JPH0463550B2 - - Google Patents
Info
- Publication number
- JPH0463550B2 JPH0463550B2 JP58036751A JP3675183A JPH0463550B2 JP H0463550 B2 JPH0463550 B2 JP H0463550B2 JP 58036751 A JP58036751 A JP 58036751A JP 3675183 A JP3675183 A JP 3675183A JP H0463550 B2 JPH0463550 B2 JP H0463550B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type layer
- region
- type
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 239000010408 film Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
- H01L31/03762—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
(イ) 技術分野
本発明は光エネルギーを電気エネルギーに変換
するアモルフアスシリコン太陽電池に関する。
(ロ) 背景技術
近年、クリーンで非枯渇性のエネルギを利用す
る低コスト太陽電池としてアモルフアスシリコン
太陽電池が注目されている。アモルフアスシリコ
ン太陽電池は、安価な基板を用いて低温プロセス
で形成する厚さ1μm以下の薄膜で構成できるた
め、低コストで製造できる特徴がある。
このような低コストの特徴を活かすには、より
一層の光電変換効率を向上し、実用に供し得る性
能にする必要がある。
アモルフアスシリコンを使つた太陽電池の性能
を向上するため、各種セル構成が提案されてい
る。p−i−n構造の太陽電池では、光によつて
高密度に生成される電子・正孔対のうち、拡散距
離が短かい正孔を収集しやすいようにP型層を光
入射側に置いて光の総合収集効率を高めるように
している場合が多い。しかしながら、一般にボロ
ンB等のP型を示すb族元素を添加しているP
型層は光吸収係数が大きく、キヤリアの生成を行
なうi層に多くのホトンを導くことができない。
このため、光入射側にP型層を配したp−i−n
構造でP型層に禁止帯幅の広い炭素又は窒素を添
加したアモルフアスシリコン(以下a−Si:C:
H又はa−Si:N:H)を用いることによつて太
陽光などの短波長側の光の有効利用がはかられて
いる。さらに、曲線因子の向上を図れば、光電変
換効率を一層向上することができる。
(ハ) 発明の開示
発明者らは、P型a−Si:C:H膜またはa−
Si:N:H膜の組成および製造条件を変えること
により膜特性を広い範囲にわたつて制御できるこ
とに着目し、種々検討を重ねた結果、P型a−
Si:C:H膜またはa−Si:N:H膜の透明電極
に接する領域の電導度をi型層に接する領域より
高くすることにより、太陽電池の直列抵抗を低減
して曲線因子を改善し、光電変換効率を向上させ
得るこを見い出し、本発明を完成させたものであ
る。すなわち、本発明は光に対する感度が高く、
かつ直列抵抗の小さい高い光電変換効率のa−Si
太陽電池を提供することにある。
以下実施例について詳細に説明する。
第1図は本発明によるa−Si太陽電池の一実施
例を示す断面図であり、1は透明ガラス基板、2
は透明導電膜(透明電極)、3はアモルフアスシ
リコン層で基板側から伝導型がP型4、i型5、
n型6の順に形成されている。P型層4は、炭素
または窒素量の異なる二層P1層7およびP2層8
からなり、基板側に近いP1層7への炭素または
窒素添加量がP28層への添加量より少なくなつ
ている。各層の膜厚は例えば、P1層80Å、P2層
150Åで、i型層、n型層はそれぞれ5000Å、500
Åである。9は金属電極であり、膜厚は5000Åの
アルミニウムを用いた。10は入射する太陽光線
を示す。
第2図は従来の構造例であり、P層は一層であ
る。
第1表はP層に炭素を添加したアモルフアスシ
リコン層を用いた太陽電池の出力特性を、また第
2表はP層に窒素を添加したアモルフアスシリコ
ン層を用いた太陽電池の出力特性を示す。P型層
の透明電極に接する領域にi型層に接する領域よ
り低濃度の炭素または、窒素を添加した場合に曲
線因子が著しく改善され、光電変換効率の向上が
はかられていることが明らかである。
(a) Technical Field The present invention relates to an amorphous silicon solar cell that converts light energy into electrical energy. (b) Background Art In recent years, amorphous silicon solar cells have attracted attention as low-cost solar cells that utilize clean, non-depletable energy. Amorphous silicon solar cells can be manufactured at low cost because they can be constructed from thin films of 1 μm or less in thickness that are formed using low-temperature processes using inexpensive substrates. In order to take advantage of such a low cost feature, it is necessary to further improve the photoelectric conversion efficiency and achieve a performance that can be put to practical use. Various cell configurations have been proposed to improve the performance of solar cells using amorphous silicon. In a solar cell with a p-i-n structure, a P-type layer is placed on the light incident side to easily collect holes with a short diffusion distance among the electron-hole pairs that are generated in high density by light. In many cases, they are installed to increase the overall light collection efficiency. However, in general, P containing a group b element such as boron B, which shows P type, is added.
The type layer has a large light absorption coefficient and cannot guide many photons to the i-layer where carriers are generated.
For this reason, a pin with a P-type layer on the light incidence side
Amorphous silicon (hereinafter referred to as a-Si:C:
By using H or a-Si:N:H), it is possible to effectively utilize light on the short wavelength side such as sunlight. Furthermore, if the fill factor is improved, the photoelectric conversion efficiency can be further improved. (c) Disclosure of the invention The inventors have disclosed that a P-type a-Si:C:H film or a-
We focused on the fact that the film properties can be controlled over a wide range by changing the composition and manufacturing conditions of the Si:N:H film, and as a result of various studies, we developed a P-type a-
By increasing the conductivity of the Si:C:H film or a-Si:N:H film in the region in contact with the transparent electrode than in the region in contact with the i-type layer, the series resistance of the solar cell is reduced and the fill factor is improved. However, they discovered that the photoelectric conversion efficiency could be improved and completed the present invention. That is, the present invention has high sensitivity to light;
a-Si with low series resistance and high photoelectric conversion efficiency
Our goal is to provide solar cells. Examples will be described in detail below. FIG. 1 is a cross-sectional view showing one embodiment of an a-Si solar cell according to the present invention, in which 1 is a transparent glass substrate, 2
is a transparent conductive film (transparent electrode), 3 is an amorphous silicon layer, and the conductivity types from the substrate side are P type 4, i type 5,
N-type 6 is formed in this order. The P-type layer 4 is composed of two layers P1 layer 7 and P2 layer 8 with different amounts of carbon or nitrogen.
The amount of carbon or nitrogen added to the P 1 layer 7 near the substrate side is smaller than the amount added to the P 2 8 layer. The film thickness of each layer is, for example, P 1 layer 80 Å, P 2 layer
150 Å, i-type layer and n-type layer are 5000 Å and 500 Å, respectively.
It is Å. Reference numeral 9 denotes a metal electrode made of aluminum with a film thickness of 5000 Å. 10 indicates incident sunlight. FIG. 2 shows an example of a conventional structure, in which the P layer is one layer. Table 1 shows the output characteristics of a solar cell using an amorphous silicon layer with carbon added to the P layer, and Table 2 shows the output characteristics of a solar cell using an amorphous silicon layer with nitrogen added to the P layer. show. It is clear that when a lower concentration of carbon or nitrogen is added to the region of the P-type layer in contact with the transparent electrode than in the region of the I-type layer, the fill factor is significantly improved and photoelectric conversion efficiency is improved. It is.
【表】【table】
【表】
P型層に炭素または窒素のうちの少なくとも1
種を添加するのは、P型層の禁止帯幅を広げて光
の吸収を少なくし、光電変換に有効なキヤリアの
生成を行なうi型層により多くのホトンを導くい
わゆる窓効果によつて光電変換効率を改善するた
めである。
禁止帯幅は炭素または窒素の添加量を増すほど
広くでき、P型層における光吸収を低減すること
ができる。しかし、炭素または窒素の添加量を増
すほどP型層の電導度を低下してしまい、とりわ
けP型層と透明電極との接合面における電気抵抗
にもとづく太陽電池の直列抵抗を増大してしま
う。この結果、光電変換効率の低下をきたしてし
まう。P型層の透明電極に接する領域の電導度を
i型層に接する領域より低くするのは、上記の問
題点を解決するために、P型層を禁止帯幅は比較
的狭いが電導度が高く、電極との接合に適した
P1層と、禁止帯幅が広く、光吸収の少ないP2層
に分割するためである。
P1層の膜厚は50〜150Åであることがのぞまし
い。膜厚が50Åに満たないと、均質なP1層が得
られず、所望の良好な電極との接合効果が得られ
ないためであり、150Åを越えると、P1層での光
吸収が大きくなり、窓効果がなくなるからであ
る。P2層の膜厚は50〜300Åであることがのぞま
しい。膜厚が50Åに満たないと、均質なP2層を
形成できないためであり、300Åを越えると、光
吸収量が多くなり、窓効果が損なわれるからであ
る。
実施例では、P型層が電導度の高いP1層と、
禁止帯幅の広いP2層の2層からなる場合につい
て述べたが、必要な場合は3層以上にすることも
可能であり、炭素または窒素の添加量を連続的に
変化させ、P型層の透明電極に接する領域の電導
度をi型層に接する領域より高くしてもよい。
本発明はi型層の組成や、多層構造における透
明電極に接触しないアモルフアスシリコン層を制
限するものではなく、P型層を含むいずれの構造
にも適用できる。[Table] At least one of carbon or nitrogen in the P-type layer
The addition of seeds widens the bandgap of the P-type layer to reduce light absorption, which leads to the so-called window effect that leads more photons to the I-type layer, which generates carriers that are effective for photoelectric conversion. This is to improve conversion efficiency. The forbidden band width can be increased as the amount of carbon or nitrogen added is increased, and light absorption in the P-type layer can be reduced. However, as the amount of carbon or nitrogen added increases, the electrical conductivity of the P-type layer decreases, and in particular, the series resistance of the solar cell based on the electrical resistance at the bonding surface between the P-type layer and the transparent electrode increases. As a result, photoelectric conversion efficiency decreases. The reason for making the conductivity of the region of the P-type layer in contact with the transparent electrode lower than that of the region of the P-type layer in contact with the i-type layer is to solve the above problem. High, suitable for bonding with electrodes
This is because it is divided into a P 1 layer and a P 2 layer with a wide forbidden band width and low light absorption. The thickness of the P 1 layer is preferably 50 to 150 Å. If the film thickness is less than 50 Å, a homogeneous P 1 layer cannot be obtained and the desired good bonding effect with the electrode cannot be obtained. If the film thickness exceeds 150 Å, light absorption in the P 1 layer will be large. This is because the window effect disappears. The thickness of the P2 layer is preferably 50 to 300 Å. This is because if the film thickness is less than 50 Å, a homogeneous P 2 layer cannot be formed, and if it exceeds 300 Å, the amount of light absorption increases and the window effect is impaired. In the example, the P-type layer is a P1 layer with high conductivity,
Although we have described the case of two P-type layers with a wide forbidden band width, it is also possible to have three or more layers if necessary, and by continuously changing the amount of carbon or nitrogen added, it is possible to The conductivity of the region in contact with the transparent electrode may be higher than that in the region in contact with the i-type layer. The present invention does not limit the composition of the i-type layer or the amorphous silicon layer that does not contact the transparent electrode in a multilayer structure, and can be applied to any structure including a p-type layer.
第1図は本発明によるa−Si太陽電池の一実施
例を示す断面図である。第2図は従来例の断面図
である。
1;透明ガラス基板、2;透明導電膜(透明電
極)、3;アモルフアスシリコン層、4;P型層、
5;i型層、6;n型層、7;P1層、8;P2層、
9;金属電極、10;太陽光線。
FIG. 1 is a sectional view showing an embodiment of an a-Si solar cell according to the present invention. FIG. 2 is a sectional view of a conventional example. 1; Transparent glass substrate, 2; Transparent conductive film (transparent electrode), 3; Amorphous silicon layer, 4; P-type layer,
5; i-type layer, 6; n-type layer, 7; P 1 layer, 8; P 2 layer,
9; metal electrode; 10; sunlight.
Claims (1)
加したp型層を含むアモルフアスシリコン太陽電
池において、p型層の電極に接する領域への炭素
および/または窒素の添加量をi型層に接する領
域より少なくすることで、p型層の電極に接する
領域の電導度をi型層に接する領域より高くして
なることを特徴とするアモルフアスシリコン太陽
電池。 2 特許請求の範囲第1項において、炭素又は窒
素の量の異なるp型層が積層されているか、ある
いは炭素または/および窒素の量が連続的に変化
してなることを特徴とするアモルフアスシリコン
太陽電池。[Claims] 1. In an amorphous silicon solar cell including a p-type layer to which at least one of carbon and nitrogen is added, the amount of carbon and/or nitrogen added to the region of the p-type layer in contact with an electrode is determined by i. An amorphous silicon solar cell characterized in that the conductivity of the region of the p-type layer in contact with the electrode is higher than that of the region of the p-type layer in contact with the i-type layer by making the region of the p-type layer smaller than the region in contact with the type layer. 2. Amorphous silicon according to claim 1, characterized in that p-type layers with different amounts of carbon or nitrogen are laminated, or the amount of carbon and/or nitrogen is continuously changed. solar cells.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036751A JPS59163875A (en) | 1983-03-08 | 1983-03-08 | Amorphous silicon solar cell |
GB08405687A GB2137810B (en) | 1983-03-08 | 1984-03-05 | A solar cell of amorphous silicon |
DE3408317A DE3408317C2 (en) | 1983-03-08 | 1984-03-07 | Amorphous silicon solar cell |
FR848403598A FR2542503B1 (en) | 1983-03-08 | 1984-03-08 | AMORPHOUS SILICON SOLAR CELL |
US06/587,702 US4612559A (en) | 1983-03-08 | 1984-03-08 | Solar cell of amorphous silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036751A JPS59163875A (en) | 1983-03-08 | 1983-03-08 | Amorphous silicon solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59163875A JPS59163875A (en) | 1984-09-14 |
JPH0463550B2 true JPH0463550B2 (en) | 1992-10-12 |
Family
ID=12478432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58036751A Granted JPS59163875A (en) | 1983-03-08 | 1983-03-08 | Amorphous silicon solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59163875A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6190476A (en) * | 1984-10-09 | 1986-05-08 | Sanyo Electric Co Ltd | Photovoltaic device |
JPS62106670A (en) * | 1985-11-05 | 1987-05-18 | Kanegafuchi Chem Ind Co Ltd | Semiconductor device |
JPS62232173A (en) * | 1986-04-01 | 1987-10-12 | Toa Nenryo Kogyo Kk | Amorphous silicon solar cell |
JPS63289970A (en) * | 1987-05-22 | 1988-11-28 | Matsushita Electric Ind Co Ltd | Solar battery power source |
JPS6432683A (en) * | 1987-07-28 | 1989-02-02 | Japan Engine Valve Mfg | Semiconductor element |
JP2609873B2 (en) * | 1987-10-19 | 1997-05-14 | 三洋電機株式会社 | Photovoltaic device |
JPH04211179A (en) * | 1991-03-27 | 1992-08-03 | Kanegafuchi Chem Ind Co Ltd | Switching element |
JP2012500483A (en) * | 2008-08-19 | 2012-01-05 | エーリコン・ソーラー・アーゲー・トリューバッハ | Photocell and method for producing photovoltaic cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58192387A (en) * | 1982-04-27 | 1983-11-09 | ア−ルシ−エ− コ−ポレ−シヨン | Photocell |
-
1983
- 1983-03-08 JP JP58036751A patent/JPS59163875A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58192387A (en) * | 1982-04-27 | 1983-11-09 | ア−ルシ−エ− コ−ポレ−シヨン | Photocell |
Also Published As
Publication number | Publication date |
---|---|
JPS59163875A (en) | 1984-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1724840B1 (en) | Photoelectric cell | |
JP3490964B2 (en) | Photovoltaic device | |
KR101219926B1 (en) | Heterocontact solar cell with inverted geometry of its layer structure | |
US4591892A (en) | Semiconductor photoelectric conversion device | |
JP2814351B2 (en) | Photoelectric device | |
US20080236661A1 (en) | Solar cell | |
JPWO2006057160A1 (en) | Thin film photoelectric converter | |
JPWO2005011002A1 (en) | Silicon-based thin film solar cell | |
US20100051095A1 (en) | Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers With Wide Bandgap Dopant Layers and an Up-Converter | |
US4612559A (en) | Solar cell of amorphous silicon | |
JPS58139478A (en) | Amorphous solar battery | |
JPH0463550B2 (en) | ||
JP2001217437A (en) | Enhancement of short-circuit current by use of wide band gap n layer in pin amorphous silicon photocell | |
JP4568531B2 (en) | Integrated solar cell and method of manufacturing integrated solar cell | |
JP3368854B2 (en) | Solar cell | |
JPS6225275B2 (en) | ||
JP2669834B2 (en) | Stacked photovoltaic device | |
JP2936269B2 (en) | Amorphous solar cell | |
JPS59163876A (en) | Amorphous silicon solar cell | |
JPS61203665A (en) | Production of amorphous silicon-type photo-diode | |
JP4283849B2 (en) | Thin film photoelectric conversion device and manufacturing method thereof | |
JPH11163376A (en) | Thin-film solar cell | |
JP2004153028A (en) | Thin-film photoelectric converting device | |
JPH0586677B2 (en) | ||
JP4358493B2 (en) | Solar cell |