode layer (14), a translucent insulating layer (16) and a third
The light beam enters through the transparent electrode layer (18) in sequence. Both junctions (10, 20) have the p-layer side (11, 21) electrically connected to the first transparent electrode layer (4), and the n-layer side (13, 2).
3) Since both are connected to the backside external electrode layer (40), take out the sum of the photocurrent of both junctions (10, 20) through the transparent electrode layer (4) and the backside external electrode layer (40). Can be.

両接合(10,20)の最適動作点は、電圧同一の並列条
件で決定される。これらの接合(10,20)の電圧は、構
成材料であるアモルファスシリコンの電気的な性質に主
に依存するのであって、直列の場合の接合電流に比較し
て入射光量に対する依存性が小さい。このため、電流バ
ランスを考慮する必要が全くないばかりでなく、電圧マ
ッチングを気遣う必要もない。したがって、光活性層で
あるi層(12,22)の膜厚を比較的自由に選ぶことがで
きる。例えば、従来のタンデム型の場合と違って両i層
(12,22)を同じ膜厚にしても支障がなく、各i層(12,
22)の膜厚を200nm程度にすることができる。つまり、
第4図に示す従来のタンデム型太陽電池に比べて特に裏
面側i層(22)をかなり薄くすることができ、電池の光
劣化が大幅に軽減される。しかも、時間あるいは季節の
違いによる太陽光のスペクトル変化に基づく各接合(1
0,20)の電流バランスの崩れを考慮する必要もない。な
お、入射側n層(13)及び裏面側p層(21)の位置を素
子表面からできるだけ離せば、これらの層による吸収ロ
スが低減され、光電変換効率を高めることができる。
The optimum operating point of both junctions (10, 20) is determined under the parallel condition of the same voltage. The voltage of these junctions (10, 20) mainly depends on the electrical properties of amorphous silicon as a constituent material, and is less dependent on the amount of incident light than the junction current in the case of a series connection. For this reason, it is not necessary to consider current balance at all, and it is not necessary to care about voltage matching. Therefore, the film thickness of the i-layer (12, 22) as the photoactive layer can be selected relatively freely. For example, unlike the conventional tandem type, there is no problem even if both i-layers (12, 22) have the same thickness.
The film thickness of 22) can be reduced to about 200 nm. That is,
Compared with the conventional tandem-type solar cell shown in FIG. 4, the thickness of the backside i-layer (22) can be considerably reduced, and the photodeterioration of the cell is greatly reduced. In addition, each junction (1
It is not necessary to consider the current imbalance of (0,20). If the positions of the incident-side n-layer (13) and the back-side p-layer (21) are separated from the element surface as much as possible, the absorption loss of these layers is reduced, and the photoelectric conversion efficiency can be increased.

(参考例2) 第2図は、後から説明する本発明の実施例の参考例に
係る第3並列アモルファス太陽電池の断面模式図であ
る。なお、参考例2は、実施例の説明のためのものであ
り、本願発明の技術的範囲に含まれるものではない。
Reference Example 2 FIG. 2 is a schematic cross-sectional view of a third parallel amorphous solar cell according to a reference example of an embodiment of the present invention described later. In addition, the reference example 2 is for explaining the embodiments, and is not included in the technical scope of the present invention.

この太陽電池では、第1図の2段目のp−i−n接合
(20)の上に更に第4の透明電極層(24)、第2の透光
性絶縁層(26)及び第5の透明電極層(28)を形成した
上で、3段目のp−i−n接合(30)を形成する。3段
目の接合(30)も、他の接合(10,20)と同様にp層(3
1)、i層(32)及びn層(33)の順で成膜される。裏
面外部電極層(40)は、3段目の接合(30)の更に上に
形成される。更に、第1、第3及び第5の透明電極層
(4,18,28)の間、並びに、第2及び第4の透明電極層
(14,24)と裏面外部電極層(40)との間が電気的に接
続される。
In this solar cell, a fourth transparent electrode layer (24), a second translucent insulating layer (26) and a fifth transparent electrode layer (26) are further formed on the pin junction (20) in the second stage of FIG. After the transparent electrode layer (28) is formed, a third-stage pin junction (30) is formed. The third-stage junction (30) also has a p-layer (3
1), an i-layer (32) and an n-layer (33) are formed in this order. The back external electrode layer (40) is formed further above the third-stage junction (30). Furthermore, between the first, third, and fifth transparent electrode layers (4, 18, 28), and between the second and fourth transparent electrode layers (14, 24) and the backside external electrode layer (40). The connection is made electrically.

3つの接合(10,20,30)は、p層側(11,21,31)がい
ずれも第1の透明電極層(4)に電気的に接続されてお
り、n層側(13,23,33)がいずれも裏面外部電極層(4
0)に接続されているので、透明電極層(4)と裏面外
部電極層(40)とを通して3つの接合(10,20,30)の光
電流の和を取出すことができる。3接合の各i層(12,2
2,32)の膜厚は、第1図の2段目並列太陽電池の場合の
i層に比べていずれも小さくなっており、光劣化の軽減
効果は大きい。
In the three junctions (10, 20, 30), the p-layer side (11, 21, 31) is electrically connected to the first transparent electrode layer (4), and the n-layer side (13, 23). , 33) are all external back electrode layers (4
0), the sum of the photocurrents of the three junctions (10, 20, 30) can be obtained through the transparent electrode layer (4) and the back external electrode layer (40). Each i-layer (12,2
The film thicknesses of (2, 32) are all smaller than those of the i-layer in the case of the second-stage parallel solar cell in FIG. 1, and the effect of reducing photodegradation is large.

(実施例) 第3図は、本発明の実施例に係る3段直並列アモルフ
ァス太陽電池の断面模式図である。
Example FIG. 3 is a schematic sectional view of a three-stage series-parallel amorphous solar cell according to an example of the present invention.

この太陽電池では、ガラス基板(2)上に透明電極層
(4)、p−i−n接合(10)及び第2の透明電極層
(14)を形成した上に、2段目のp−i−n接合(20)
を直接形成している。両接合(10,20)は、いずれもp
層(11,21)、i層(12,22)及びn層(13,23)の順に
成膜される。更に2段目の接合(20)の上に第3の透明
電極層(24)、透光性絶縁層(26)及び第4の透明電極
層(28)を形成した上で3段目のp−i−n接合(30)
を形成する。3段目の接合(30)も、他の接合(10,2
0)と同様にp層(31)、i層(32)及びn層(33)の
順で成膜される。裏面外部電極層(40)は、3段目の接
合(30)の更に上に形成される。更に、第2の透明電極
層(14)と第4の透明電極層(28)との間及び第3の透
明電極層(24)と裏面外部電極層(40)との間が電気的
に接続される。
In this solar cell, a transparent electrode layer (4), a pin junction (10) and a second transparent electrode layer (14) are formed on a glass substrate (2), and a second stage p-type layer is formed. i-n junction (20)
Is formed directly. Both junctions (10, 20) have p
The layers (11, 21), the i-layer (12, 22) and the n-layer (13, 23) are formed in this order. Further, a third transparent electrode layer (24), a light-transmitting insulating layer (26) and a fourth transparent electrode layer (28) are formed on the second-stage junction (20), -I-n junction (30)
To form The third-stage joint (30) is also the other joint (10,2
As in the case of (0), a p-layer (31), an i-layer (32) and an n-layer (33) are formed in this order. The back external electrode layer (40) is formed further above the third-stage junction (30). Further, electrical connection is made between the second transparent electrode layer (14) and the fourth transparent electrode layer (28) and between the third transparent electrode layer (24) and the back surface external electrode layer (40). Is done.

2段目の接合(20)は第2の透明電極層(14)を通し
て1段目の接合(10)に対して電気的に直列接続されて
いる。2段目及び3段目の接合(20,30)は、p層側(2
1,31)がいずれも第2の透明電極層(14)に電気的に接
続されており、n層側(23,33)がいずれも裏面外部電
極層(40)に接続されている。つまり、3つの接合(1
0,20,30)が透明電極層(4)と裏面外部電極層(40)
との間で直並列接続されている。この場合にも、3接合
の各i層(12,22,32)の膜厚は、第1図の2段並列太陽
電池の場合のi層に比べていずれも小さくなっており、
光劣化の軽減効果が大きい。しかも、第2図の3段並列
アモルファス太陽電池の場合に比べて透光性絶縁層(1
6)の形成工程と透明電極層(18)の形成工程とを省略
することができ、製造工程が簡略化される。
The second-stage junction (20) is electrically connected in series to the first-stage junction (10) through the second transparent electrode layer (14). The second and third stages (20, 30) are joined on the p-layer side (2
1, 31) are electrically connected to the second transparent electrode layer (14), and the n-layer side (23, 33) is connected to the back external electrode layer (40). In other words, three junctions (1
0,20,30) are transparent electrode layer (4) and back external electrode layer (40)
Are connected in series and parallel. Also in this case, the thickness of each i-layer (12, 22, 32) of the three junctions is smaller than the i-layer of the two-stage parallel solar cell of FIG.
The effect of reducing light deterioration is great. Moreover, as compared with the case of the three-stage parallel amorphous solar cell of FIG.
The step of forming 6) and the step of forming the transparent electrode layer (18) can be omitted, and the manufacturing process is simplified.

以上に説明した本発明の実施例に係るアモルファス太
陽電池ではガラス基板(4)を使用しているが、透明な
基板であればその材質は問わない。
Although the glass substrate (4) is used in the above-described amorphous solar cell according to the embodiment of the present invention, the material is not limited as long as it is a transparent substrate.

各p−i−n接合(10,20,30)を構成するアモルファ
ス半導体材料は、アモルファスシリコンに限らず、Siと
C若しくはこれらの水素化物、ハロゲン化物及びこれら
の材料とGe、C等との合金等を使用することができる。
The amorphous semiconductor material forming each pin junction (10, 20, 30) is not limited to amorphous silicon, but may be Si and C or their hydrides and halides, and the materials of these materials and Ge, C, etc. An alloy or the like can be used.

[発明の効果] 以上に説明したように、本発明に係るアモルファス太
陽電池は、光活性層を含む複数の接合を膜厚方向に形成
するに際し少なくとも一部の接合を電気的に分離した上
でこれを並列接続したものであり、更に具体的には透明
電極層の上にp−i−n接合を設け、この接合の上に透
明電極層、透光性絶縁層及び透明電極層を順次介して更
にp−i−n接合を設け、更に後者の接合の上に外部電
極層を設けておき、これらの透明電極層及び外部電極層
を通して両接合を電気的に並列接続したものであるか
ら、電圧同一の並列条件で各接合の最適動作点が決定さ
れ、各接合の電流バランスを考慮する必要がない。した
がって、従来のタンデム型アモルファス太陽電池に比べ
て裏面側i層の膜厚をかなり薄くすることができ、電池
の光劣化を良く軽減することができる。しかも、時間あ
るいは季節の違いによる太陽光スペクトル変化に基づく
各接合の電流バランスの崩れを考慮する必要もない。
[Effects of the Invention] As described above, the amorphous solar cell according to the present invention is configured such that when forming a plurality of junctions including the photoactive layer in the film thickness direction, at least some of the junctions are electrically separated. These are connected in parallel. More specifically, a pin junction is provided on the transparent electrode layer, and a transparent electrode layer, a light-transmitting insulating layer, and a transparent electrode layer are sequentially interposed on the junction. Further, a pin junction is further provided, and an external electrode layer is further provided on the latter junction, and both junctions are electrically connected in parallel through the transparent electrode layer and the external electrode layer. The optimum operating point of each junction is determined under the parallel condition of the same voltage, and there is no need to consider the current balance of each junction. Therefore, the thickness of the back-side i-layer can be considerably reduced as compared with the conventional tandem-type amorphous solar cell, and light deterioration of the cell can be reduced well. Moreover, it is not necessary to consider the current balance breakdown of each junction due to the change in the sunlight spectrum due to the time or season.

したがって、本発明によれば、従来のタンデム型太陽
電池以上に光安定性の高い高効率アモルファス太陽電池
を提供することができる。
Therefore, according to the present invention, it is possible to provide a highly efficient amorphous solar cell having higher light stability than a conventional tandem solar cell.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例の参考例1に係る2段並列ア
モルファス太陽電池の断面模式図、 第2図は、本発明の他の実施例の参考例2に係る3段並
列アモルファス太陽電池の断面模式図、 第3図は、本発明の実施例に係る3段直並列アモルファ
ス太陽電池の断面模式図、 第4図は、従来の2段タンデム型アモルファス太陽電池
の断面模式図、 第5図は、従来の3段タンデム型アモルファス太陽電池
の断面模式図である。 符号の説明 2……ガラス基板、 4,14,18,24,28……透明電極層、 10,20,30……p−i−n接合、 11,21,31……p型アモルファス半導体層、 12,22,32……i型アモルファス半導体層、 13,23,33……n型アモルファス半導体層、 16,26……透光性絶縁層、 40……裏面外部電極層。
FIG. 1 is a schematic cross-sectional view of a two-stage parallel amorphous solar cell according to Embodiment 1 of the present invention, and FIG. 2 is a three-stage parallel amorphous solar cell according to Embodiment 2 of another embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of a three-stage series-parallel amorphous solar cell according to an embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of a conventional two-stage tandem amorphous solar cell; FIG. 5 is a schematic sectional view of a conventional three-stage tandem type amorphous solar cell. DESCRIPTION OF SYMBOLS 2 ... Glass substrate, 4,14,18,24,28 ... Transparent electrode layer, 10,20,30 ... Pin junction, 11,21,31 ... P-type amorphous semiconductor layer , 12,22,32 ... i-type amorphous semiconductor layer, 13,23,33 ... n-type amorphous semiconductor layer, 16,26 ... translucent insulating layer, 40 ... back surface external electrode layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−191479(JP,A) 特開 昭59−161081(JP,A) 特開 昭61−75567(JP,A) 特開 昭63−48871(JP,A) 特開 昭63−152177(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-191479 (JP, A) JP-A-59-161081 (JP, A) JP-A-61-75567 (JP, A) JP-A-63-1981 48871 (JP, A) JP-A-63-152177 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の透明電極層の上に第1のp−i−n
接合を設け、 前記第1のp−i−n接合の上に、前記第1のp−i−
n接合と略同じ面積の第2の透明電極層を介して、前記
第1p−i−n接合と略同じ面積の第2のp−i−n接合
を設け、 前記第2のp−i−n接合の上に、前記第2のp−i−
n接合と略同じ面積の第3の透明電極層、透光性絶縁層
及び第4の透明電極層を順次介して、前記第2のp−i
−n接合と略同じ面積の第3のp−i−n接合を設け、 前記第3のp−i−n接合の上に外部電極層を設け、 前記第2の透明電極層及び前記第4の透明電極層を電気
的に接続し、かつ、前記第3の透明電極層及び前記外部
電極層を電気的に接続することにより、 並列接続した前記第2のp−i−n接合と前記第3のp
−i−n接合に、前記第1のp−i−n接合を直列接続
した ことを特徴とするアモルファス太陽電池。
1. A first pin on a first transparent electrode layer.
Providing a junction, the first pin-junction above the first pin junction.
a second pin junction having substantially the same area as the first pin junction is provided via a second transparent electrode layer having substantially the same area as the n junction; On the n-junction, the second p-i-
The second p-i is sequentially interposed through a third transparent electrode layer, a light-transmitting insulating layer, and a fourth transparent electrode layer having substantially the same area as the n-junction.
Providing a third pin junction having substantially the same area as the -n junction, providing an external electrode layer on the third pin junction, the second transparent electrode layer and the fourth Electrically connecting the third transparent electrode layer and the external electrode layer, thereby electrically connecting the third transparent electrode layer and the external electrode layer. 3 p
An amorphous solar cell, wherein the first pin junction is connected in series to the -in junction.
JP1226516A 1989-08-31 1989-08-31 Amorphous solar cell Expired - Fee Related JP2936269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226516A JP2936269B2 (en) 1989-08-31 1989-08-31 Amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226516A JP2936269B2 (en) 1989-08-31 1989-08-31 Amorphous solar cell

Publications (2)

Publication Number Publication Date
JPH0389558A JPH0389558A (en) 1991-04-15
JP2936269B2 true JP2936269B2 (en) 1999-08-23

Family

ID=16846354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226516A Expired - Fee Related JP2936269B2 (en) 1989-08-31 1989-08-31 Amorphous solar cell

Country Status (1)

Country Link
JP (1) JP2936269B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048084A4 (en) * 1998-08-19 2001-05-09 Univ Princeton Organic photosensitive optoelectronic device
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
JP2006066707A (en) * 2004-08-27 2006-03-09 Sony Corp Photoelectric conversion apparatus
US8101437B2 (en) * 2009-12-31 2012-01-24 Du Pont Apollo Limited Method of forming three-terminal solar cell array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191476A (en) * 1982-04-30 1983-11-08 Shimadzu Corp Manufacture of diaphragm for semiconductor pressure sensor
JPS59161081A (en) * 1983-03-03 1984-09-11 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
JPS6175567A (en) * 1984-09-20 1986-04-17 Sanyo Electric Co Ltd Photovoltaic device

Also Published As

Publication number Publication date
JPH0389558A (en) 1991-04-15

Similar Documents

Publication Publication Date Title
JP3490964B2 (en) Photovoltaic device
JPS62221167A (en) Multilayer thin film solar battery
JP2001267610A (en) Solar battery
JPS61104678A (en) Amorphous solar cell
WO2010142575A2 (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
JPH0693519B2 (en) Amorphous photoelectric conversion device
JP2936269B2 (en) Amorphous solar cell
US4857115A (en) Photovoltaic device
JP2012038783A (en) Photoelectric conversion element
JP2884171B2 (en) Amorphous solar cell
CN117321776A (en) Multi-junction solar cell
KR101562191B1 (en) High efficiency solar cells
JPH0463550B2 (en)
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JPS6321880A (en) Photovoltaic device
JPS6074685A (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JPH0389560A (en) Amorphous solar cell
JPH09181343A (en) Photoelectric conversion device
JPH05145095A (en) Photovoltaic element
JPH0442974A (en) Solar cell with bypass diode
JP2647892B2 (en) Optical super power device
JPH0521891Y2 (en)
JP2669926B2 (en) Thin film solar cell
JP2869178B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees