JPH0793452B2 - Method for manufacturing tandem hetero photoelectric conversion element - Google Patents

Method for manufacturing tandem hetero photoelectric conversion element

Info

Publication number
JPH0793452B2
JPH0793452B2 JP3152959A JP15295991A JPH0793452B2 JP H0793452 B2 JPH0793452 B2 JP H0793452B2 JP 3152959 A JP3152959 A JP 3152959A JP 15295991 A JP15295991 A JP 15295991A JP H0793452 B2 JPH0793452 B2 JP H0793452B2
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
conversion element
groove
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3152959A
Other languages
Japanese (ja)
Other versions
JPH053332A (en
Inventor
和浩 望月
強志 上松
照夫 物集
陽子 内田
光紀 蕨迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3152959A priority Critical patent/JPH0793452B2/en
Publication of JPH053332A publication Critical patent/JPH053332A/en
Publication of JPH0793452B2 publication Critical patent/JPH0793452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電変換素子およびその
製造方法に係り、特にSiを用いた光電変換素子と、II
I−V族化合物半導体を用いた光電変換素子とを、エピ
タキシャル成長により直列接続して得られるタンデムヘ
テロ光電変換素子およびその製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element and its manufacturing method, and more particularly, to a photoelectric conversion element using Si, II
The present invention relates to a tandem hetero photoelectric conversion element obtained by connecting a photoelectric conversion element using a group IV compound semiconductor in series by epitaxial growth and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のタンデムヘテロ光電変換素子で
は、例えばテクニカル・ダイジェスト・オブ・インター
ナショナル・PVSEC第5巻(京都、1990年)第
1028頁(Technical Digest of
the International PVSEC−
5(Kyoto, Japan, 1990)p.10
28)に記載のように、ヘテロ接合界面は原子的にほぼ
平坦な構造となっていた。そしてそれは、平坦な表面を
有するSi基板に不純物拡散を行ってpn接合を作製し
た後に、有機金属気相成長法等のエピタキシャル成長法
を用いて、平坦な表面を有するGaAsのpn接合を形
成することにより作製されていた。
2. Description of the Related Art In a conventional tandem hetero photoelectric conversion device, for example, Technical Digest of International PVSEC Volume 5 (Kyoto, 1990), page 1028 (Technical Digest of of).
the International PVSEC-
5 (Kyoto, Japan, 1990) p. 10
As described in 28), the heterojunction interface had an atomically flat structure. And it is to form a pn junction of GaAs having a flat surface by using an epitaxial growth method such as a metal organic chemical vapor deposition method after performing impurity diffusion on a Si substrate having a flat surface to form a pn junction. It was made by.

【0003】しかし、上記従来技術では、表面に反射防
止膜を形成しても入射光の表面での反射が防ぎ切れない
ために、光電変換効率が期待通りに上がらない問題があ
った。
However, the above-mentioned conventional technique has a problem that the photoelectric conversion efficiency cannot be increased as expected because the reflection of incident light on the surface cannot be prevented even if an antireflection film is formed on the surface.

【0004】そこで、一方、アプライド・フィジックス
・レターズ第48巻(1986年)第215頁から第2
17頁(Applied Physics Lette
rs48(1986)pp.215−217)に記載さ
れているように、表面にV字型の溝(以下、V溝と略記
する)を形成することにより、入射光の反射を減らし、
光電変換効率を上げる方法が用いられていた。
On the other hand, Applied Physics Letters, Vol. 48 (1986), pages 215 to 2
Page 17 (Applied Physics Lette
rs48 (1986) pp. 215-217), a V-shaped groove (hereinafter abbreviated as V groove) is formed on the surface to reduce reflection of incident light,
A method of increasing the photoelectric conversion efficiency has been used.

【0005】[0005]

【発明が解決しようとする課題】上記第2の従来技術で
は、Si基板表面は(100)ジャスト面で、V溝は
[011]または[01−1]方向に形成されていた。
このような基板上に、上記第1の従来技術を用いてタン
デムヘテロ光電光換素子を作製する場合、以下の2つの
問題が発生する。
In the second prior art described above, the surface of the Si substrate is a (100) just surface and the V groove is formed in the [011] or [01-1] direction.
When a tandem hetero photoelectric conversion device is manufactured on such a substrate by using the first conventional technique, the following two problems occur.

【0006】第一は、通常の条件でエピタキシャル成長
を行うと、成長中にV溝が平坦化してしまう問題であ
る。ここで言う通常の条件とは、III−V族化合物半導
体を分子線エピタキシャル成長あるいは有機金属気相エ
ピタキシャル成長する場合、成長温度が530℃以上
で、III族元素に対するV族元素の入射フラックス比が
1−10程度であることを指す。
The first problem is that the V-groove is flattened during growth when epitaxial growth is performed under normal conditions. The normal conditions referred to here are, when the III-V compound semiconductor is subjected to molecular beam epitaxial growth or metalorganic vapor phase epitaxial growth, the growth temperature is 530 ° C. or higher, and the incident flux ratio of the V group element to the III group element is 1- It is about 10.

【0007】第二は、III族元素どうしあるいはV族元
素どうしの結合が存在するアンチフェイズ境界が発生
し、キャリアの再結合中心となるために、キャリアの寿
命が短くなり、光電変換素子の効率が低下する問題であ
る。以下、これを図8および図9により説明する。
Secondly, an antiphase boundary in which a bond between group III elements or a group V element exists is generated and becomes a recombination center of carriers, so that the life of carriers is shortened and the efficiency of the photoelectric conversion element is shortened. Is a problem that decreases. This will be described below with reference to FIGS. 8 and 9.

【0008】一般に、Si(100)ジャスト基板表面
上には、図8に示すような1原子層高さの原子ステップ
(以下、1原子層ステップと略記する)108が存在す
る。このような基板にV溝を、長手方向が[011]に
なるように形成した場合を図8(a)、長手方向が[0
1−1]になるように形成した場合を図8(b)に示
す。この状態でGaAsを1分子層程度成長した場合の
断面構造が図7である。Si1原子層ステップ108付
近およびSi(100)面とV溝側面であるSi{11
1}面103との交線付近に、Ga−GaあるいはAs
−Asといった同種元素の結合107が発生することが
わかる。これはアンチフェイズ境界と呼ばれ、キャリア
の再結合中心となり、光電変換効率の劣化を引き起こ
す。Si基板上のGaAsの成長を続けるに従い、アン
チフェイズ境界は成長方向に伸びていくので、その発生
の抑制はGaAsの成長初期に行う必要がある。
Generally, an atomic step (hereinafter abbreviated as one atomic layer step) 108 having a height of one atomic layer as shown in FIG. 8 exists on the surface of a Si (100) just substrate. FIG. 8A shows a case where a V groove is formed on such a substrate so that the longitudinal direction is [011], and the longitudinal direction is [0].
1-1] is formed as shown in FIG. 8B. FIG. 7 shows a cross-sectional structure when GaAs is grown by about one molecular layer in this state. Si {11 near the Si1 atomic layer step 108 and the Si (100) plane and the V groove side surface
In the vicinity of the intersection with the 1} plane 103, Ga-Ga or As
It can be seen that the bond 107 of the same element such as -As is generated. This is called an anti-phase boundary and becomes a recombination center of carriers, causing deterioration of photoelectric conversion efficiency. As the growth of GaAs on the Si substrate is continued, the antiphase boundary extends in the growth direction, so that it is necessary to suppress the generation at the initial stage of growth of GaAs.

【0009】本発明の目的は、Si基板上のIII−V族
化合物半導体のエピタキシャル成長を利用したタンデム
ヘテロ光電変換素子において、入射光の反射を少なくし
て、アンチフェイズ境界の発生を抑制した高効率光電変
換素子を提供することである。本発明の他の目的は、V
溝を形成したSi基板上にIII−V族化合物半導体をエ
ピタキシャル成長する際に、V溝形状変化の少ない高効
率光電変換素子の製造方法を提供することである。
An object of the present invention is to achieve high efficiency in a tandem hetero photoelectric conversion device utilizing epitaxial growth of a III-V group compound semiconductor on a Si substrate by suppressing reflection of incident light and suppressing generation of antiphase boundaries. It is to provide a photoelectric conversion element. Another object of the present invention is V
It is an object of the present invention to provide a method for manufacturing a high-efficiency photoelectric conversion element in which the V-groove shape changes little when epitaxially growing a III-V group compound semiconductor on a grooved Si substrate.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、Si基板上のIII−V族化合物半導体のエピタキシ
ャル成長を利用したタンデムヘテロ光電変換素子におい
て、Si基板表面上にV溝を形成し、V溝の長手方向と
Si基板の(100)面からの傾斜方向とを一致させた
ものである。さらに、上記他の目的を達成するために、
V溝を形成したSi基板上にIII−V族化合物半導体を
エピタキシャル成長する際の条件を、成長温度が500
℃以下かつIII族元素に対するV族元素の入射フラック
ス比が15以上としたもである。
In order to achieve the above object, in a tandem hetero photoelectric conversion device utilizing epitaxial growth of a III-V group compound semiconductor on a Si substrate, a V groove is formed on the surface of the Si substrate, The longitudinal direction of the V groove and the tilt direction from the (100) plane of the Si substrate are aligned. Furthermore, in order to achieve the above-mentioned other purposes,
The conditions for epitaxially growing the III-V group compound semiconductor on the Si substrate having the V groove are set so that the growth temperature is 500.
The incident flux ratio of the group V element to the group III element was set to 15 ° C. or lower.

【0011】[0011]

【作用】光電変換素子の表面にV溝を形成することによ
り、入射光の反射が抑えられる。また、Si基板表面を
(100)面から[011]または[01−1]方向に
2度ないし5度傾斜し、該傾斜方向と同一方向に長手方
向を有するV溝を形成することで、上記基板上に成長し
たGaAs層におけるアンチフェイズ境界の発生を抑え
ることができる。これを図5から図7により説明する。
By forming the V groove on the surface of the photoelectric conversion element, reflection of incident light can be suppressed. In addition, the surface of the Si substrate is tilted from the (100) plane in the [011] or [01-1] direction by 2 to 5 degrees, and a V groove having a longitudinal direction in the same direction as the tilt direction is formed. It is possible to suppress the occurrence of antiphase boundaries in the GaAs layer grown on the substrate. This will be described with reference to FIGS.

【0012】Si基板を(100)面から[011]ま
たは[011]方向に2度ないし5度傾けると、ジャパ
ニーズ・ジャーナル・オブ・アプライド・フィジックス
第26巻(1987年)第L114頁から第L116頁
(Japanese Journal of Appl
ied Physics 26(1987)pp.L1
14−L116)に報告されているように、表面の1原
子ステップが超高真空中での1000℃以上の加熱によ
り2原子層高さの原子ステップ(以下、2原子ステップ
と略記する)に変わる。この効果により、少くとも(1
00)面上でのアンチフェイズ境界の発生は抑制でき
る。次に、図5に示すように、Si(100)基板上に
[011]方向に平行に並ぶV溝を形成する場合を考え
る。この時、基板の傾斜方向が[01−1]方向、すな
わち原子ステップ列とV溝の長手方向とが平行な場合
(図5(a))と、基板の傾斜方向が[011]方向、
すなわち原子ステップ列とV溝の長手方向とが垂直な場
合(図5(b))の2通りがある。このようなV溝を形
成したSi基板を超高真空中で1000℃で10分程度
加熱すると、図6に示すように2原子ステップ構造が表
面に現れる。ただし、表面での原子の再配列構造の図示
は省略してある。図6(a)は図5(a)の場合で、図
6(b)は図5(b)の場合である。図6(b)の場
合、2原子ステップは紙面に平行に並んでいる。このよ
うな状態のSi基板にGaAsを成長する場合を以下に
考える。
When the Si substrate is tilted by 2 to 5 degrees from the (100) plane in the [011] or [011] direction, the Japanese Journal of Applied Physics Vol. 26 (1987), pages L114 to L116. Page (Japanes Journal of Appl
ied Physics 26 (1987) pp. L1
14-L116), one atomic step on the surface changes into an atomic step of two atomic layer height (hereinafter abbreviated as two atomic step) by heating at 1000 ° C. or higher in ultrahigh vacuum. . Due to this effect, at least (1
The occurrence of antiphase boundaries on the (00) plane can be suppressed. Next, as shown in FIG. 5, consider a case where V-grooves are formed in parallel on the Si (100) substrate in the [011] direction. At this time, when the tilt direction of the substrate is the [01-1] direction, that is, when the atomic step row and the longitudinal direction of the V groove are parallel (FIG. 5A), the tilt direction of the substrate is the [011] direction,
That is, there are two types in the case where the atomic step sequence and the longitudinal direction of the V groove are perpendicular (FIG. 5B). When the Si substrate having such V-grooves is heated in an ultrahigh vacuum at 1000 ° C. for about 10 minutes, a diatomic step structure appears on the surface as shown in FIG. However, illustration of the rearrangement structure of atoms on the surface is omitted. FIG. 6A shows the case of FIG. 5A, and FIG. 6B shows the case of FIG. 5B. In the case of FIG. 6B, the two atomic steps are arranged parallel to the paper surface. The case where GaAs is grown on the Si substrate in such a state will be considered below.

【0013】図7は2原子ステップが形成されたSi基
板上に、分子線エピタキシー法により、GaAsを1分
子層分成長した場合の断面構造図である。基板温度50
0℃以上でAsを照射すると、Asは表面のSi原子と
結合を作り、余分なAs原子は再蒸発する。Asフラッ
クスを照射した状態で、1原子層分のGaを供給する
と、GaAs1分子層分の成長が行われる。図ではSi
{111}面上に存在する原子ステップの図示を省略し
たが、それらはいずれも2原子ステップであり、{11
1}面上でアンチフェイズ境界の発生が問題となること
はない。我々は、Si(100)基板の傾斜方向を考慮
することにより、従来Si(100)面とSi{11
1}面との境界付近に発生していたアンチフェイズ境界
を消滅させることができることを新たに見い出した。図
7(a)はSi基板が[01−1]方向に傾斜している
場合で、図7(b)はSi基板が[011]方向に傾斜
している場合である。図7(a)では、Si(100)
面101とSi{111}面103の界面付近にアンチ
フェイズ境界107が発生するが、図7(b)ではアン
チフェイズ境界が発生しないことがわかった。一方、V
溝が[01−1]方向に形成されている場合は、Si
(100)基板を[011]方向に傾斜するとアンチフ
ェイズ境界が発生するが、Si(100)基板を[01
−1]方向に傾斜すればアンチフェイズ境界が発生しな
いことがわかった。
FIG. 7 is a cross-sectional structural view in the case where GaAs is grown by one molecular layer on the Si substrate on which two atomic steps are formed by the molecular beam epitaxy method. Substrate temperature 50
When As is irradiated at 0 ° C. or higher, As forms bonds with Si atoms on the surface, and excess As atoms are re-evaporated. When Ga of one atomic layer is supplied in the state of being irradiated with As flux, one GaAs molecular layer is grown. In the figure Si
Although illustration of atomic steps existing on the {111} plane is omitted, they are all two atomic steps.
The occurrence of an antiphase boundary on the 1} plane does not pose a problem. We consider the conventional Si (100) plane and Si {11] by considering the tilt direction of the Si (100) substrate.
It was newly found that the anti-phase boundary existing near the boundary with the 1} plane can be eliminated. 7A shows the case where the Si substrate is tilted in the [01-1] direction, and FIG. 7B is the case where the Si substrate is tilted in the [011] direction. In FIG. 7A, Si (100)
It was found that the antiphase boundary 107 is generated near the interface between the surface 101 and the Si {111} surface 103, but the antiphase boundary is not generated in FIG. 7B. On the other hand, V
If the groove is formed in the [01-1] direction, Si
When the (100) substrate is tilted in the [011] direction, an antiphase boundary is generated, but the Si (100) substrate is [01
It was found that the anti-phase boundary does not occur if tilted in the −1] direction.

【0014】以上より、Si基板表面上にV溝を形成
し、V溝の長手方向とSi基板の(100)面からの傾
斜方向とを一致させることにより、入射光の反射を低減
し、アンチフェイズ境界におけるキャリアの再結合を抑
制することができるために、高効率なタンデムヘテロ光
電変換素子を作製することが出来る。
From the above, by forming the V-groove on the surface of the Si substrate and making the longitudinal direction of the V-groove coincide with the inclination direction from the (100) plane of the Si substrate, reflection of incident light is reduced and Since recombination of carriers at the phase boundary can be suppressed, a highly efficient tandem hetero photoelectric conversion element can be manufactured.

【0015】一方、V溝を形成したSi基板上にIII−
V族化合物半導体をエピタキシャル成長する際の条件を
検討した結果、成長温度が500℃以下で、かつIII族
元素に対するV族元素の入射フラックス比が15以上で
あれば、成長表面におけるIII族元素の表面拡散距離が
低減し、V溝の平坦化現象を抑制できることがわかっ
た。よって、上記条件でSi基板上にIII−V族化合物
半導体のエピタキシャル成長を行うことにより、該Si
基板に形成したV溝の形状をIII−V族化合物半導体表
面まで維持することができる。
On the other hand, III-
As a result of examining the conditions for epitaxially growing a group V compound semiconductor, if the growth temperature is 500 ° C. or lower and the incident flux ratio of the group V element to the group III element is 15 or more, the surface of the group III element on the growth surface It was found that the diffusion distance was reduced and the flattening phenomenon of the V groove could be suppressed. Therefore, by epitaxially growing the III-V group compound semiconductor on the Si substrate under the above conditions, the Si
The shape of the V groove formed on the substrate can be maintained up to the III-V group compound semiconductor surface.

【0016】[0016]

【実施例】〔実施例1〕 以下、本発明に係るタンデムヘテロ光電変換素子の第一
の構造およびその製造方法を図1により説明する。
EXAMPLES Example 1 Hereinafter, a first structure of a tandem hetero photoelectric conversion device according to the present invention and a manufacturing method thereof will be described with reference to FIG.

【0017】図1は光電変換素子の製造方法を示す縦断
面構造図で、紙面に垂直方向が[011]である。ま
ず、図1(a)に示す様に、n型Si(100)基板
(厚さ300μm、抵抗率2Ω・cm、[011]方向
に3度傾斜)121を酸素100%の雰囲気中で900
℃に加熱し、表面および裏面に厚さ100nmのSiO
2膜122を形成する。裏面のSiO2膜をフッ酸により
除去し、裏面にn型不純物拡散領域(P(リン)濃度:
0.5−1×1020/cm3、厚さ200nm)123
を作製する。
FIG. 1 is a vertical sectional structural view showing a method for manufacturing a photoelectric conversion element, in which the direction perpendicular to the plane of the drawing is [011]. First, as shown in FIG. 1A, an n-type Si (100) substrate (thickness: 300 μm, resistivity: 2 Ω · cm, inclined at 3 degrees in the [011] direction) 121 was set in an atmosphere of 100% oxygen to 900
Heated to ℃, 100nm thick SiO on the front and back
2 The film 122 is formed. The SiO 2 film on the back surface is removed by hydrofluoric acid, and an n-type impurity diffusion region (P (phosphorus) concentration:
0.5-1 × 10 20 / cm 3 , thickness 200 nm) 123
To make.

【0018】続いて、図1(b)の様に、裏面にSiO
2膜122を堆積した後に、ホトリソグラフィーおよび
エッチングにより、[01−1]方向の幅10μm、
[011]方向の長さ10mmのSiO2膜を間隔36
0μmで残し、それをマスクにしてKOH溶液またはヒ
ドラジン溶液によりSiのエッチングを行った。この
際、垂直深さ240μmまでSiのエッチングを行った
が、エッチングは異方的に進みV溝となるSi{11
1}面103が現れた。
Then, as shown in FIG. 1B, SiO 2 is formed on the back surface.
2 After depositing the film 122, a width of 10 μm in the [01-1] direction was obtained by photolithography and etching.
A SiO 2 film having a length of 10 mm in the [011] direction is provided with an interval 36.
It was left at 0 μm, and Si was etched with a KOH solution or a hydrazine solution using it as a mask. At this time, Si was etched up to a vertical depth of 240 μm, but the etching proceeded anisotropically to form a V groove.
1} surface 103 appeared.

【0019】その後、表面のSiO2膜を除去し、図1
(c)の様に表面側にp型拡散領域(B濃度:0.5−
1×1020/cm3、厚さ200nm)124を形成
し、裏面のSiO2膜を除去する。
After that, the SiO 2 film on the surface was removed, and
As shown in (c), a p-type diffusion region (B concentration: 0.5-
1 × 10 20 / cm 3 , thickness 200 nm) 124 is formed, and the SiO 2 film on the back surface is removed.

【0020】続いて、試料を分子線エピタキシー装置に
いれ、表面の自然酸化膜を除去した後に、580℃にお
いてAsフラックスを照射後、成長温度500℃、入射
As/Gaフラックス比15、成長速度1μm/hで、
図2(a)に示すように、高ドープp型GaAs層(B
e濃度:1×1020/cm3、膜厚10nm)125、
高ドープn型GaAs層(Si濃度:1×1019/cm
3、膜厚10nm)126、n型GaAs層(Si濃
度:5×1016/cm3、膜厚3μm)127、p型G
aAs層(Be濃度:1×1019/cm3、膜厚10n
m)128の4層を順次成長した。ここで、層125お
よび126はGaAs光電変換素子とSi光電変換素子
とをつなぐトンネル接合ダイオードをなしている。
Then, the sample was put in a molecular beam epitaxy apparatus to remove the natural oxide film on the surface, and after irradiating with As flux at 580 ° C., the growth temperature was 500 ° C., the incident As / Ga flux ratio was 15, and the growth rate was 1 μm. / H,
As shown in FIG. 2A, the highly-doped p-type GaAs layer (B
e concentration: 1 × 10 20 / cm 3 , film thickness 10 nm) 125,
Highly doped n-type GaAs layer (Si concentration: 1 × 10 19 / cm
3 , film thickness 10 nm) 126, n-type GaAs layer (Si concentration: 5 × 10 16 / cm 3 , film thickness 3 μm) 127, p-type G
aAs layer (Be concentration: 1 × 10 19 / cm 3 , film thickness 10 n
m) 128 four layers were sequentially grown. Here, the layers 125 and 126 form a tunnel junction diode that connects the GaAs photoelectric conversion element and the Si photoelectric conversion element.

【0021】最後に、試料を分子線エピタキシー装置か
ら取り出し、図2(b)に示すように、裏面にn型オー
ミック電極129を、表面にp型オーミック電極130
を形成して、GaAs/Siタンデムヘテロ光電変換素
子とした。
Finally, the sample was taken out from the molecular beam epitaxy apparatus, and as shown in FIG. 2B, an n-type ohmic electrode 129 was formed on the back surface and a p-type ohmic electrode 130 was formed on the front surface.
To form a GaAs / Si tandem hetero photoelectric conversion element.

【0022】本実施例によれば、アンチフェイズ境界の
発生なしに、タンデムヘテロ光電変換素子の表面側に、
V溝を形成することができるので、キャリアの寿命を減
少させずに入射光の反射を低減できるため、光電変換素
子の効率を高めることが出来る。
According to this embodiment, on the surface side of the tandem hetero photoelectric conversion element, the antiphase boundary is not generated.
Since the V-shaped groove can be formed, the reflection of incident light can be reduced without reducing the life of carriers, so that the efficiency of the photoelectric conversion element can be increased.

【0023】なお、本実施例では[011]方向に傾斜
したSi(100)基板を用いたが、[01−1]方向
に傾斜したSi(100)基板を用いても、V溝の長手
方向を[01−1]方向とすれば、同様な効果が得られ
る。また、本実施例では、基板の(100)面からの傾
斜角を3度としたが、2−5度程度ならば同様の効果が
得られる。また、本実施例では、GaAs成長時の成長
温度を500℃、入射As/Gaフラックス比を15と
したが、成長温度はさらに低く、フラックス比はさらに
大きくてもよい。さらに本実施例では、III−V族化合
物半導体としてGaAsの例を示したが、AlGaAs
等他の化合物半導体およびそれらの混晶であってもよい
のはもちろんであり、そのエピタキシャル成長法も分子
線エピタキシー法以外に、有機金属気相成長法や液相エ
ピタキシー法等を用いてもよいのはもちろんである。
In this embodiment, the Si (100) substrate tilted in the [011] direction was used, but even if the Si (100) substrate tilted in the [01-1] direction is used, the longitudinal direction of the V-groove may be changed. The same effect can be obtained by setting the [01-1] direction. Further, in this embodiment, the inclination angle from the (100) plane of the substrate is 3 degrees, but the same effect can be obtained if it is about 2-5 degrees. Further, in the present embodiment, the growth temperature during GaAs growth was 500 ° C. and the incident As / Ga flux ratio was 15, but the growth temperature may be lower and the flux ratio may be higher. Further, in this embodiment, GaAs is shown as an example of the III-V compound semiconductor, but AlGaAs
Of course, other compound semiconductors and mixed crystals thereof may be used, and the epitaxial growth method thereof may be a metal-organic vapor phase epitaxy method, a liquid phase epitaxy method, or the like in addition to the molecular beam epitaxy method. Of course.

【0024】〔実施例2〕以下、本発明の実施例である
タンデムヘテロ光電変換素子の第二の構造およびその製
造方法を図3および図4により説明する。
[Embodiment 2] A second structure of a tandem hetero photoelectric conversion device according to an embodiment of the present invention and a method for manufacturing the same will be described below with reference to FIGS. 3 and 4.

【0025】図3は光電変換素子の製造方法を示す縦断
面構造図で、紙面に垂直方向が[011]である。初め
に、図3(a)に示す様に、n型Si(100)基板
(厚さ300μm、抵抗率2Ω・cm、[011]方向
に3度傾斜)121を酸素100%の雰囲気中で900
℃に加熱し、表面および裏面に厚さ100nmのSiO
2膜122を形成する。続いて、ホトリソグラフィーお
よびエッチングにより、[01−1]方向の幅10μ
m、[011]方向の長さ10mmのSiO2膜を36
0μm間隔で残し、それをマスクにしてKOH溶液また
はヒドラジン溶液によりSiのエッチングを行った。こ
の際、垂直深さ240μmまでSiのエッチングを行っ
たが、エッチングは異方的に進み、Si{111}面1
03が現れた。その後、表面のSiO2膜を除去し、p
型拡散領域(B濃度:0.5−1×1020/cm3、厚
さ200nm)124を形成し、裏面のSiO2膜を除
去した。続いて、試料を分子線エピタキシー装置にい
れ、表面の自然酸化膜を除去した後に、580℃におい
てAsフラックスを照射後、成長温度500℃、入射A
s/Gaフラックス比15、成長速度1μm/hで、図
3(c)に示すように、高ドープp型GaAs層(Be
濃度:1×1020/cm3、膜厚10nm)125、高
ドープn型GaAs層(Si濃度:1×1019/c
3、膜厚10nm)126、n型GaAs層(Si濃
度:5×1016/cm3、膜厚3μm)127、p型G
aAs層(Be濃度:1×1019/cm3、膜厚10n
m)128の4層を順次成長した。ここで、層125お
よび126はGaAs光電変換素子とSi光電変換素子
とをつなぐトンネル接合ダイオードをなしている。
FIG. 3 is a vertical sectional structural view showing a method for manufacturing a photoelectric conversion element, in which the direction perpendicular to the plane of the drawing is [011]. First, as shown in FIG. 3A, an n-type Si (100) substrate (thickness: 300 μm, resistivity: 2 Ω · cm, inclined at 3 degrees in the [011] direction) 121 was set to 900 in an atmosphere of 100% oxygen.
Heated to ℃, 100nm thick SiO on the front and back
2 The film 122 is formed. Subsequently, by photolithography and etching, the width in the [01-1] direction is 10 μm.
m, [011] direction 10 mm long SiO 2 film 36
Si was etched with a KOH solution or a hydrazine solution, using the mask as a mask and leaving it at 0 μm intervals. At this time, Si was etched to a vertical depth of 240 μm, but the etching proceeded anisotropically, and Si {111} plane 1
03 appeared. After that, the SiO 2 film on the surface is removed and p
A mold diffusion region (B concentration: 0.5-1 × 10 20 / cm 3 , thickness 200 nm) 124 was formed, and the SiO 2 film on the back surface was removed. Then, the sample is put into a molecular beam epitaxy apparatus to remove the natural oxide film on the surface, and then irradiated with As flux at 580 ° C.
With a s / Ga flux ratio of 15 and a growth rate of 1 μm / h, as shown in FIG. 3C, a highly doped p-type GaAs layer (Be
Concentration: 1 × 10 20 / cm 3 , film thickness 10 nm) 125, highly doped n-type GaAs layer (Si concentration: 1 × 10 19 / c)
m 3 , thickness 10 nm) 126, n-type GaAs layer (Si concentration: 5 × 10 16 / cm 3 , thickness 3 μm) 127, p-type G
aAs layer (Be concentration: 1 × 10 19 / cm 3 , film thickness 10 n
m) 128 four layers were sequentially grown. Here, the layers 125 and 126 form a tunnel junction diode that connects the GaAs photoelectric conversion element and the Si photoelectric conversion element.

【0026】試料を分子線エピタキシー装置から取り出
し、表面および裏面にSiO2膜を堆積し、図4(a)
に示すように、ホトリソグラフィーおよびエッチングに
より、表面側のV溝パタンに合わせて、[01−1]方
向の幅10μm、[011]方向の長さ10mmのSi
2膜を残し、それをマスクにしてKOH溶液またはヒ
ドラジン溶液により、垂直深さ240μmまでSiの異
方性エッチングを行い、Si{111}面103を出現
させた。その後、裏面のSiO2膜を除去し、n型拡散
領域(P(リン)濃度:0.5−1×1020/cm3
厚さ200nm)123を形成し、表面のSiO2膜を
除去した。
The sample was taken out from the molecular beam epitaxy apparatus, and a SiO 2 film was deposited on the front and back surfaces, as shown in FIG.
As shown in FIG. 3, by photolithography and etching, Si having a width of 10 μm in the [01-1] direction and a length of 10 mm in the [011] direction was formed in accordance with the V groove pattern on the surface side.
With the O 2 film left, using it as a mask, anisotropic etching of Si was performed to a vertical depth of 240 μm with a KOH solution or a hydrazine solution, and Si {111} planes 103 were exposed. After that, the SiO 2 film on the back surface is removed, and the n-type diffusion region (P (phosphorus) concentration: 0.5-1 × 10 20 / cm 3 ,
(Thickness: 200 nm) 123 was formed, and the SiO 2 film on the surface was removed.

【0027】裏面にn型オーミック電極129を、表面
にp型オーミック電極130を形成して、GaAs/S
iタンデムヘテロ光電変換素子とした(図4(b))。
An n-type ohmic electrode 129 is formed on the back surface and a p-type ohmic electrode 130 is formed on the front surface to form GaAs / S.
The i-tandem hetero photoelectric conversion element was used (FIG. 4B).

【0028】本実施例によれば、アンチフェイズ境界の
発生なしに、タンデムヘテロ光電変換素子の表面側およ
び裏面側に、V溝を形成することができるので、キャリ
アの寿命を減少させずに、表面での入射光の反射および
裏面からの出射光を低減できるため、光電変換素子の効
率を高めることが出来る。
According to this embodiment, the V groove can be formed on the front surface side and the back surface side of the tandem hetero photoelectric conversion element without the occurrence of the anti-phase boundary, so that the life of the carrier is not reduced and Since the reflection of incident light on the front surface and the light emitted from the back surface can be reduced, the efficiency of the photoelectric conversion element can be increased.

【0029】なお、本実施例では[011]方向に傾斜
したSi(100)基板を用いたが、[01−1]方向
に傾斜したSi(100)基板を用いても、V溝の長手
方向を[01−1]方向とすれば、同様な効果が得られ
る。また本実施例では、基板の(100)面からの傾斜
角を3度としたが、2−5度程度ならば同様の効果が得
られる。また、本実施例では、GaAs成長時の成長温
度を500℃、入射As/Gaフラックス比を15とし
たが、成長温度はさらに低く、フラックス比はさらに大
きくてもよい。さらに本実施例では、III−V族化合物
半導体としてGaAsの例を示したが、AlGaAs等
他の化合物半導体およびそれらの混晶であってもよいの
はもちろんであり、そのエピタキシャル成長法も分子線
エピタキシー法以外に、有機金属気相成長法や液相エピ
タキシー法等を用いてもよいのはもちろんである。
In this embodiment, the Si (100) substrate tilted in the [011] direction was used, but even if the Si (100) substrate tilted in the [01-1] direction is used, the longitudinal direction of the V-groove may be changed. The same effect can be obtained by setting the [01-1] direction. In this embodiment, the inclination angle from the (100) plane of the substrate is 3 degrees, but the same effect can be obtained if the inclination angle is about 2-5 degrees. Further, in the present embodiment, the growth temperature during GaAs growth was 500 ° C. and the incident As / Ga flux ratio was 15, but the growth temperature may be lower and the flux ratio may be higher. Further, in the present embodiment, GaAs is shown as an example of the III-V group compound semiconductor, but other compound semiconductors such as AlGaAs and mixed crystals thereof may be used, and the epitaxial growth method may be molecular beam epitaxy. In addition to the method, it goes without saying that a metal organic vapor phase growth method, a liquid phase epitaxy method or the like may be used.

【0030】[0030]

【発明の効果】本発明によれば、Si基板表面上にV溝
を形成し、V溝の長手方向とSi基板の(100)面か
らの傾斜方向を[011]または[01−1]のどちら
かとし、III−V族化合物半導体の成長温度を500℃
以下で、かつIII族元素に対するV族元素の入射フラッ
クス比が15以上の条件で行うことにより、V溝の平坦
化が抑制され、入射光の反射が低減し、アンチフェイズ
境界におけるキャリアの再結合が抑制されるために、高
効率なタンデムヘテロ光電変換素子を作製することが出
来る。
According to the present invention, a V groove is formed on the surface of a Si substrate, and the longitudinal direction of the V groove and the inclination direction from the (100) plane of the Si substrate are [011] or [01-1]. Either way, the growth temperature of the III-V group compound semiconductor is 500 ° C.
By performing the following under the condition that the incident flux ratio of the group V element to the group III element is 15 or more, the flattening of the V groove is suppressed, the reflection of incident light is reduced, and the recombination of carriers at the antiphase boundary is performed. Therefore, a highly efficient tandem hetero photoelectric conversion device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るタンデムヘテロ光電変
換素子の製造工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a tandem hetero photoelectric conversion element according to Embodiment 1 of the present invention.

【図2】本発明の実施例1に係るタンデムヘテロ光電変
換素子の製造工程を示す断面図である。
FIG. 2 is a cross-sectional view showing the manufacturing process of the tandem hetero photoelectric conversion element according to the first embodiment of the present invention.

【図3】本発明の実施例2に係るタンデムヘテロ光電変
換素子の製造工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of a tandem hetero photoelectric conversion element according to Embodiment 2 of the present invention.

【図4】本発明の実施例2に係るタンデムヘテロ光電変
換素子の製造工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of a tandem hetero photoelectric conversion element according to Embodiment 2 of the present invention.

【図5】Si(100)表面上の原子ステップ列の方向
とV溝方向との関係を示す模式図である。
FIG. 5 is a schematic diagram showing the relationship between the direction of the atomic step sequence on the Si (100) surface and the V groove direction.

【図6】超高真空中での高温アニール後のSi(10
0)基板の縦断面構造図である。
FIG. 6 shows Si (10) after high temperature annealing in ultra-high vacuum.
0) It is a vertical cross-sectional structural diagram of a substrate.

【図7】Si(100)基板上へGaAsを1分子層分
成長した後の縦断面構造図である。
FIG. 7 is a vertical cross-sectional structural view after growing one molecular layer of GaAs on a Si (100) substrate.

【図8】従来技術を用いて形成されたSi(100)ジ
ャスト基板上へのV溝形成時の縦断面構造図である。
FIG. 8 is a vertical cross-sectional structural diagram at the time of forming a V groove on a Si (100) just substrate formed using a conventional technique.

【図9】V溝が形成されたSi(100)ジャスト基板
上へGaAsを1分子層分成長した時の縦断面構造図で
ある。
FIG. 9 is a vertical cross-sectional structure diagram when one molecular layer of GaAs is grown on a Si (100) just substrate in which a V groove is formed.

【符号の説明】[Explanation of symbols]

101…Si(100)面、102…Si2原子層原子
ステップ、 103…Si{111}面、104…GaAs(10
0)面、 105…GaAs原子ステップ、106…GaAs{1
11}A面、 107…アンチフェイズ境界、121…n型Si(10
0)基板、 122…SiO2膜、123…n型不純物拡散領域、 124…p型不純物拡散領域、125…高ドープp型G
aAs層、 126…高ドープn型GaAs層、127…n型GaA
s層、 128…p型GaAs層、129…n型オーミック電
極、 130…p型オーミック電極。
101 ... Si (100) plane, 102 ... Si2 atomic layer atomic step, 103 ... Si {111} plane, 104 ... GaAs (10
0) plane, 105 ... GaAs atomic step, 106 ... GaAs {1
11} A-plane, 107 ... Anti-phase boundary, 121 ... n-type Si (10
0) substrate, 122 ... SiO 2 film, 123 ... N type impurity diffusion region, 124 ... P type impurity diffusion region, 125 ... Highly doped p type G
aAs layer, 126 ... Highly doped n-type GaAs layer, 127 ... n-type GaA
s layer, 128 ... p-type GaAs layer, 129 ... n-type ohmic electrode, 130 ... p-type ohmic electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 陽子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 蕨迫 光紀 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭62−237768(JP,A) 特開 昭59−124772(JP,A) 特開 昭61−255074(JP,A) 特開 昭58−180071(JP,A) 実開 昭62−163974(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoko Uchida 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Mitsunori Warako 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. (56) Reference JP-A-62-237768 (JP, A) JP-A-59-124772 (JP, A) JP-A-61-255074 (JP, A) JP-A-58-180071 (JP) , A) Actual development Sho 62-163974 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(100)面から[011]あるいは[0
1−1]方向に2度ないし5度傾斜した表面を有するS
i基板に、該Si基板の(100)面からの傾斜方向と
同一方向に長手方向を有するV字型溝を形成後、該Si
基板へのpn接合の形成および該Si基板上へのIII−
V族化合物半導体のエピタキシャル成長を行い、かつ上
記III−V族化合物半導体のエピタキシャル成長は、成
長温度が500℃以下で、かつIII族元素に対するV族
元素の入射フラックス比が15以上の条件で行うことを
特徴とするタンデムヘテロ光電変換素子の製造方法。
1. [011] or [0] from the (100) plane
1-1] S having a surface inclined in the direction of 2 to 5 degrees
After forming a V-shaped groove having a longitudinal direction in the same direction as the inclination direction from the (100) plane of the Si substrate on the i substrate, the Si substrate is formed.
Formation of pn junction on substrate and III- on the Si substrate
Perform epitaxial growth of a V group compound semiconductor, and the top
Note that epitaxial growth of III-V group compound semiconductors is
Long temperature is 500 ℃ or less, and V group to III group element
A method for manufacturing a tandem hetero photoelectric conversion element, which is performed under a condition that an incident flux ratio of elements is 15 or more .
JP3152959A 1991-06-25 1991-06-25 Method for manufacturing tandem hetero photoelectric conversion element Expired - Fee Related JPH0793452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152959A JPH0793452B2 (en) 1991-06-25 1991-06-25 Method for manufacturing tandem hetero photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152959A JPH0793452B2 (en) 1991-06-25 1991-06-25 Method for manufacturing tandem hetero photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH053332A JPH053332A (en) 1993-01-08
JPH0793452B2 true JPH0793452B2 (en) 1995-10-09

Family

ID=15551904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152959A Expired - Fee Related JPH0793452B2 (en) 1991-06-25 1991-06-25 Method for manufacturing tandem hetero photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0793452B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405485B1 (en) 2009-03-02 2020-06-10 Kaneka Corporation Thin film solar cell module
KR200458266Y1 (en) * 2009-03-19 2012-02-10 방규열 Protective cover for ship's painting
CN102449775B (en) 2009-06-05 2014-07-02 独立行政法人产业技术综合研究所 Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404421A (en) * 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
JPH0644638B2 (en) * 1982-12-29 1994-06-08 圭弘 濱川 Stacked photovoltaic device with different unit cells
JPS6151489A (en) * 1984-08-14 1986-03-13 日立建機株式会社 Horizontal withdraw type jib crane
JPS61255074A (en) * 1985-05-08 1986-11-12 Mitsubishi Electric Corp Photoelectric conversion semiconductor device
JPS62237768A (en) * 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery

Also Published As

Publication number Publication date
JPH053332A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
EP0214610B1 (en) Epitaxial gallium arsenide semiconductor wafer and method of producing the same
US5311055A (en) Trenched bipolar transistor structures
USRE38072E1 (en) Fabrication method for AlGaInNPAsSb based devices
JP6484076B2 (en) Optical device
US5221413A (en) Method for making low defect density semiconductor heterostructure and devices made thereby
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
WO2001006608A1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
US5311533A (en) Index-guided laser array with select current paths defined by migration-enhanced dopant incorporation and dopant diffusion
JP2781097B2 (en) Semiconductor device and manufacturing method thereof
JP4873381B2 (en) Light emitting device manufacturing method, compound semiconductor wafer, and light emitting device
JPH0793452B2 (en) Method for manufacturing tandem hetero photoelectric conversion element
JP5071484B2 (en) Compound semiconductor epitaxial wafer and manufacturing method thereof
JPH08274358A (en) Iii-v compound semiconductor solar cell
JP3050826B2 (en) Method for manufacturing horizontal pn junction array of semiconductor device
JP3564811B2 (en) Group III nitride semiconductor light emitting device
TW439335B (en) A semiconductor laser and the fabrication method thereof
JPH05343712A (en) Manufacture of tandem heterogeneous photoelectric conversion element
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP3314794B2 (en) Semiconductor laser and method of manufacturing the same
KR100242789B1 (en) Fabricating method of current blocking structure for optical device
KR100275770B1 (en) Method for manufacturing semiconductor laser device
JP3247424B2 (en) Gas etching method for group III-V compound semiconductor
JPH0878327A (en) Semiconductor wafer
JP2751356B2 (en) Manufacturing method of semiconductor laser
JPH04260386A (en) Manufacture of optical semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees