TW439335B - A semiconductor laser and the fabrication method thereof - Google Patents

A semiconductor laser and the fabrication method thereof Download PDF

Info

Publication number
TW439335B
TW439335B TW88118469A TW88118469A TW439335B TW 439335 B TW439335 B TW 439335B TW 88118469 A TW88118469 A TW 88118469A TW 88118469 A TW88118469 A TW 88118469A TW 439335 B TW439335 B TW 439335B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor laser
patent application
scope
semiconductor
Prior art date
Application number
TW88118469A
Other languages
Chinese (zh)
Inventor
Chien-Chia Chiu
Yuan-Chen Yu
Chuan-Wei Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW88118469A priority Critical patent/TW439335B/en
Application granted granted Critical
Publication of TW439335B publication Critical patent/TW439335B/en

Links

Abstract

The present invention is a semiconductor laser and the fabrication method thereof, mainly by epitaxially growing each semiconductor layer of a quantum well active layer for forming the window layer. Etch the desired window layer pattern by microlithography technology, then form AlGaInP by metal-organic chemical vapor deposition (MOCVD), preferably a window layer of (AlxGa1-x)0.5In0.5P material, so that the bandgap of the area near the facet of the semiconductor laser where laser light passes through is larger than that of the quantum well to avoid the catastrophic optical damage (COD) in the high power operation.

Description

4 3 93 3 5 五、發明說明(1) 【發明之範圍】 本發明係有關於一種半導體雷射及其製作方法,且特 別係針對一種脊狀波導(ridge waveguided)及選擇性埋 脊(selectively buried ridge)的半導體雷射元件提出 所須的窗戶層(w i ndow 1 ay er )結構及其製造方法。 【發明之背景】 半導體雷射的形成方法有很多,對於一種脊狀波導或 選擇性埋脊的半導體雷射元件而言,往往在操作時,會因 發射雷射光的鏡面(f a c e t )無法忍受高功率操作下所產 生的熱而發生災難性光損害(catastrophic optical damage,或簡稱COD ),這種損害更因雷射光逸出鏡面 時’靠近鏡面量子井(quantum well)的能帶差(band gap )會減小【A. Valster et al. IEEE Journal of Selected Topics in Quantum Electronics, Vo 1. 3,4 3 93 3 5 V. Description of the invention (1) [Scope of the invention] The present invention relates to a semiconductor laser and a method for manufacturing the same, and particularly relates to a ridge waveguided and a selectively ridged waveguide. A buried laser ridge semiconductor semiconductor device proposes a required window layer structure and a manufacturing method thereof. [Background of the Invention] There are many methods for forming semiconductor lasers. For a semiconductor laser element with a ridge waveguide or a selective buried ridge, it is often difficult to tolerate the high surfacet of the laser light during operation. Catastrophic optical damage (COD for short) occurs due to the heat generated under power operation. This damage is caused by the band gap of the laser near the quantum well when the laser light escapes the mirror. ) Will reduce [A. Valster et al. IEEE Journal of Selected Topics in Quantum Electronics, Vo 1.3,

No. 2,April 1 997,p.p. 180〜187】,部份雷射光於鏡 面附近被吸收而產生熱,而使災難性光損害更加嚴重。要 解決上述問題,首先需使靠近鏡面量子井的能帶差減小的 現象消除,也就是將鏡面附近雷射光行經區域之能帶差提 昇至大於量子井的能帶差。在過去數年中,為達成上述目 的’於磊晶、製程及元件設計方法上有不少相關的前案, 包括: (1)日本Mitsubishi Denki Kabushiki Kaisha提出 先於欲增大量子井能帶差上方,先鑛一層雜質層(例如為 ZnO ) ’再於高溫下擴散,使雷射光逸出的鏡面附近量子No. 2, April 1 997, p.p. 180 ~ 187], part of the laser light is absorbed near the mirror to generate heat, which makes the catastrophic light damage more serious. To solve the above problems, the phenomenon of reducing the energy band difference near the mirror quantum well needs to be eliminated first, that is, the energy band difference of the laser light passing region near the mirror is increased to be greater than the energy band difference of the quantum well. In the past few years, in order to achieve the above objectives, there have been many related previous cases in epitaxy, process and component design methods, including: (1) Japan's Mitsubishi Denki Kabushiki Kaisha proposed that the quantum well energy band difference should be increased before Above, a layer of impurities (such as ZnO) is first mined and then diffused at high temperature to make the laser light escape near the mirror surface.

^ °3 3 5^ 五、發明說明(2) 井因雜質的擴散產生相變態而擴大,使災難性光損害程度 降低及高功率操作壽命大幅提高,此類專利如US patent 5 ’ 577’063、5’469, 457、5, 089, 437 及5, 161,166 等皆是。 (2) 日本Mitsubishi Denki Kabushiki Kaisha 另提 出於具偏移角度(100)的GaAs基板上以乾式姓刻(rie) 或電子束餘刻製程出無偏移角度(100 )的以八3結晶面, 爾後在此複合基板上成長A 1 GaInP可見光雷射磊晶結構, 因在不同偏移結晶面所成長雷射結構具有不同的能帶差, 故於形成雷射鏡面時,只需在高能帶差區域形成,自然形 成窗戶層,如US Patent 5, 490, 159所述。 (3) 日本Mitsubishi Denki Kabushiki Kaisha 另提 出先於(2 11 ) G a A s基板成長雷射磊晶結構,再以濕式蝕 刻方式蝕刻出垂直(2 11 )面的(1 1 1 )面,爾後將試片置 入MOCVD成長能帶差大於量子井的含Zn的p+-AlGaInP或p+ -A IGaAs窗戶層,以達成降低災難性光損害的程度,如US Patent 5, 677, 922 所述。 (4) 日本Kabushiki Kaisha Toshiba提出當以n-GaAs 蓋住P-型披覆層時,可以控制P-型彼覆層内部雜質(Zn ) 擴散,而使雷射光逸出的鏡面附近量子井之能帶差因雜質 擴散產生相變態而擴大【K, Itaya et al., IEEE Journal of Quantum Electronics, Vo 1. 27, No 6, 1991, p.p, 1496-1500】,如US Patent 5, 181, 218 及 4, 987, 0 96 等皆是。 (5) 日本Sharp Kabushiki Kaisha提出先以分子束县^ ° 3 3 5 ^ V. Description of the invention (2) The well is enlarged due to the phase transition caused by the diffusion of impurities, which reduces the catastrophic light damage and greatly increases the high-power operation life. Such patents are as US patent 5 '577'063 , 5'469, 457, 5, 089, 437 and 5, 161, 166, etc. (2) Japan ’s Mitsubishi Denki Kabushiki Kaisha also proposed that the GaAs substrate with an offset angle (100) be engraved with a dry name (rie) or an electron beam to produce a crystal surface with an offset angle (100) of 8.3. A 1 GaInP visible light laser epitaxial structure is grown on this composite substrate, because the laser structure grown at different offset crystal planes has different energy band differences, so when forming the laser mirror surface, only the high energy band difference is needed. Areas are formed, naturally forming window layers, as described in US Patent 5,490,159. (3) Japan ’s Mitsubishi Denki Kabushiki Kaisha also proposed to grow the laser epitaxial structure before the (2 11) G a As substrate, and then etched the (1 1 1) plane of the vertical (2 11) plane by wet etching. The test strip is then placed in a MOCVD growth p--AlGaInP or p + -A IGaAs window layer with a band difference greater than that of the quantum well to achieve a reduction in catastrophic light damage, as described in US Patent 5, 677, 922. (4) Kabushiki Kaisha Toshiba of Japan proposed that when n-GaAs is used to cover the P-type cladding layer, the diffusion of impurities (Zn) inside the P-type cladding layer can be controlled so that the laser light can escape from the quantum well near the mirror surface. The band difference is enlarged due to the phase transition caused by impurity diffusion [K, Itaya et al., IEEE Journal of Quantum Electronics, Vo 1. 27, No 6, 1991, pp, 1496-1500], such as US Patent 5, 181, 218 And 4, 987, 0 96 and so on. (5) Japan's Sharp Kabushiki Kaisha proposed

第5頁 五、發明說明(3) 晶(Molecular Beam Epitaxy,或簡稱MBE)做完選擇性 埋脊結構及雷射棒(laser bar )後’利用特殊治具固定 雷射棒,將其置入金屬有機化學氣相沈積(试6七&1-Organic Chemical Vapor Deposition ,或簡稱M0CVD) 機台中於鏡面處成長能帶差較量子井大的窗戶層【Μ. Watanabe et al.. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No 2, 1995, p.p. 728 〜732 】,如11$?8七61^ 5,228,0 47 及5,4 1 3,9 56 等皆是Page 5 V. Description of the invention (3) After the crystal (Molecular Beam Epitaxy, or MBE for short) completes the selective ridge structure and laser bar, the laser bar is fixed with a special jig and placed in it. Metal Organic Chemical Vapor Deposition (Trial VII & 1-Organic Chemical Vapor Deposition, or MOCVD for short) The window layer with a larger energy band difference than the quantum well is grown on the mirror surface [M. Watanabe et al .. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No 2, 1995, pp 728 ~ 732], such as 11 $? 8 七 61 ^ 5,228,0 47 and 5,4 1 3,9 56 etc.

然而,以上之各種方法的製作程序大部份須使用特殊 晶格方向之GaAs基板,其中(1)、(2)及(4)的前案中需要 使用到(1 〇〇 ) GaAs基板,而使用此基板時’所得的雷射 光波長非常難以降下而且P型彼覆層的濃度也無法提高; (3 )的前案中須使用非常少用的(2 11 ) GaAs基板,使得磊 晶技術之困難度大幅提高;(5 )的前案則是必須使用特殊 治具固定雷射棒後,再置入M0CVD反應腔内鍍上一層窗戶 層,使製程的複雜性無形中增高並且產品的良率和生產的 速度也會降低。 【發明之目的與概述】 有鑑於此’本發明的目的在於提供一種半導體雷射的 製程,可*於雷射光逸出鏡面上形成具有能帶差大於量子井 能帶差的一窗戶層’使產生的災難性光損害能降低,並且 此製程不須使用具特殊晶格方向的基板’且可應用於任何 基板形成所需的窗戶層結構。However, most of the manufacturing methods of the above methods must use GaAs substrates with special lattice directions. Among them, (1), (2), and (4) require the use of (100) GaAs substrates in the previous cases, and When using this substrate, the wavelength of the laser light obtained is very difficult to reduce and the concentration of the P-type cladding layer cannot be increased; (3) In the previous case, a very rare (2 11) GaAs substrate must be used, making epitaxial technology difficult The degree of improvement has been greatly improved; in the previous case of (5), a special jig must be used to fix the laser rod, and then placed in the M0CVD reaction chamber to plate a window layer, which increased the complexity of the process and increased the yield and The speed of production will also decrease. [Objective and Summary of the Invention] In view of this, the object of the present invention is to provide a semiconductor laser process that can form a window layer with an energy band difference greater than the quantum well energy band difference on the laser light escape mirror surface. The catastrophic light damage produced can be reduced, and this process does not require the use of a substrate with a special lattice direction 'and can be applied to any window layer structure required for substrate formation.

第6頁 五、發明說明(4) " 根據上述本發明之目的,提供的半導體雷射製程步驟 I括:(1)提供一具層狀結構的蟲晶片,而磊晶片的層狀 結構包含依序成長在一基板上的一 n型半導的第一批覆層 ^型批覆層)、—量子井主動層及—p型半導體的第二曰批 覆層,(2)形成一介電層於磊晶片上;(3)蝕刻部份介 及其底下的磊晶片,直到部份第一批覆^^ ψ . ., E ^ A ^ ^ , 復增也被移除益曝露 ^ ’⑷成長1戶層於露出的第一批覆層( 上’以填充被蝕刻掉的磊晶片部份,#宽ό a ^ ^ ; Η沾氺'冬山城a s曰七& 111戶層形成於遙晶 片的先逸出鏡面,且具有能帶差大於主動 及(5 )除去介電層,並進行後續形成 '、此帶差,以 性埋脊半導體雷射結構的步驟。 ’ '波導或選擇 另一方面,本發明亦提供根據上述 的一種半導體雷射元件。 方法所製作出 根據上述本發明之目的’提供的脊 脊半導體雷射元件,能由其一光逸出格波V或選擇性埋 出鏡面骖屮帝 射光由上下兩批覆層中夾著一量子井主 七出田射光,雷 中一未摻雜的磷化鋁鎵銦半導體材質的—層激發射出,其 出鏡面上,具有〆能帶差大於主動層的層形成在光逸 為讓本發明之上述和其他目的 '特$帶差° 顯易懂,下文特舉一較佳實施例,並g L、和優點能更明 細說明如下。 〇所附圖式,作詳 【圖式及符號說明】 圖式說明: 第1 A〜1 F圖繪示根據本發明 法所製作出的脊狀5. Description of the invention on page 6 (4) " According to the object of the present invention, the semiconductor laser process step I includes: (1) providing a worm wafer with a layered structure, and the layered structure of the epitaxial wafer includes A n-type semiconducting first coating layer (a first-type coating layer), a quantum well active layer, and a second-type coating layer of a p-type semiconductor are sequentially grown on a substrate. (2) A dielectric layer is formed on the substrate. Lei wafer; (3) Etching part of the intermediary and the Lei wafer below it, until the first batch of parts are covered ^^ ψ.., E ^ A ^ ^, the increase is also removed. The first layer of the overlying layer (on top to fill the part of the etched epitaxial wafer), # 宽 ό a ^ ^ Η Η 氺 'Dongshan City as Seventh & 111 household layer formed on the remote wafer's predecessor Out of the mirror, and has an energy band difference greater than the active and (5) removing the dielectric layer, and performing subsequent formation, 'this band difference, the step of burying the semiconductor laser structure with a ridge.' 'Waveguide or choice on the other hand, this The invention also provides a semiconductor laser device according to the above. The method produces the object according to the above invention. The provided ridge semiconductor laser element can escape the grid wave V from one of the light or selectively bury the mirror surface. The Emperor ’s light is emitted from the upper and lower layers of a sandwich of a quantum well. The doped aluminum gallium indium semiconductor material is layer-excited, and the layer with a higher energy band difference than the active layer is formed on the mirror surface. In order to make the above and other purposes of the present invention special, the band difference ° Obviously, a preferred embodiment is given below, and g L and its advantages can be explained in more detail as follows. 〇The attached drawings are detailed [Illustration of symbols and symbols] Schematic description: Section 1 A ~ 1 F The figure shows the ridges made according to the method of the present invention

五、發明說明(5) 波導半導體雷射之窗戶層的流程圖;以及 第2 A〜2 I圊繪示根據本發明方法所製作出的選擇 性埋脊半導體雷射之窗戶層的流程圖。 圖示標號: 1 基板 2 缓衝層 3 第 一批覆層 4 主動層 5 第 二批覆層 6 減弱層 7 > 15 接觸層 8、13 介電層 9 ' 11 光阻層 10 窗戶層 12 鏡面 14 電流阻隔層 【發明之說明】 本發明之内容將以實例說明如下: 本發明所採用的具層狀結構的磊晶片如「圖1 A」及 「圖2 A」所示。係於一基板1 (基板方向無任何限制) 如η-GaAs基板上依序蠢晶成長一緩衝層(buffer layer) 2 ’材質例如為n-GaAs、一第一批覆層(cladding layer )3,材質例如為η型填化|g銦或碟化銘鎵銦半導體層,組 成為5In。5p 或11-(人10 7GaQ 3)Q 5In[).5P、一 具量子井的主 動層(active iayer· ) 4,材質例如為Gal nP 或A 1 Gal nP, 其結晶結構可為有序(ordered)或無序(disordered) 者' 一第二批覆層5,材質例如為p型磷化鋁銦或磷化鋁鎵 =半導體層,組成為?_/^.5111().5?或13_(4;1()7(^3)(]5111().515、 一減弱層(r educ i ng 1 ay e r ) 6,例如為p型的麟化鎵銦材 質’組成為P_GaQ5 In。5p,以及一接觸層(c〇ntact layerV. Description of the invention (5) Flow chart of the window layer of the waveguide semiconductor laser; and 2A ~ 2I show the flow chart of the window layer of the selective buried ridge semiconductor laser manufactured according to the method of the present invention. Symbols: 1 substrate 2 buffer layer 3 first coating layer 4 active layer 5 second coating layer 6 weakening layer 7 > 15 contact layer 8, 13 dielectric layer 9 '11 photoresist layer 10 window layer 12 mirror surface 14 Current blocking layer [Explanation of the invention] The content of the present invention will be described as an example as follows: The epitaxial wafer with a layered structure used in the present invention is shown in FIG. 1A and FIG. 2A. It is tied to a substrate 1 (there is no restriction on the direction of the substrate). For example, a buffer layer 2 is grown in sequence on the η-GaAs substrate. The material is, for example, n-GaAs, a first cladding layer 3, The material is, for example, an n-type infill | g indium or a plated gallium indium semiconductor layer, and the composition is 5In. 5p or 11- (person 10 7GaQ 3) Q 5In [). 5P, an active layer of a quantum well (active iayer ·) 4, the material is, for example, Gal nP or A 1 Gal nP, and its crystal structure can be ordered ( ordered) or disordered (the second batch of coatings 5), for example, p-type aluminum indium phosphide or aluminum gallium phosphide = semiconductor layer, the composition is? _ / ^. 5111 (). 5? Or 13_ (4; 1 () 7 (^ 3) () 5111 (). 515, a reduction layer (r educ i ng 1 ay er) 6, for example, p-type The composition of the indium gallium indium material is P_GaQ5 In. 5p, and a contact layer

五、發明說明(6) )7 ’材貝例如為p-GaAs。以上之主動層4若採用GaAs或5. Description of the invention (6)) The 7 'material is, for example, p-GaAs. If the above active layer 4 uses GaAs or

AlGaAs的材質’則第一及第二批覆層可採用A丨GaAs的材質 〇 本發明所舉的第一個實施例為針對上述的磊晶片,形 成脊狀波導結構之雷射半導體晶粒,完成之元件如「第1 F圖」所示,其製程步驟如下: (1) 如「第圖」所示,於p-GaAs之接觸層7上蒸 鑛一層介電層(dieiectric layer) 8 ;並以微影 C photo 1 i thography )技術於磊晶月上製作所需的光阻 (photoresist)層9圖案,其係作為後續姓刻之遮罩 (mask ),此步驟目的在於定義雷射鏡面劈裂方向,故方 向與雷射波導方向呈垂直。 (2) 如「第1 c圖」所不,以活性離子银刻 (r e a c t i v e i 〇 n e t c h i n g,R I E )法或濕式钱刻法飯刻步 驟(1)所形成之介電層8至p-GaAs接觸層7露出;並且持續 以相同的RIE或濕钱刻依續蝕刻掉p-GaAs的接觸層7、 p-Ga。5In。5P 的減弱層 6、p-AlQ 5InQ 5P 或口-(人1〇 /a。3)fl 5 1110.5?的第二批覆層5、主動層4於11-八1().5111[)5?或 n-UUao 3)〇 5InQ.5P的第一批覆層3中停止,使第一批覆層 3露出。 (3) 如「第1D圖」所示,將試片置入一金屬有機化 學氣相沈積(M0CVD )機台之反應腔中,而於露出的第一 批覆層3上成長一窗戶層1 0,以填平步驟(2 )中所触刻出的 溝槽,窗戶層1 0例如選用為一未摻雜磷化鋁鎵銦半導體層The material of AlGaAs' is that the first and second batches of layers can be made of A 丨 GaAs. The first embodiment of the present invention is to form a laser semiconductor die with a ridged waveguide structure for the above-mentioned epitaxial wafer, and complete The components are shown in the "Figure 1F", and the process steps are as follows: (1) As shown in the "Figure", a dielectric layer 8 is deposited on the contact layer 7 of p-GaAs; and The required photoresist layer 9 pattern was fabricated on Lei Jingyue using the lithography C photo 1 i thography technology, which is used as a mask for subsequent name carving. The purpose of this step is to define the laser mirror split Split direction, so the direction is perpendicular to the laser waveguide direction. (2) As shown in "Figure 1c", contact the dielectric layer 8 formed in step (1) with p-GaAs by reactive ion silvering (RIE) method or wet coining method. The layer 7 is exposed; and the contact layers 7 and p-Ga of p-GaAs are successively etched away with the same RIE or wet money. 5In. 5P attenuating layer 6, p-AlQ 5InQ 5P or Mouth- (person 10 / a. 3) fl 5 1110.5? Second batch of cladding layer 5, active layer 4 at 11-Aug 1 (). 5111 [) 5? Or n-UUao 3) 〇5InQ.5P stopped in the first coating layer 3, so that the first coating layer 3 was exposed. (3) As shown in "Figure 1D", the test piece is placed in a reaction chamber of a metal organic chemical vapor deposition (MOCVD) machine, and a window layer 10 is grown on the exposed first coating layer 3 0 In order to fill in the trenches touched in step (2), the window layer 10 is selected, for example, as an undoped aluminum gallium indium semiconductor layer

第9頁 i '發明說明⑺ ’組成如下: (A lxGa!_x )〇 51 n0i 5P x = 0 〜! 而屢槽以外區域因有步驟(1)所形成的介電層8保護,將不 會成長窗戶層10的半導體材料。 (4)如「第1 E圖」所示,再以活性離子餘刻法或濕 式蝕刻法去除步驟(1 )之介電層8 ;並再以微影技術於磊晶 片製作另一光阻層11圖案,同樣作為蝕刻用之遮罩,方向 =與步驟(1)之光阻層9垂直,此步驟目的在於定義雷射波 導的方向。 :) (5 )再以活性離子钱刻法或濕式银刻法触刻半導體至 距離具量子井主動層4約〇1至〇.5 停止,之後再依一般 習知的製程直至晶粒完成為止,便可得如「圖i F」所示 的半導體雷射結構。 由「圖1 F」結果可知,本發明採用上述蝕刻出窗戶 層圖案,而後填入所選用的未摻雜磷化鋁鎵銦半導體層材 質作為窗戶層10,依主動層4成份,可選擇適當的义值,使 所开> 成的囪戶層10具有能帶差AEgi大於量子井主動層4的 能帶差ΔΕβ2,因此,鏡面12附近達成雷射光行經區域之 能帶差大於量子井的能帶差,使災難性光損害降低。 本發明所舉的第二個實施例為針對上述的磊晶片,形 成選擇性埋脊結構之雷射半導體晶粒,完成之元件如「第 2 G圖」所示’其製程步驟如下·· Π)如「第2Β圖」所示,於p_GaAs之接觸層γ上蒸 鍍一層介電層8 ;並以微影技術於磊晶片上製作所需的光Page 9 i 'Explanation of the invention' is composed as follows: (A lxGa! _X) 51 n0i 5P x = 0 ~! The area outside the trench is protected by the dielectric layer 8 formed in step (1), and the semiconductor material of the window layer 10 will not grow. (4) As shown in "Figure 1E", the dielectric layer 8 of step (1) is removed by active ion etching or wet etching; and another photoresist is fabricated on the wafer by lithography. The layer 11 pattern is also used as a mask for etching, and the direction = perpendicular to the photoresist layer 9 in step (1). This step aims to define the direction of the laser waveguide. :) (5) Then the semiconductor is etched by active ion money engraving or wet silver engraving to about 0 to 0.5 from the quantum well active layer 4 and then stopped, and then according to a conventional process until the grain is completed So far, you can get the semiconductor laser structure as shown in "Figure i F". It can be known from the results of "Fig. 1F" that the present invention uses the above-mentioned etching to pattern the window layer, and then fills in the selected undoped aluminum gallium indium semiconductor layer material as the window layer 10. According to the composition of the active layer 4, the appropriate selection can be made. The resulting value of the tunnel layer 10 has an energy band difference AEgi greater than the energy band difference ΔΕβ2 of the active layer 4 of the quantum well. Therefore, the energy band difference of the laser light passing region near the mirror 12 is greater than that of the quantum well. The energy band is poor, which reduces catastrophic light damage. The second embodiment of the present invention is directed to the above-mentioned epitaxial wafer to form a laser semiconductor die with a selective buried ridge structure. The completed device is shown in "Fig. 2G". The process steps are as follows: Π ) As shown in "Figure 2B", a dielectric layer 8 is deposited on the contact layer γ of p_GaAs; and the required light is produced on the wafer by lithography technology.

第10頁 五、發明說明(8) 阻層9圖案,其係作為後續蝕刻之遮罩,此步驟目的在 定義雷射鏡面劈裂方向,故方向與雷射波導方向呈垂直、。 如「第2 C圖」所示,以RIE或濕式蝕刻法蝕 步騾所形成之介電層8至p-GaAs接觸層7露出;並且梏 續以相同的RIE或濕蝕刻依續蝕刻掉p_GaAs的接觸層?、' 〇·3)〇.5 P-GaG.5Irv5P 的減弱層 6、p_Ai〇 5 Ιη“ρ 或^⑴。 的[第一 =層5、主動層4心為“以或n —(A1"Ga") 1如U層3中停止,使第一批覆層3露出: 第2D圖」所示,將試片置入一 學氣相沈積⑽CVD)機台之反應 露出屬有機介 批覆層3上成長一窗戶層1〇,以 而於路出的第二 溝槽’窗戶層丨〇例如選 ^ ^ : 所蝕刻出的 ,組成如下:U、用為未摻雜磷化銘鎵細半導體層 、 (A lxGa1-x )。51 η。5ρ χ = 〇 〜1 而溝槽以外區域因有步驟() 會成長窗戶層1 〇的半導體材料/、電層8保護,將不 (4) 如「第2E圖」所示,萬_、' 式蝕刻法去除步驟(丨)之介電層8 = f性離子蝕刻法或濕 -介電層1 3 ;並再以微影技術曰:::⑴,蒸鍍另 圖案,同樣作為蝕刻用之遮罩,古:片衣作另—光阻層11 ㈣直,此步驟目的在於定義雷方射 ==)之光阻 (5) 如「第2 F圖」所示,重射波/的方向。 (4)之介電層13至p-GaAs接觸層7 * ^ y驟(2)以蝕刻步驟 至距離量子井主動層約〇 !至〇曰R路出,並蝕刻雷射磊晶片 . υ · 3 “ m。 4 3 93 3 5 五、發明說明(9) (6)將試片置入MOCVD反應腔中成長n-GaAs做為電流 阻隔層1 4,將步驟(5)所蝕刻出的區域填平,區域以外欲 定義出之波導因有形成介電層13保護,將不會成長 η - G a A s ;再以活性離子飯刻法或濕式银刻法去除殘留之介 電層13,最後將试片置入MOCVD反應腔中成長p-GaAs做為 接觸層1 5,便可得如「圖2 G」所示的半導體雷射結構。 此外,此選擇性埋脊半導體雷射元件也可形成如「第 2H圖」或「第2 1圖」所示的結構。其中,「圖2h」 結構與「圖2 G」的差別在於成長窗戶層1 〇時機,係於長 完n-GaAs電流阻絕層14之後,重覆製作步驟(1)〜(3)及(4) 中去除介電層的程序。 而「圖2 I」結構則為先作步驟(5 )及(6 ),長完 p-GaAs接觸層15之後,施行步驟(1 及(4)中去除介電 層的程序即可。 同樣地’由「圖2 G〜2 I」的結果可知,本發明採 =以I虫刻出窗戶層圖案’而後填入所選用的未摻雜磷化鋁 錄翻!半導體層材質作為窗戶層1〇,可使得所形成的窗戶層 10具有能帶差△ Eg 1大於量子井主動層4的能帶差A Eg2, 因此」鏡面12附近達成雷射光行經區域之能帶差大於量子 井的能帶差’使災難性光損害(⑶〇 )能降低。 —雖然本發明已以較佳實施例揭露如上,然其並非用以 限=本發明’任何熟習此技藝者,在不脫離本發明之精神 =朝4圍内’當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Page 10 V. Description of the invention (8) The pattern of the resist layer 9 is used as a mask for subsequent etching. The purpose of this step is to define the laser mirror splitting direction, so the direction is perpendicular to the laser waveguide direction. As shown in "Figure 2C", the dielectric layers 8 to p-GaAs contact layer 7 formed by the RIE or wet etching step are exposed; and successively etched away by the same RIE or wet etching Contact layer of p_GaAs? , '〇 · 3) 〇.5 P-GaG.5Irv5P attenuating layer 6, p_Ai〇5 Ιη "ρ or ^ ⑴. [First = layer 5, active layer 4 center is" with or n — (A1 " Ga ") 1 As the U layer 3 stops, the first batch of coatings 3 are exposed: as shown in Figure 2D, the test piece is placed in a CVD (CVD) machine and the reaction is exposed on the organic coating 3 A window layer 10 is grown, so that the second trench 'window layer' exiting from the path is selected, for example: etched, the composition is as follows: U, used as an undoped phosphide gallium thin semiconductor layer, (A lxGa1-x). 51 η. 5ρ χ = 〇 ~ 1 and the area outside the trench will be protected by the semiconductor material / electrical layer 8 that will grow the window layer 10 because of the step (). (4) As shown in "Figure 2E", _, ' The dielectric layer 8 of the step (丨) is removed by a conventional etching method. The f-type ion etching method or the wet-dielectric layer 1 3 is used. Then, the lithography technique is used to say :: ⑴, another pattern is evaporated, and it is also used for etching. Mask, ancient: the piece of clothing is made another—the photoresist layer 11 is straightened. The purpose of this step is to define the photoresistance of the laser shot ==) (5) As shown in "Figure 2F", the direction of the re-radiated wave / . (4) The dielectric layer 13 to the p-GaAs contact layer 7 * ^ y step (2) The etching step to the distance from the quantum well active layer is about 0! To 〇 R, and the laser wafer is etched. Υ · 3 "m. 4 3 93 3 5 V. Description of the invention (9) (6) Place the test piece in the MOCVD reaction chamber to grow n-GaAs as the current blocking layer 1 4 and the area etched in step (5) Fill out, the waveguides to be defined outside the area will not grow η-G a A s because of the formation of the dielectric layer 13; then the remaining dielectric layer 13 is removed by active ion rice engraving or wet silver engraving. Finally, the test piece is placed in a MOCVD reaction chamber to grow p-GaAs as the contact layer 15 to obtain a semiconductor laser structure as shown in FIG. 2G. In addition, this selective buried ridge semiconductor laser element can also be formed into a structure as shown in "Fig. 2H" or "Fig. 21". The difference between the "Figure 2h" structure and the "Figure 2G" is the timing of growing the window layer 10, which is after repeating the n-GaAs current blocking layer 14 and repeating the manufacturing steps (1) to (3) and (4) ) Procedure to remove the dielectric layer. For the "Figure 2I" structure, steps (5) and (6) are performed first. After the p-GaAs contact layer 15 is grown, the procedures of removing the dielectric layer in steps (1 and (4)) can be performed. 'From the results of "Fig. 2 G ~ 2 I", it can be seen that the present invention adopts the method of engraving the window layer pattern with I insects', and then fills in the selected undoped aluminum phosphide. The semiconductor layer material is used as the window layer. Can make the formed window layer 10 have an energy band difference Δ Eg 1 greater than the energy band difference A Eg2 of the active layer 4 of the quantum well, therefore, the energy band difference of the laser light passing region near the mirror 12 is greater than the energy band difference of the quantum well. 'Enable catastrophic photodamage (CD0) can be reduced.-Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit = the present invention' Anyone skilled in this art will not depart from the spirit of the present invention = "Chao 4 Wai" should be able to make some changes and retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.

第12頁Page 12

Claims (1)

1 4 3 93 3 5 六、申請專利範圍 1 、一種半導體雷射製程,至少包括下列步驟: 提供一具層狀結構的磊晶片,其包含依序成長在一基 板上的一第一批覆層、一主動層及一第二批覆層; 形成一介電層於該遙晶片, #刻部份該介電層及其底下的該蟲晶片,直到部份該 第一批覆層也被移除並曝露出; 成長一窗戶層於露出的該第一批覆層上,以填充被Ί虫 刻掉的該磊晶片部份,使該窗戶層形成於該磊晶片 的光逸出鏡面,且具有能帶差大於該主動層的能帶 差;以及 除去該介電層,並進行後續結構形成的步驟。 2、 如申請專利範圍第1項所述之半導體雷射製程,其中 該磊晶片的層狀結構依序包含該基板、一緩衝層、該 第一批覆層、該主動層、該第二批覆層、一減弱層以 及一接觸層。 3、 如申請專利範圍第1項所述之半導體雷射製程,其中 該第一批覆層為一η型半導體層,而該第二批覆層為 一 Ρ型半導體層。 4、 如申請專利範圍第3項所述之半導體雷射製程,其中 該η型半導體層為選自一 η型磷化鋁銦或磷化鋁鎵銦半 導體層中任一者。 5 、如申請專利範圍第3項所述之半導體雷射製程,其中 該Ρ型半導體層為選自一Ρ型磷化鋁銦或磷化鋁鎵銦半 導體層中任一者。1 4 3 93 3 5 VI. Scope of Patent Application 1. A semiconductor laser manufacturing process includes at least the following steps: Provide a layered structure of an epitaxial wafer, which includes a first batch of cladding layers sequentially grown on a substrate, An active layer and a second batch of cladding layers; a dielectric layer is formed on the remote wafer, and a part of the dielectric layer and the worm wafer underneath are engraved until a portion of the first batch of coatings are also removed and exposed Grow; a window layer is grown on the exposed first cover layer to fill the portion of the epitaxial wafer carved by the tapeworm, so that the window layer is formed on the epitaxial light of the epitaxial wafer and has a band difference Greater than the energy band difference of the active layer; and removing the dielectric layer and performing the subsequent structure formation steps. 2. The semiconductor laser manufacturing process as described in item 1 of the scope of the patent application, wherein the layered structure of the epitaxial wafer includes the substrate, a buffer layer, the first coating layer, the active layer, and the second coating layer in order. , A weakened layer, and a contact layer. 3. The semiconductor laser process described in item 1 of the scope of the patent application, wherein the first batch of coating layers is an n-type semiconductor layer, and the second batch of coating layers is a p-type semiconductor layer. 4. The semiconductor laser manufacturing process as described in item 3 of the patent application scope, wherein the n-type semiconductor layer is any one selected from an n-type aluminum indium phosphide or an aluminum gallium indium semiconductor layer. 5. The semiconductor laser manufacturing process as described in item 3 of the patent application scope, wherein the P-type semiconductor layer is any one selected from a P-type aluminum indium phosphide or an aluminum gallium indium semiconductor layer. 第13頁 六、申請專利範圍 導體層中任一者。 1 4、如申請專利範圍第1 2項所述之半導體雷射,其中 該P型半導體層為選自一 P型磷化鋁銦或磷化鋁鎵銦半 導體層中任一者。 1 5、如申請專利範圍第1 1項所述之半導體雷射,其中 該麟化紹録姻半導體之組成為· (AlxGa 1 -X aQ. 6、 如申請專利範圍第1 1項所述之半導體雷射係為 脊狀波導半導體雷射元件。 7、 如申請專利範圍第1 1項所述之半導體雷射係為 選擇性埋脊半導體雷射元件。Page 13 6. Scope of Patent Application Any of the conductor layers. 14. The semiconductor laser according to item 12 of the scope of the patent application, wherein the P-type semiconductor layer is any one selected from a P-type aluminum indium phosphide or an aluminum gallium indium semiconductor layer. 15. The semiconductor laser as described in item 11 of the scope of patent application, wherein the composition of the Linhua Shaolu semiconductor is: (AlxGa 1 -X aQ. 6. As described in item 11 of the scope of patent application The semiconductor laser system is a ridge waveguide semiconductor laser element. 7. The semiconductor laser system described in item 11 of the scope of patent application is a selective buried ridge semiconductor laser element. 第15頁Page 15
TW88118469A 1999-10-26 1999-10-26 A semiconductor laser and the fabrication method thereof TW439335B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88118469A TW439335B (en) 1999-10-26 1999-10-26 A semiconductor laser and the fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88118469A TW439335B (en) 1999-10-26 1999-10-26 A semiconductor laser and the fabrication method thereof

Publications (1)

Publication Number Publication Date
TW439335B true TW439335B (en) 2001-06-07

Family

ID=21642767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88118469A TW439335B (en) 1999-10-26 1999-10-26 A semiconductor laser and the fabrication method thereof

Country Status (1)

Country Link
TW (1) TW439335B (en)

Similar Documents

Publication Publication Date Title
US4639275A (en) Forming disordered layer by controlled diffusion in heterojunction III-V semiconductor
JP2686764B2 (en) Method for manufacturing optical semiconductor device
US6984538B2 (en) Method for quantum well intermixing using pre-annealing enhanced defects diffusion
US5013684A (en) Buried disordering sources in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth
JP3734849B2 (en) Manufacturing method of semiconductor laser device
EP0225772B1 (en) Method of producing semiconductor laser
JPH06296060A (en) Manufacture of visible light semiconductor laser diode
JP3188728B2 (en) Method for producing quantum wires by photoinduced evaporation enhancement during in situ epitaxial growth
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP4002422B2 (en) Semiconductor device and manufacturing method thereof
JP3459003B2 (en) Semiconductor device and manufacturing method thereof
TW439335B (en) A semiconductor laser and the fabrication method thereof
US5194400A (en) Method for fabricating a semiconductor laser device using (Alx Ga1-x)y In1-y P semiconductor clad layers
JP3792003B2 (en) Semiconductor light emitting device
US5674779A (en) Method for fabricating a ridge-shaped laser in a channel
JPS61107782A (en) Compound semiconductor device
JP2780625B2 (en) Manufacturing method of semiconductor laser
JPH053332A (en) Tandem hetero-photoelectric conversion element and its manufacture
JPH05343801A (en) Manufacture of multiwavelength laser
GB2302986A (en) Semiconductor laser
JP3314794B2 (en) Semiconductor laser and method of manufacturing the same
KR100261243B1 (en) Laser diode and its manufacturing method
US5559821A (en) Semiconductor laser
JPS6025287A (en) Compound semiconductor device and manufacture thereof
KR100330591B1 (en) Method of making semiconductor laser diode

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees