JPH0644638B2 - Stacked photovoltaic device with different unit cells - Google Patents

Stacked photovoltaic device with different unit cells

Info

Publication number
JPH0644638B2
JPH0644638B2 JP57234197A JP23419782A JPH0644638B2 JP H0644638 B2 JPH0644638 B2 JP H0644638B2 JP 57234197 A JP57234197 A JP 57234197A JP 23419782 A JP23419782 A JP 23419782A JP H0644638 B2 JPH0644638 B2 JP H0644638B2
Authority
JP
Japan
Prior art keywords
semiconductor
amorphous
crystalline
unit cell
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57234197A
Other languages
Japanese (ja)
Other versions
JPS59124772A (en
Inventor
圭弘 濱川
博明 岡本
浩司 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP57234197A priority Critical patent/JPH0644638B2/en
Priority to US06/528,988 priority patent/US4496788A/en
Priority to EP83112159A priority patent/EP0113434B2/en
Priority to DE8383112159T priority patent/DE3379565D1/en
Publication of JPS59124772A publication Critical patent/JPS59124772A/en
Publication of JPH0644638B2 publication Critical patent/JPH0644638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、結晶系半導体とアモルファス半導体とを組合
せた太陽電池、検出素子等に使用するスタック形光起電
力素子の改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to an improvement of a stack type photovoltaic device used for a solar cell, a detection device, etc., which is a combination of a crystalline semiconductor and an amorphous semiconductor.

従来技術 従来、半導体材料を使用した太陽電池を中心とした光起
電力素子には、Si,GaAs,CdS,CdTe等の
P型およびN型の単結晶または多結晶の結晶系半導体の
みを利用した結晶系光起電力素子のほかに、N型,I
型,P型の各アモルファス半導体のシリコン層を堆積し
たアモルファス系光起電力素子が市販されている。前者
の素子は光電変換効率が大きいが、その製法が高温プロ
セスを含むために、コストが高いという問題があった。
そこで、コストの低下を図るために、アモルファスシリ
コンと結晶シリコンとから成るヘテロ接合を有する単一
の光起電力素子が開発されている。しかし、この素子は
低コスト化が実現できるものの、変換効率の点では、従
来の結晶系素子と同程度であり、未だ充分な値を示すま
で至っていない。
2. Description of the Related Art Conventionally, in a photovoltaic element centered on a solar cell using a semiconductor material, only P-type and N-type single crystal or polycrystal crystalline semiconductors such as Si, GaAs, CdS, and CdTe are used. In addition to crystalline photovoltaic elements, N type, I
Type and P type amorphous semiconductors having a silicon layer of amorphous semiconductor deposited thereon are commercially available. The former element has a high photoelectric conversion efficiency, but its manufacturing method involves a high temperature process, so that there is a problem that the cost is high.
Therefore, in order to reduce the cost, a single photovoltaic element having a heterojunction made of amorphous silicon and crystalline silicon has been developed. However, although this device can realize cost reduction, in terms of conversion efficiency, it is at the same level as the conventional crystal-based device, and has not yet reached a sufficient value.

一方、後者の素子はプラズマCVD法という低温プロセ
スで作成でき、単結晶シリコンの300μmに比べて僅
か0.5μmの厚さまで薄膜化できるために、安価に製
造できるという利点がある反面、第1図に示すごとく、
入射光の各波長に対するアモルファスシリコン太陽電池
のキャリア収集効率曲線a−Siが囲む面積は、単結晶
シリコン太陽電池のキャリア収集効率曲線c−Siが囲
む面積のほぼ半分程度であるので、アモルファスシリコ
ン太陽電池の変換効率は、単結晶シリコン太陽電池のそ
れよりも低い欠点がある。すなわち、第1図は横軸に波
長λ[μm]、縦軸にキャリア収集効率η[%]が示さ
れており、単結晶シリコン太陽電池のキャリア収集効率
曲線c−Siが比較的波長の光まで広がっているのに対
して、アモルファスシリコン太陽電池のキャリア収集効
率曲線a−Siは、比較的短波長の光に偏っている。し
たがって、実用化しているアモルファスシリコン太陽電
池は、結晶系半導体太陽電池と同程度に、入射光を有効
に利用することができないために、その変換効率は8〜
9%の低い値になっている。
On the other hand, the latter element can be manufactured by a low-temperature process called plasma CVD method and can be thinned to a thickness of only 0.5 μm as compared with 300 μm of single crystal silicon, so that there is an advantage that it can be manufactured at low cost. As shown in
The area surrounded by the carrier collection efficiency curve a-Si of the amorphous silicon solar cell for each wavelength of the incident light is about half of the area surrounded by the carrier collection efficiency curve c-Si of the single crystal silicon solar cell. The conversion efficiency of the cell is lower than that of the single crystal silicon solar cell. That is, FIG. 1 shows the wavelength λ [μm] on the horizontal axis and the carrier collection efficiency η [%] on the vertical axis, and the carrier collection efficiency curve c-Si of the single crystal silicon solar cell is a light having a relatively long wavelength. However, the carrier collection efficiency curve a-Si of the amorphous silicon solar cell is biased toward light having a relatively short wavelength. Therefore, since the practically used amorphous silicon solar cell cannot effectively utilize the incident light as much as the crystalline semiconductor solar cell, its conversion efficiency is 8 to
It is as low as 9%.

そこで、最近、広いスペクトルを持つ太陽光に対して、
ある範囲の波長幅ごとにキャリア収集効率の最大値をも
たせて波長分割した単位セルを積層した多層単位セル構
造のa−Si太陽電池についても研究されている。アモ
ルファス半導体は、製造時における供給ガスの種類また
はその混合比を加えることによって、各波長に対するキ
ャリア収集効率を左右する光学的禁止帯幅を変化させる
ことができる。短波長用のアモルファス半導体として
は、水素化アモルファス炭化シリコンa−SiC:H、
水素化アモルファス窒化シリコンa−SiN:H、長波
長用としては、水素化アモルファスシリコンゲルマニウ
ムa−SiGe:H、水素化アモルファスシリコンすず
a−SiSn:H等が使用されている。しかし、これら
の多層単位セル構造のアモルファス太陽電池であって
も、前述したように、アモルファス半導体が、本質的
に、結晶系半導体に比べて長波長用の光を、充分に吸収
することができない欠点を充分に補うことができないと
いう問題がある。
Therefore, recently, for sunlight with a wide spectrum,
Research has also been conducted on a-Si solar cells having a multilayer unit cell structure in which unit cells wavelength-divided with a maximum value of carrier collection efficiency for each wavelength range within a certain range are stacked. In the amorphous semiconductor, the optical bandgap that influences the carrier collection efficiency for each wavelength can be changed by adding the kind of the supply gas or the mixing ratio thereof at the time of manufacturing. As the amorphous semiconductor for short wavelength, hydrogenated amorphous silicon carbide a-SiC: H,
Hydrogenated amorphous silicon nitride a-SiN: H, for long wavelength, hydrogenated amorphous silicon germanium a-SiGe: H, hydrogenated amorphous silicon tin a-SiSn: H, etc. are used. However, even in these amorphous solar cells having a multi-layer unit cell structure, as described above, the amorphous semiconductor is essentially unable to sufficiently absorb light for long wavelengths as compared with the crystalline semiconductor. There is a problem that the drawback cannot be sufficiently compensated.

この問題を解決するために、アモルファス半導体と結晶
系半導体との組合せにより、光の有効利用をさらに進め
る技術開発が行われている。ところが、前述した結晶系
光起電力素子の単位セルとアモルファス光起電力素子の
単位セルとを単に積層しただけでは、両単位素子の起電
力が両単位素子の界面部に形成されるPN接合の内部電
位によって相殺され、有効なスタック形起電力素子とし
て動作しないために、両単位素子の界面部で何らかの方
法により、各単位素子で発生した光電流となる多数キャ
リア同士を再結合させ、キャリア交換させることによ
り、両単位素子界面のPN内部起電力効果をキャンセル
する必要がある。例えば、このキャリア交換再結合の機
能を果させる目的で、わざわざ透明導電膜と呼ばれてい
るインジウム・すず(ITO)などの酸化物を使用して
いる例がある。この場合、酸化物の透明導電膜上にアモ
ルファスシリコンの光起電力素子を作成することにな
り、このとき透明導電膜の成分が拡散して、この素子を
劣化させ、結果として素子の変換効率を低下させる原因
となっていた。また、素子作成の途中で、透明導電膜を
形成するために、次のアモルファス半導体を形成する手
段とは別の手段、すなわち電子ビーム蒸着法またはスプ
レイ法などを必要とするために、設備費およびランニン
グコストの点で不利である。そこで、透明導電膜を用い
ることなく、良好なキャリア交換再結合機能を有する光
起電力素子が望まれている。
In order to solve this problem, technical development is being carried out to further promote effective use of light by combining an amorphous semiconductor and a crystalline semiconductor. However, if the unit cell of the crystalline photovoltaic element and the unit cell of the amorphous photovoltaic element described above are simply stacked, the electromotive force of both unit elements will cause a PN junction formed at the interface between both unit elements. Since they are canceled by the internal potential and do not operate as an effective stack type electromotive force element, the majority of carriers that become the photocurrent generated in each unit element are recombined by some method at the interface between both unit elements and carrier exchange is performed. By doing so, it is necessary to cancel the PN internal electromotive force effect at the interface between both unit elements. For example, there is an example in which an oxide such as indium tin (ITO), which is called a transparent conductive film, is purposely used for the purpose of fulfilling the function of carrier exchange recombination. In this case, an amorphous silicon photovoltaic element is formed on the oxide transparent conductive film, and the components of the transparent conductive film are diffused at this time to deteriorate the element, resulting in a conversion efficiency of the element. It was the cause of the decrease. In addition, in order to form a transparent conductive film in the process of forming an element, a means different from the means for forming the next amorphous semiconductor, that is, an electron beam vapor deposition method or a spray method, is required. It is disadvantageous in terms of running cost. Therefore, a photovoltaic device having a good carrier exchange / recombination function without using a transparent conductive film is desired.

発明の目的 本発明は、単結晶または多結晶の結晶系半導体とヘテロ
接合されたアモルファス半導体の結晶系単位セルに、ア
モルファス半導体より成るアモルファス単位セルを積層
し、この2つの単位セル界面に形成されるアモルファス
半導体のPN接合を利用してキャリア交換再結合機能を
果させることによって、アモルファス半導体の単位セル
が入射光のうちの短波長側の光を吸収し、さらに結晶系
単位セルが、アモルファス半導体の単位セルでは吸収す
ることができない長波長側の光を吸収し、単一の光起電
力素子によって広範囲の光を有効に利用することによ
り、結晶系半導体とアモルファス半導体とがヘテロ接合
された太陽電池及びアモルファス半導体単独のスタック
形太陽電池、また透明導電膜を利用した結晶系単位セル
・アモルファス単位セルのスタック形素子に比べて、よ
り高効率で安価なスタック形光起電力素子を提供するこ
とにある。
An object of the present invention is to form an amorphous unit cell made of an amorphous semiconductor on a crystalline unit cell of an amorphous semiconductor heterojunction with a single crystal or polycrystal crystalline semiconductor, and to form an amorphous unit cell at the interface between these two unit cells. By performing the carrier exchange recombination function by utilizing the PN junction of the amorphous semiconductor, the unit cell of the amorphous semiconductor absorbs the light on the short wavelength side of the incident light, and the crystalline unit cell is changed to the amorphous semiconductor. A solar cell in which a crystalline semiconductor and an amorphous semiconductor are heterojunctioned by absorbing light on the long wavelength side, which cannot be absorbed by the unit cell, and effectively utilizing a wide range of light with a single photovoltaic element. Stacked solar cells consisting of batteries and amorphous semiconductors alone, and crystalline unit cells using a transparent conductive film Another object of the present invention is to provide a stack type photovoltaic device that is more efficient and less expensive than a stack type device of a fass unit cell.

実施例 以下、本発明の実施例を詳細に説明する。第2図(A)
は本発明の第1の実施例の構成図であって、1はアルミ
ニウム電極、11pはP型多結晶シリコンの基板(P−
Poly・Si)、20nはN型アモルファスシリコン
(N−aSi)またはN型微結晶シリコン(N−μC・
Si)であって、P型多結晶半導体11pとアモルファ
スまたは微結晶半導体20nとがヘテロ接合HJされ、
結晶系単位セル11を形成している。21pはP型アモ
ルファスシリコン(P−aSi)、21iはI型アモル
ファスシリコン(I−aSi)、21nはN型アモルフ
ァスシリコン(N−aSi)またはN型微結晶シリコン
(N−μC・Si)であって、21p、21iおよび2
1nは、P−I−N接合されたアモルファス単位セル2
1を構成している。さらに、N型半導体21n上に電極
としての透明導電膜10が形成されている。前述した荷
電制御された微結晶半導体は、光学的にはアモルファス
半導体と同様の特性を有し、かつ電気的には結晶系半導
体と同様の特性を有している。この第2図(A)の実施
例は、結晶系半導体とアモルファス半導体とがヘテロ接
合されて単位セルを形成し、さらにアモルファス半導体
の単位セルがオーミック接合された場合である。これら
のアモルファス半導体20n,21p,21i,21n
および透明導電膜10の厚みはそれぞれ3000Å,500
Å,5000Å,100Åおよび700Åである。第2図(B)
は、第2図(A)の光起電力素子のエネルギーバンド図
である。同図において、Egclは多結晶シリコン半導
体11pの禁止帯幅で約1.1[eV]であり、またE
galはアモルファスシリコン半導体の禁止帯幅で約
1.7ないし1.8[eV]であって、Egal>Eg
clとなっている。なお、同図において、Ecは伝導帯
下限の準位、Efはフェルミー準位、Evは価電子帯上
限の準位を示す。
Examples Hereinafter, examples of the present invention will be described in detail. Figure 2 (A)
1 is a configuration diagram of a first embodiment of the present invention, in which 1 is an aluminum electrode, 11p is a P-type polycrystalline silicon substrate (P-
Poly ・ Si), 20n is N-type amorphous silicon (N-aSi) or N-type microcrystalline silicon (N-μC ・
Si), the P-type polycrystalline semiconductor 11p and the amorphous or microcrystalline semiconductor 20n are heterojunction HJ,
The crystal unit cell 11 is formed. 21p is P-type amorphous silicon (P-aSi), 21i is I-type amorphous silicon (I-aSi), 21n is N-type amorphous silicon (N-aSi) or N-type microcrystalline silicon (N-μC · Si). 21p, 21i and 2
1n is an amorphous unit cell 2 having a P-I-N junction
Make up one. Further, the transparent conductive film 10 as an electrode is formed on the N-type semiconductor 21n. The charge-controlled microcrystalline semiconductor described above has optically the same characteristics as an amorphous semiconductor, and electrically has the same characteristics as a crystalline semiconductor. The embodiment of FIG. 2 (A) is a case where a crystalline semiconductor and an amorphous semiconductor are heterojunctionally formed to form a unit cell, and the unit cell of the amorphous semiconductor is ohmic-junctioned. These amorphous semiconductors 20n, 21p, 21i, 21n
And the thickness of the transparent conductive film 10 is 3000Å, 500 respectively
Å, 5000 Å, 100 Å and 700 Å. Fig. 2 (B)
FIG. 3 is an energy band diagram of the photovoltaic element of FIG. 2 (A). In the figure, Egcl is about 1.1 [eV] in the forbidden band width of the polycrystalline silicon semiconductor 11p, and Egcl
gal is a band gap of an amorphous silicon semiconductor, which is about 1.7 to 1.8 [eV], and Egal> Eg.
It is cl. In the figure, Ec represents the lower limit of the conduction band, Ef represents the Fermi level, and Ev represents the upper limit of the valence band.

第3図は、横軸に入射光の波長λ[μm]、縦軸にキャ
リア収集効率η[rel・u]を目盛り、入射光の波長
λの変化に対する太陽電池のキャリア収集効率を示す。
同図において、一点鎖線Sun−Sは、太陽光線のスペ
クトル曲線を示す。また、禁止帯幅が大きいアモルファ
ス単位セルに入射する光の各波長λ[μm]に対するキ
ャリア収集効率η[rel・u]は、同図の実線a−S
iに示すとおりとなる。
FIG. 3 shows the carrier collection efficiency of the solar cell with respect to changes in the wavelength λ of the incident light, with the horizontal axis representing the wavelength λ [μm] of the incident light and the vertical axis representing the carrier collection efficiency η [rel · u].
In the figure, the alternate long and short dash line Sun-S indicates the spectrum curve of sunlight. Further, the carrier collection efficiency η [rel · u] for each wavelength λ [μm] of the light incident on the amorphous unit cell having a large forbidden band is shown by the solid line a-S in FIG.
It becomes as shown in i.

つぎに禁止帯幅が小さい多結晶半導体11pは、アモル
ファス半導体を透過してきた長波長側の光を吸収し、多
結晶半導体のキャリア収集効率は、同図点線Poly−
Siに示すとおりとなる。その結果、結晶系半導体とア
モルファス半導体とがヘテロ接合された結晶系単位セル
に、アモルファス半導体よりなる単位セルをオーミック
接合した単一の光起電力素子によって、短波長から長波
長までの広範囲の光を有効に利用することができる。
Next, the polycrystalline semiconductor 11p having a small bandgap absorbs light on the long wavelength side that has passed through the amorphous semiconductor, and the carrier collection efficiency of the polycrystalline semiconductor is shown by the dotted line Poly-
As shown in Si. As a result, a single photovoltaic element in which a unit cell made of an amorphous semiconductor is ohmic-bonded to a crystalline unit cell in which a crystalline semiconductor and an amorphous semiconductor are hetero-junctioned, and a wide range of light from a short wavelength to a long wavelength is generated. Can be used effectively.

ところで、各々の単位セルで吸収した光を有効に電気に
変換し、外部に取出すためには、2つの単位セルの界面
で、各単位セルで発生した多数キャリア同士を再結合さ
せ、内部起電力効果をキャンセルする必要がある。
By the way, in order to effectively convert the light absorbed in each unit cell into electricity and extract it to the outside, the majority carriers generated in each unit cell are recombined at the interface between the two unit cells, and the internal electromotive force is generated. You need to cancel the effect.

本発明の実施例においては、光照射により結晶系とアモ
ルファス半導体とから成る結晶系単位セルで生成した電
子とアモルファス半導体から成るアモルファス単位セル
で生成した正孔とが、両単位セル界面部近傍の禁止帯中
の局在準位を介して再結合することにより、再結合電流
が流れて良好なキャリア交換再結合機能を得ている。す
なわち、アモルファス半導体の禁止帯中の局在準位が多
いという一般的には欠点と言える性質を逆に生かして、
両単位セル界面に形成されるアモルファス半導体のPN
接合によって、全く異質の結晶系セルとアモルファスセ
ルとの間に、特別な層を入れることなく、キャリア交換
再結合機能を容易に得ていることに特徴がある。
In the embodiment of the present invention, electrons generated in a crystal unit cell composed of a crystal system and an amorphous semiconductor by light irradiation and holes generated in an amorphous unit cell composed of an amorphous semiconductor are generated in the vicinity of the interface between both unit cells. By recombining via the localized level in the forbidden band, a recombination current flows and a good carrier exchange recombination function is obtained. That is, by taking advantage of the generally disadvantageous property that the number of localized levels in the band gap of an amorphous semiconductor is large,
Amorphous semiconductor PN formed at the interface between both unit cells
It is characterized in that the carrier exchange and recombination function can be easily obtained by joining without inserting a special layer between the completely different crystal system cell and the amorphous cell.

第4図は、第2図(A)の光起電力素子のI−V特性の
実測値を示す線図である。同図において、横軸は、第2
図(A)の光起電力素子の出力電圧Vout[V]を示
し、縦軸は光起電力素子の出力電流Iout[mA/cm
2]を示しており、この場合の開放電圧は約1.3
[V]である。同図のI−V特性から求めた第2図
(A)の光起電力素子の変換効率は、発表されているア
モルファス太陽電池の8〜9%を大きく上回る11〜1
2%が得られた。
FIG. 4 is a diagram showing the measured values of the IV characteristics of the photovoltaic element of FIG. 2 (A). In the figure, the horizontal axis is the second
The output voltage Vout [V] of the photovoltaic element of FIG. 6A is shown, and the vertical axis represents the output current Iout [mA / cm of the photovoltaic element.
2 ] and the open circuit voltage in this case is about 1.3.
[V]. The conversion efficiency of the photovoltaic element of FIG. 2 (A) obtained from the IV characteristics of the same figure is significantly higher than the announced amorphous solar cell of 8 to 9%.
2% was obtained.

第5図(A)は、光起電力素子内での入射光の吸収を大
にするために、結晶系半導体の基板または無機質固体の
薄板もしくは有機質固体のフイルムの基板の表面に無数
の微小四面体よりなる凹凸を形成した模型図である。同
図(B)は、同図(A)に示す凹凸を設けることによ
り、入射光と表面のピラミッド面との光学的多重反射屈
折によって光の吸収を大にし、本発明の結晶系半導体と
アモルファス半導体とのヘテロ接合から成る結晶系単位
セルとアモルファス半導体から成るアモルファス単位セ
ルとを接合した構成とあわせて光起電力素子の変換効率
を向上させることができる。同図(B)において、10
は透明導電膜、21はアモルファス半導体、11は結晶
系半導体で入射光は透明導電膜10とアモルファス半導
体21との界面、アモルファス半導体21と結晶系半導
体11との界面で、実線で示すように、次々と多重反射
し、光のとじ込め効果により光の吸収を大きくすること
ができる。
FIG. 5 (A) shows innumerable minute tetrahedral surfaces on the surface of a crystalline semiconductor substrate or an inorganic solid thin plate or an organic solid film substrate in order to increase the absorption of incident light in the photovoltaic element. It is a model figure which formed the unevenness | corrugation which consists of a body. In the figure (B), by providing the unevenness shown in the figure (A), the absorption of light is increased by the optical multiple reflection refraction between the incident light and the pyramid surface of the surface, and the crystalline semiconductor of the present invention and the amorphous semiconductor are formed. The conversion efficiency of the photovoltaic element can be improved by combining the structure in which the crystalline unit cell made of a heterojunction with a semiconductor and the amorphous unit cell made of an amorphous semiconductor are joined. In FIG.
Is a transparent conductive film, 21 is an amorphous semiconductor, 11 is a crystalline semiconductor, and incident light is an interface between the transparent conductive film 10 and the amorphous semiconductor 21 and an interface between the amorphous semiconductor 21 and the crystalline semiconductor 11, as indicated by a solid line, Multiple reflections occur one after another, and light absorption can be increased due to the light confinement effect.

発明の効果 以上のように、本発明の光起電力素子によれば、アモル
ファス半導体の単位セルによって、入射光のうちの短波
長側の光を吸収させ、さらにこれらのアモルファス半導
体では吸収することができずに透過してきた長波長側の
光を、結晶系半導体とアモルファス半導体とから成る結
晶系単位セルによって吸収させることにより、単一の光
起電力素子によって、短波長から長波長までの広範囲の
光を吸収して、結晶系半導体とアモルファス半導体とが
ヘテロ接合された単一の太陽電池またはアモルファス半
導体単独のスタック形太陽電池よりも変換効率が高く、
またキャリア交換再結合機能を果させる目的のために、
わざわざ透明導電膜を使用する必要がないので、結晶系
およびアモルファスセルの性能が良くなり、より高効率
で安価に製作することができる。
EFFECTS OF THE INVENTION As described above, according to the photovoltaic element of the present invention, the amorphous semiconductor unit cell can absorb the light on the short wavelength side of the incident light, and further can absorb the light in these amorphous semiconductors. Long-wavelength side light that could not be transmitted is absorbed by the crystal unit cell consisting of a crystal semiconductor and an amorphous semiconductor, so that a single photovoltaic element can cover a wide range from short wavelength to long wavelength. It absorbs light and has a higher conversion efficiency than a single solar cell in which a crystalline semiconductor and an amorphous semiconductor are heterojunctioned or a stacked solar cell in which an amorphous semiconductor is alone.
For the purpose of fulfilling the function of carrier exchange and recombination,
Since it is not necessary to purposely use a transparent conductive film, the performance of the crystal system and the amorphous cell is improved, and it is possible to manufacture at a higher efficiency and at a lower cost.

さらに、このように、本発明の光起電力素子は、分光感
度特性の異なる材料を積層しているので、特定の波長の
光も検出する光検出素子としても用いることができる。
Further, as described above, since the photovoltaic device of the present invention is formed by laminating materials having different spectral sensitivity characteristics, it can be used as a photo-detecting device that also detects light of a specific wavelength.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の結晶系太陽電池(c−Si)およびアモ
ルファス太陽電池(a−Si)の入射光の波長λ[μ
m](横軸)とキャリア収集効率η[%](縦軸)との
関係を示す線図、第2図(A)および(B)はそれぞれ
本発明の光起電力素子の第1の実施例の構成図およびエ
ネルギーバンド図、第3図は第2図(A)の実施例の構
成において、アモルファス半導体(実線の曲線a−S
i)および多結晶半導体(点線の曲線Poly−Si)
への入射光λ[μm](横軸)とキャリア収集効率η
[rel・u](縦軸)との関係を示す線図、第4図は
第2図(A)の実施例の光起電力素子のI−V特性(横
軸に光起電力素子の出力電圧Vout[V]、縦軸に光
起電力素子の出力電流Iout[mA/cm2])を示す
線図、第5図(A)および(B)はそれぞれ本発明の光
起電力素子の基板に、入射光の吸収を大にする織目模様
を形成した模型図および動作説明図である。 1……電極(オーミック電極または導電性基板)、2…
…無機質固体の薄板の基板または有機質固体のフイルム
基板、11……結晶系単位セル、11p……結晶系半導
体、21……アモルファス単位セル、20n、21p、
21i、21n……アモルファス半導体、Egcl……
結晶系半導体の禁止帯幅、Egal……アモルファス半
導体の禁止帯幅、HJ……結晶系半導体とアモルファス
半導体とのヘテロ接合部分。
FIG. 1 shows the wavelength λ [μ of incident light of a conventional crystalline solar cell (c-Si) and an amorphous solar cell (a-Si).
m] (horizontal axis) and carrier collection efficiency η [%] (vertical axis), and FIGS. 2 (A) and 2 (B) are respectively the first embodiment of the photovoltaic device of the present invention. The configuration diagram and energy band diagram of the example, FIG. 3 shows the configuration of the embodiment of FIG. 2 (A), and the amorphous semiconductor (solid line curve aS
i) and polycrystalline semiconductors (dotted curve Poly-Si)
Incident light λ [μm] (horizontal axis) and carrier collection efficiency η
FIG. 4 is a diagram showing a relationship with [rel · u] (vertical axis), and FIG. 4 is an IV characteristic of the photovoltaic element of the embodiment of FIG. 2 (A) (output of the photovoltaic element on the horizontal axis). Voltage Vout [V], a diagram showing the output current Iout [mA / cm 2 ] of the photovoltaic element on the vertical axis, and FIGS. 5A and 5B are the substrate of the photovoltaic element of the present invention. FIG. 9 is a model diagram and an operation explanatory diagram in which a texture pattern that greatly absorbs incident light is formed. 1 ... Electrode (ohmic electrode or conductive substrate), 2 ...
... inorganic solid thin plate substrate or organic solid film substrate, 11 ... Crystalline unit cell, 11p ... Crystalline semiconductor, 21 ... Amorphous unit cell, 20n, 21p,
21i, 21n ... Amorphous semiconductor, Egcl ...
Forbidden band width of crystalline semiconductor, Egal ... Forbidden band width of amorphous semiconductor, HJ ... Heterojunction between crystalline semiconductor and amorphous semiconductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 博明 兵庫県川西市平野字上新在家779番地1 (72)発明者 奥田 浩司 大阪府大阪市淀川区田川2丁目1番11号 大阪変圧器株式会社内 (56)参考文献 特開 昭57−79674(JP,A) 特開 昭56−33888(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Okamoto 779, Kamishinji, Hirano, Kawanishi-shi, Hyogo 1 (72) Inventor Koji Okuda 2-11, Tagawa, Yodogawa-ku, Osaka-shi, Osaka Osaka Transformer Co., Ltd. (56) Reference JP-A-57-79674 (JP, A) JP-A-56-33888 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】単結晶または多結晶の結晶系半導体上にア
モルファス半導体を形成することによりPNへテロ接合
された結晶系単位セルと、前記結晶系単位セルのアモル
ファス半導体上にPIN接合されたアモルファス半導体
から成るアモルファス単位セルとを積層して一体構造と
したセルであり、かつ、前記結晶系単位セルのアモルフ
ァス半導体の膜を、3000Åの厚さにする異質単位セ
ル同士のスタック形光起電力素子。
1. A crystal unit cell that is PN-heterojunction by forming an amorphous semiconductor on a single crystal or polycrystal crystal semiconductor, and a PIN junction amorphous on the amorphous semiconductor of the crystal unit cell. A stack type photovoltaic device in which heterogeneous unit cells are formed by laminating amorphous unit cells made of a semiconductor into an integrated structure, and in which the amorphous semiconductor film of the crystalline unit cell has a thickness of 3000 Å .
【請求項2】前記アモルファス半導体の一つ以上が荷電
制御された微結晶半導体である特許請求の範囲第1項に
記載の異質単位セル同士のスタック形光起電力素子。
2. The stacked photovoltaic element according to claim 1, wherein at least one of the amorphous semiconductors is a charge-controlled microcrystalline semiconductor.
【請求項3】前記結晶系半導体を基板とし、その基板上
にアモルファス半導体を堆積した特許請求の範囲第1項
に記載の異質単位セル同士のスタック形光起電力素子。
3. The stacked photovoltaic element according to claim 1, wherein the crystalline semiconductor is used as a substrate, and an amorphous semiconductor is deposited on the substrate.
【請求項4】前記結晶系半導体を、無機質固体の薄板ま
たは有機質固体のフイルムの基板上に堆積させた特許請
求の範囲第1項に記載の異質単位セル同士のスタック形
光起電力素子。
4. The stacked photovoltaic element according to claim 1, wherein the crystalline semiconductor is deposited on a thin plate of an inorganic solid or a substrate of a film of an organic solid.
【請求項5】前記結晶系半導体の基板に、入射光の吸収
を大にする織目模様を形成した特許請求の範囲第3項に
記載の異質単位セル同士のスタック形光起電力素子。
5. The stacked photovoltaic element according to claim 3, wherein the crystalline semiconductor substrate is formed with a texture pattern for increasing absorption of incident light.
【請求項6】前記無機質固体の薄板または有機質固体の
フイルムよりなる基板に、入射光の吸収を大にする織目
模様を形成した特許請求の範囲第4項記載の異質単位セ
ル同士のスタック形光起電力素子。
6. A stack type of different unit cells according to claim 4, wherein a texture pattern for increasing absorption of incident light is formed on the substrate made of a thin plate of inorganic solid or a film of organic solid. Photovoltaic device.
JP57234197A 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells Expired - Lifetime JPH0644638B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57234197A JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells
US06/528,988 US4496788A (en) 1982-12-29 1983-09-02 Photovoltaic device
EP83112159A EP0113434B2 (en) 1982-12-29 1983-12-02 Photovoltaic device
DE8383112159T DE3379565D1 (en) 1982-12-29 1983-12-02 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234197A JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells

Publications (2)

Publication Number Publication Date
JPS59124772A JPS59124772A (en) 1984-07-18
JPH0644638B2 true JPH0644638B2 (en) 1994-06-08

Family

ID=16967201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234197A Expired - Lifetime JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells

Country Status (1)

Country Link
JP (1) JPH0644638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075850A2 (en) 2007-12-28 2009-07-01 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and manufacturing method thereof
US7985604B2 (en) 2007-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289173A (en) * 1988-05-16 1989-11-21 Sharp Corp Solar cell
JPH0793452B2 (en) * 1991-06-25 1995-10-09 株式会社日立製作所 Method for manufacturing tandem hetero photoelectric conversion element
JPH10117006A (en) * 1996-08-23 1998-05-06 Kanegafuchi Chem Ind Co Ltd Thin-film photoelectric conversion device
JP2001217440A (en) * 2000-02-04 2001-08-10 Kanegafuchi Chem Ind Co Ltd Hybrid thin film photoelectric conversion device and translucent laminate used for the same
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
JP4811945B2 (en) * 2004-11-29 2011-11-09 株式会社カネカ Thin film photoelectric converter
TWI452703B (en) 2007-11-16 2014-09-11 Semiconductor Energy Lab Photoelectric conversion device and manufacturing method thereof
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8338218B2 (en) 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
EP3442037B1 (en) 2016-04-07 2021-02-24 Kaneka Corporation Method for manufacturing multijunction photoelectric conversion device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342044A (en) * 1978-03-08 1982-07-27 Energy Conversion Devices, Inc. Method for optimizing photoresponsive amorphous alloys and devices
JPS55152071U (en) * 1979-04-18 1980-11-01
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713777A (en) * 1980-06-30 1982-01-23 Shunpei Yamazaki Semiconductor device and manufacture thereof
US4292461A (en) * 1980-06-20 1981-09-29 International Business Machines Corporation Amorphous-crystalline tandem solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985604B2 (en) 2007-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
EP2075850A2 (en) 2007-12-28 2009-07-01 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59124772A (en) 1984-07-18

Similar Documents

Publication Publication Date Title
EP0113434B1 (en) Photovoltaic device
JP6975368B1 (en) Solar cells and solar cell modules
US6784361B2 (en) Amorphous silicon photovoltaic devices
TWI332714B (en) Cascade solar cell with amorphous silicon-based solar cell
US4292461A (en) Amorphous-crystalline tandem solar cell
US6162987A (en) Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance
KR20120070312A (en) Thin film solar cell
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JPS58139478A (en) Amorphous solar battery
JP2001053329A (en) Pin-type photoelectric conversion element
KR101411996B1 (en) High efficiency solar cells
EP4365962A1 (en) Laminated solar cell and photovoltaic assembly
KR101584376B1 (en) Silicon thin film solar cell
JPS6377167A (en) Laminated photovoltaic device
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
KR101562191B1 (en) High efficiency solar cells
CN117321776A (en) Multi-junction solar cell
US20120180855A1 (en) Photovoltaic devices and methods of forming the same
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JP2737705B2 (en) Solar cell
JP2713799B2 (en) Thin film solar cell
JP2673021B2 (en) Solar cell
JPS629747Y2 (en)
JP2647892B2 (en) Optical super power device
JPS6115598B2 (en)