JPH0463550B2 - - Google Patents

Info

Publication number
JPH0463550B2
JPH0463550B2 JP58036751A JP3675183A JPH0463550B2 JP H0463550 B2 JPH0463550 B2 JP H0463550B2 JP 58036751 A JP58036751 A JP 58036751A JP 3675183 A JP3675183 A JP 3675183A JP H0463550 B2 JPH0463550 B2 JP H0463550B2
Authority
JP
Japan
Prior art keywords
layer
type layer
region
type
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58036751A
Other languages
Japanese (ja)
Other versions
JPS59163875A (en
Inventor
Hajime Ichanagi
Tadashi Igarashi
Masayuki Ishii
Chuichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58036751A priority Critical patent/JPS59163875A/en
Priority to GB08405687A priority patent/GB2137810B/en
Priority to DE3408317A priority patent/DE3408317C2/en
Priority to FR848403598A priority patent/FR2542503B1/en
Priority to US06/587,702 priority patent/US4612559A/en
Publication of JPS59163875A publication Critical patent/JPS59163875A/en
Publication of JPH0463550B2 publication Critical patent/JPH0463550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は光エネルギーを電気エネルギーに変換
するアモルフアスシリコン太陽電池に関する。 (ロ) 背景技術 近年、クリーンで非枯渇性のエネルギを利用す
る低コスト太陽電池としてアモルフアスシリコン
太陽電池が注目されている。アモルフアスシリコ
ン太陽電池は、安価な基板を用いて低温プロセス
で形成する厚さ1μm以下の薄膜で構成できるた
め、低コストで製造できる特徴がある。 このような低コストの特徴を活かすには、より
一層の光電変換効率を向上し、実用に供し得る性
能にする必要がある。 アモルフアスシリコンを使つた太陽電池の性能
を向上するため、各種セル構成が提案されてい
る。p−i−n構造の太陽電池では、光によつて
高密度に生成される電子・正孔対のうち、拡散距
離が短かい正孔を収集しやすいようにP型層を光
入射側に置いて光の総合収集効率を高めるように
している場合が多い。しかしながら、一般にボロ
ンB等のP型を示すb族元素を添加しているP
型層は光吸収係数が大きく、キヤリアの生成を行
なうi層に多くのホトンを導くことができない。
このため、光入射側にP型層を配したp−i−n
構造でP型層に禁止帯幅の広い炭素又は窒素を添
加したアモルフアスシリコン(以下a−Si:C:
H又はa−Si:N:H)を用いることによつて太
陽光などの短波長側の光の有効利用がはかられて
いる。さらに、曲線因子の向上を図れば、光電変
換効率を一層向上することができる。 (ハ) 発明の開示 発明者らは、P型a−Si:C:H膜またはa−
Si:N:H膜の組成および製造条件を変えること
により膜特性を広い範囲にわたつて制御できるこ
とに着目し、種々検討を重ねた結果、P型a−
Si:C:H膜またはa−Si:N:H膜の透明電極
に接する領域の電導度をi型層に接する領域より
高くすることにより、太陽電池の直列抵抗を低減
して曲線因子を改善し、光電変換効率を向上させ
得るこを見い出し、本発明を完成させたものであ
る。すなわち、本発明は光に対する感度が高く、
かつ直列抵抗の小さい高い光電変換効率のa−Si
太陽電池を提供することにある。 以下実施例について詳細に説明する。 第1図は本発明によるa−Si太陽電池の一実施
例を示す断面図であり、1は透明ガラス基板、2
は透明導電膜(透明電極)、3はアモルフアスシ
リコン層で基板側から伝導型がP型4、i型5、
n型6の順に形成されている。P型層4は、炭素
または窒素量の異なる二層P1層7およびP2層8
からなり、基板側に近いP1層7への炭素または
窒素添加量がP28層への添加量より少なくなつ
ている。各層の膜厚は例えば、P1層80Å、P2
150Åで、i型層、n型層はそれぞれ5000Å、500
Åである。9は金属電極であり、膜厚は5000Åの
アルミニウムを用いた。10は入射する太陽光線
を示す。 第2図は従来の構造例であり、P層は一層であ
る。 第1表はP層に炭素を添加したアモルフアスシ
リコン層を用いた太陽電池の出力特性を、また第
2表はP層に窒素を添加したアモルフアスシリコ
ン層を用いた太陽電池の出力特性を示す。P型層
の透明電極に接する領域にi型層に接する領域よ
り低濃度の炭素または、窒素を添加した場合に曲
線因子が著しく改善され、光電変換効率の向上が
はかられていることが明らかである。
(a) Technical Field The present invention relates to an amorphous silicon solar cell that converts light energy into electrical energy. (b) Background Art In recent years, amorphous silicon solar cells have attracted attention as low-cost solar cells that utilize clean, non-depletable energy. Amorphous silicon solar cells can be manufactured at low cost because they can be constructed from thin films of 1 μm or less in thickness that are formed using low-temperature processes using inexpensive substrates. In order to take advantage of such a low cost feature, it is necessary to further improve the photoelectric conversion efficiency and achieve a performance that can be put to practical use. Various cell configurations have been proposed to improve the performance of solar cells using amorphous silicon. In a solar cell with a p-i-n structure, a P-type layer is placed on the light incident side to easily collect holes with a short diffusion distance among the electron-hole pairs that are generated in high density by light. In many cases, they are installed to increase the overall light collection efficiency. However, in general, P containing a group b element such as boron B, which shows P type, is added.
The type layer has a large light absorption coefficient and cannot guide many photons to the i-layer where carriers are generated.
For this reason, a pin with a P-type layer on the light incidence side
Amorphous silicon (hereinafter referred to as a-Si:C:
By using H or a-Si:N:H), it is possible to effectively utilize light on the short wavelength side such as sunlight. Furthermore, if the fill factor is improved, the photoelectric conversion efficiency can be further improved. (c) Disclosure of the invention The inventors have disclosed that a P-type a-Si:C:H film or a-
We focused on the fact that the film properties can be controlled over a wide range by changing the composition and manufacturing conditions of the Si:N:H film, and as a result of various studies, we developed a P-type a-
By increasing the conductivity of the Si:C:H film or a-Si:N:H film in the region in contact with the transparent electrode than in the region in contact with the i-type layer, the series resistance of the solar cell is reduced and the fill factor is improved. However, they discovered that the photoelectric conversion efficiency could be improved and completed the present invention. That is, the present invention has high sensitivity to light;
a-Si with low series resistance and high photoelectric conversion efficiency
Our goal is to provide solar cells. Examples will be described in detail below. FIG. 1 is a cross-sectional view showing one embodiment of an a-Si solar cell according to the present invention, in which 1 is a transparent glass substrate, 2
is a transparent conductive film (transparent electrode), 3 is an amorphous silicon layer, and the conductivity types from the substrate side are P type 4, i type 5,
N-type 6 is formed in this order. The P-type layer 4 is composed of two layers P1 layer 7 and P2 layer 8 with different amounts of carbon or nitrogen.
The amount of carbon or nitrogen added to the P 1 layer 7 near the substrate side is smaller than the amount added to the P 2 8 layer. The film thickness of each layer is, for example, P 1 layer 80 Å, P 2 layer
150 Å, i-type layer and n-type layer are 5000 Å and 500 Å, respectively.
It is Å. Reference numeral 9 denotes a metal electrode made of aluminum with a film thickness of 5000 Å. 10 indicates incident sunlight. FIG. 2 shows an example of a conventional structure, in which the P layer is one layer. Table 1 shows the output characteristics of a solar cell using an amorphous silicon layer with carbon added to the P layer, and Table 2 shows the output characteristics of a solar cell using an amorphous silicon layer with nitrogen added to the P layer. show. It is clear that when a lower concentration of carbon or nitrogen is added to the region of the P-type layer in contact with the transparent electrode than in the region of the I-type layer, the fill factor is significantly improved and photoelectric conversion efficiency is improved. It is.

【表】【table】

【表】 P型層に炭素または窒素のうちの少なくとも1
種を添加するのは、P型層の禁止帯幅を広げて光
の吸収を少なくし、光電変換に有効なキヤリアの
生成を行なうi型層により多くのホトンを導くい
わゆる窓効果によつて光電変換効率を改善するた
めである。 禁止帯幅は炭素または窒素の添加量を増すほど
広くでき、P型層における光吸収を低減すること
ができる。しかし、炭素または窒素の添加量を増
すほどP型層の電導度を低下してしまい、とりわ
けP型層と透明電極との接合面における電気抵抗
にもとづく太陽電池の直列抵抗を増大してしま
う。この結果、光電変換効率の低下をきたしてし
まう。P型層の透明電極に接する領域の電導度を
i型層に接する領域より低くするのは、上記の問
題点を解決するために、P型層を禁止帯幅は比較
的狭いが電導度が高く、電極との接合に適した
P1層と、禁止帯幅が広く、光吸収の少ないP2
に分割するためである。 P1層の膜厚は50〜150Åであることがのぞまし
い。膜厚が50Åに満たないと、均質なP1層が得
られず、所望の良好な電極との接合効果が得られ
ないためであり、150Åを越えると、P1層での光
吸収が大きくなり、窓効果がなくなるからであ
る。P2層の膜厚は50〜300Åであることがのぞま
しい。膜厚が50Åに満たないと、均質なP2層を
形成できないためであり、300Åを越えると、光
吸収量が多くなり、窓効果が損なわれるからであ
る。 実施例では、P型層が電導度の高いP1層と、
禁止帯幅の広いP2層の2層からなる場合につい
て述べたが、必要な場合は3層以上にすることも
可能であり、炭素または窒素の添加量を連続的に
変化させ、P型層の透明電極に接する領域の電導
度をi型層に接する領域より高くしてもよい。 本発明はi型層の組成や、多層構造における透
明電極に接触しないアモルフアスシリコン層を制
限するものではなく、P型層を含むいずれの構造
にも適用できる。
[Table] At least one of carbon or nitrogen in the P-type layer
The addition of seeds widens the bandgap of the P-type layer to reduce light absorption, which leads to the so-called window effect that leads more photons to the I-type layer, which generates carriers that are effective for photoelectric conversion. This is to improve conversion efficiency. The forbidden band width can be increased as the amount of carbon or nitrogen added is increased, and light absorption in the P-type layer can be reduced. However, as the amount of carbon or nitrogen added increases, the electrical conductivity of the P-type layer decreases, and in particular, the series resistance of the solar cell based on the electrical resistance at the bonding surface between the P-type layer and the transparent electrode increases. As a result, photoelectric conversion efficiency decreases. The reason for making the conductivity of the region of the P-type layer in contact with the transparent electrode lower than that of the region of the P-type layer in contact with the i-type layer is to solve the above problem. High, suitable for bonding with electrodes
This is because it is divided into a P 1 layer and a P 2 layer with a wide forbidden band width and low light absorption. The thickness of the P 1 layer is preferably 50 to 150 Å. If the film thickness is less than 50 Å, a homogeneous P 1 layer cannot be obtained and the desired good bonding effect with the electrode cannot be obtained. If the film thickness exceeds 150 Å, light absorption in the P 1 layer will be large. This is because the window effect disappears. The thickness of the P2 layer is preferably 50 to 300 Å. This is because if the film thickness is less than 50 Å, a homogeneous P 2 layer cannot be formed, and if it exceeds 300 Å, the amount of light absorption increases and the window effect is impaired. In the example, the P-type layer is a P1 layer with high conductivity,
Although we have described the case of two P-type layers with a wide forbidden band width, it is also possible to have three or more layers if necessary, and by continuously changing the amount of carbon or nitrogen added, it is possible to The conductivity of the region in contact with the transparent electrode may be higher than that in the region in contact with the i-type layer. The present invention does not limit the composition of the i-type layer or the amorphous silicon layer that does not contact the transparent electrode in a multilayer structure, and can be applied to any structure including a p-type layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるa−Si太陽電池の一実施
例を示す断面図である。第2図は従来例の断面図
である。 1;透明ガラス基板、2;透明導電膜(透明電
極)、3;アモルフアスシリコン層、4;P型層、
5;i型層、6;n型層、7;P1層、8;P2層、
9;金属電極、10;太陽光線。
FIG. 1 is a sectional view showing an embodiment of an a-Si solar cell according to the present invention. FIG. 2 is a sectional view of a conventional example. 1; Transparent glass substrate, 2; Transparent conductive film (transparent electrode), 3; Amorphous silicon layer, 4; P-type layer,
5; i-type layer, 6; n-type layer, 7; P 1 layer, 8; P 2 layer,
9; metal electrode; 10; sunlight.

Claims (1)

【特許請求の範囲】 1 炭素あるいは窒素のうち少なくとも1種を添
加したp型層を含むアモルフアスシリコン太陽電
池において、p型層の電極に接する領域への炭素
および/または窒素の添加量をi型層に接する領
域より少なくすることで、p型層の電極に接する
領域の電導度をi型層に接する領域より高くして
なることを特徴とするアモルフアスシリコン太陽
電池。 2 特許請求の範囲第1項において、炭素又は窒
素の量の異なるp型層が積層されているか、ある
いは炭素または/および窒素の量が連続的に変化
してなることを特徴とするアモルフアスシリコン
太陽電池。
[Claims] 1. In an amorphous silicon solar cell including a p-type layer to which at least one of carbon and nitrogen is added, the amount of carbon and/or nitrogen added to the region of the p-type layer in contact with an electrode is determined by i. An amorphous silicon solar cell characterized in that the conductivity of the region of the p-type layer in contact with the electrode is higher than that of the region of the p-type layer in contact with the i-type layer by making the region of the p-type layer smaller than the region in contact with the type layer. 2. Amorphous silicon according to claim 1, characterized in that p-type layers with different amounts of carbon or nitrogen are laminated, or the amount of carbon and/or nitrogen is continuously changed. solar cells.
JP58036751A 1983-03-08 1983-03-08 Amorphous silicon solar cell Granted JPS59163875A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58036751A JPS59163875A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell
GB08405687A GB2137810B (en) 1983-03-08 1984-03-05 A solar cell of amorphous silicon
DE3408317A DE3408317C2 (en) 1983-03-08 1984-03-07 Amorphous silicon solar cell
FR848403598A FR2542503B1 (en) 1983-03-08 1984-03-08 AMORPHOUS SILICON SOLAR CELL
US06/587,702 US4612559A (en) 1983-03-08 1984-03-08 Solar cell of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036751A JPS59163875A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPS59163875A JPS59163875A (en) 1984-09-14
JPH0463550B2 true JPH0463550B2 (en) 1992-10-12

Family

ID=12478432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036751A Granted JPS59163875A (en) 1983-03-08 1983-03-08 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS59163875A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190476A (en) * 1984-10-09 1986-05-08 Sanyo Electric Co Ltd Photovoltaic device
JPS62106670A (en) * 1985-11-05 1987-05-18 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62232173A (en) * 1986-04-01 1987-10-12 Toa Nenryo Kogyo Kk Amorphous silicon solar cell
JPS63289970A (en) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd Solar battery power source
JPS6432683A (en) * 1987-07-28 1989-02-02 Japan Engine Valve Mfg Semiconductor element
JP2609873B2 (en) * 1987-10-19 1997-05-14 三洋電機株式会社 Photovoltaic device
JPH04211179A (en) * 1991-03-27 1992-08-03 Kanegafuchi Chem Ind Co Ltd Switching element
JP2012500483A (en) * 2008-08-19 2012-01-05 エーリコン・ソーラー・アーゲー・トリューバッハ Photocell and method for producing photovoltaic cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192387A (en) * 1982-04-27 1983-11-09 ア−ルシ−エ− コ−ポレ−シヨン Photocell

Also Published As

Publication number Publication date
JPS59163875A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
EP1724840B1 (en) Photoelectric cell
JP3490964B2 (en) Photovoltaic device
KR101219926B1 (en) Heterocontact solar cell with inverted geometry of its layer structure
US4591892A (en) Semiconductor photoelectric conversion device
JP2814351B2 (en) Photoelectric device
US20080236661A1 (en) Solar cell
JPWO2006057160A1 (en) Thin film photoelectric converter
JPWO2005011002A1 (en) Silicon-based thin film solar cell
US20100051095A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers With Wide Bandgap Dopant Layers and an Up-Converter
US4612559A (en) Solar cell of amorphous silicon
JPS58139478A (en) Amorphous solar battery
JPH0463550B2 (en)
JP2001217437A (en) Enhancement of short-circuit current by use of wide band gap n layer in pin amorphous silicon photocell
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JP3368854B2 (en) Solar cell
JPS6225275B2 (en)
JP2669834B2 (en) Stacked photovoltaic device
JP2936269B2 (en) Amorphous solar cell
JPS59163876A (en) Amorphous silicon solar cell
JPS61203665A (en) Production of amorphous silicon-type photo-diode
JP4283849B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPH11163376A (en) Thin-film solar cell
JP2004153028A (en) Thin-film photoelectric converting device
JPH0586677B2 (en)
JP4358493B2 (en) Solar cell