JP2737705B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP2737705B2
JP2737705B2 JP7159408A JP15940895A JP2737705B2 JP 2737705 B2 JP2737705 B2 JP 2737705B2 JP 7159408 A JP7159408 A JP 7159408A JP 15940895 A JP15940895 A JP 15940895A JP 2737705 B2 JP2737705 B2 JP 2737705B2
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor film
band gap
thickness
light reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7159408A
Other languages
Japanese (ja)
Other versions
JPH098339A (en
Inventor
隆一 中園
恒弘 海野
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7159408A priority Critical patent/JP2737705B2/en
Publication of JPH098339A publication Critical patent/JPH098339A/en
Application granted granted Critical
Publication of JP2737705B2 publication Critical patent/JP2737705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell.

【0002】[0002]

【従来の技術】太陽電池はクリーンエネルギー源として
注目されているが、太陽電池の製造コストが高いため、
既存の商用電源と比べて発電コストが高くなり実用化の
大きな障害となっている。そこで、発電コストを低下さ
せるべく変換効率を高くするための開発が行われてい
る。
2. Description of the Related Art Solar cells are attracting attention as a clean energy source. However, due to the high cost of manufacturing solar cells,
Power generation costs are higher than existing commercial power sources, which is a major obstacle to practical application. Therefore, development for increasing the conversion efficiency to reduce the power generation cost has been performed.

【0003】これまで単一材料の太陽電池の高効率化が
進められ、実用化が試みられている。高効率化の観点で
は、太陽電池を構成する材料として、GaAs系化合物
半導体が非常に優れており、25%余りの変換効率が得
られている。
Up to now, solar cells made of a single material have been improved in efficiency, and practical use has been attempted. From the viewpoint of increasing the efficiency, a GaAs-based compound semiconductor is very excellent as a material constituting a solar cell, and a conversion efficiency of about 25% is obtained.

【0004】しかし、太陽電池の構成材料にGaAs系
化合物半導体を用い、基板にGaAsを用いた場合、製
造コストが非常に高くなり、発電コストが高くなってし
まう。発電コストを低下させるためには、変換効率を向
上させると共に製造コストを低下させなければならな
い。また、高効率を得るためには、バンドギャップエネ
ルギーの異なる複数の太陽電池を積層した構造としなけ
ればならない。
However, when a GaAs-based compound semiconductor is used as a constituent material of a solar cell and GaAs is used as a substrate, the production cost becomes extremely high, and the power generation cost becomes high. In order to reduce the power generation cost, it is necessary to improve the conversion efficiency and reduce the production cost. In addition, in order to obtain high efficiency, a structure in which a plurality of solar cells having different band gap energies are stacked is required.

【0005】すなわち、太陽電池の入射側(上部)にバ
ンドギャップエネルギーの大きな半導体材料からなる太
陽電池を、その下部にバンドギャップエネルギーの小さ
な半導体材料からなる太陽電池を配置することである。
上部では太陽光スペクトルの短波長域の光が吸収され、
その光が光電変換される。下部では上部で吸収されず透
過した残りの長波長域の太陽光スペクトルが光電変換さ
れる。このように太陽光スペクトルを分割利用すること
により太陽光エネルギーを有効に電気エネルギーに変換
することができる。
That is, a solar cell made of a semiconductor material having a large band gap energy is arranged on the incident side (upper part) of the solar cell, and a solar cell made of a semiconductor material having a small band gap energy is arranged below the solar cell.
In the upper part, light in the short wavelength region of the solar spectrum is absorbed,
The light is photoelectrically converted. At the lower part, the sunlight spectrum of the remaining long wavelength region which is absorbed and transmitted by the upper part is photoelectrically converted. By dividing and using the solar spectrum in this way, solar energy can be effectively converted to electric energy.

【0006】ここでHenryらの理論計算によると2
層構造の太陽電池で変換効率50%を達成できる可能性
が示されている(CH.Henry,“Limiting Efficiency of I
dealSin- gle and Multiple Energy Gap Terrestrial S
olar Cells ”J.Appl.Phys.51 4494(1980))。例えば、
GaAs太陽電池とAlGaAs太陽電池とをトンネル
接合中間層を用いて接続した2段の積層型太陽電池が提
案されている。
According to the theoretical calculation of Henry et al.
It has been shown that a conversion efficiency of 50% can be achieved with a layered solar cell (CH. Henry, “Limiting Efficiency of I
dealSingle and Multiple Energy Gap Terrestrial S
olar Cells "J. Appl. Phys. 51 4494 (1980)). For example,
A two-stage stacked solar cell in which a GaAs solar cell and an AlGaAs solar cell are connected by using a tunnel junction intermediate layer has been proposed.

【0007】製造コストを下げるためには安価な基板の
使用と太陽電池構成材料の節約とを行わなければならな
い。基板については現在用いられているGaAsをSi
に変えることが提案されている。また太陽電池構成材料
の節約については太陽電池の薄膜化が望ましい。
[0007] In order to reduce the manufacturing cost, it is necessary to use an inexpensive substrate and to save solar cell constituent materials. For the substrate, the currently used GaAs is replaced by Si.
It is proposed to change to Further, in order to save solar cell constituent materials, it is desirable to make the solar cell thinner.

【0008】図3は従来の太陽電池の断面図である。FIG. 3 is a sectional view of a conventional solar cell.

【0009】各層の成長には有機金属気相成長法(MO
VPE法)を用いた。Ga、Al、Asの原料にはそれ
ぞれトリメチルガリウム(TMG)、トリメチルアルミ
ニウム(TMA)、アルシン(AsH 3 )を用いた。n
型、p型のドーパントにはそれぞれジシラン(Si
6 )、ジエチル亜鉛(DEZn)を用いた。成長温度
は725℃である。(110)方向に2°傾けた(10
0)面の厚さ350μm、キャリア濃度5.0×1017
cm-3のn型GaAs基板1上に厚さ4.0μm、キャ
リア濃度5.0×1017cm-3のn型GaAs層2を成
長させ、その上に厚さ0.5μm、キャリア濃度1.0
×1018cm-3のp型GaAs層3を成長させてpn接
合を形成し、その上に厚さ0.05μm、キャリア濃度
1.0×1018cm-3のp型Al 0.85 Ga 0.15 As層
4、0.2μm、キャリア濃度1.0×1019cm-3
p型GaAs層5を順次成長させた。成長膜厚は4.7
5μmである。また、n型GaAs層2の膜厚を2.0
μmとした結晶も成長させた。p型Al 0.85 Ga 0.15
s層4は表面再結合を抑えるウィンドウ層である。p型
GaAs層5は電極との接触抵抗を下げるための層であ
る。この結晶の表面及び裏面には電極6、7が形成され
ている。
Each layer is grown by metal organic chemical vapor deposition (MO).
VPE method). Trimethyl gallium (TMG), trimethyl aluminum (TMA) and arsine (AsH 3 ) were used as the raw materials for Ga, Al and As, respectively. n
Disilane (Si)
H 6 ) and diethyl zinc (DEZn) were used. The growth temperature is 725 ° C. (10) tilted 2 ° (10
0) Plane thickness 350 μm, carrier concentration 5.0 × 10 17
The thickness 4.0μm on the n-type GaAs substrate 1 cm -3, an n-type GaAs layer 2 having a carrier concentration 5.0 × 10 17 cm -3 is grown, the thickness of 0.5μm thereon, a carrier concentration of 1 .0
A p-type GaAs layer 3 of × 10 18 cm −3 is grown to form a pn junction, and a p-type Al 0.85 Ga 0.15 As with a thickness of 0.05 μm and a carrier concentration of 1.0 × 10 18 cm −3 is formed thereon. Layer 4, a p-type GaAs layer 5 having a carrier concentration of 1.0 × 10 19 cm −3 and a thickness of 0.2 μm were sequentially grown. The grown film thickness is 4.7
5 μm. Further, the thickness of the n-type GaAs layer 2 is set to 2.0
Crystals having a size of μm were also grown. p-type Al 0.85 Ga 0.15 A
The s layer 4 is a window layer that suppresses surface recombination. The p-type GaAs layer 5 is a layer for reducing the contact resistance with the electrode. Electrodes 6 and 7 are formed on the front and back surfaces of the crystal.

【0010】[0010]

【発明が解決しようとする課題】ところで先に述べたS
i基板を用いた高効率のGaAs系太陽電池で高効率を
得るためには3μmから4μmの厚さが必要である。さ
らに効率を高くするには太陽電池を積層しなければなら
ないが膜厚が厚くなってしまう。
However, the above-mentioned S
A high efficiency GaAs solar cell using an i-substrate requires a thickness of 3 μm to 4 μm in order to obtain high efficiency. In order to further increase the efficiency, the solar cells must be stacked, but the film thickness increases.

【0011】しかしながら、基板であるSiと太陽電池
を構成するGaAs系結晶とはその格子定数や熱膨張係
数が異なるため、Si上にGaAs系結晶を3μm以上
の厚さに成長させるとクラックが発生し、結晶欠陥が多
量に発生してしまう。この結晶欠陥は、光電変換によっ
てできた電荷を消滅させる再結合の中心として働いてし
まい、大幅な効率低下を招いてしまう。
However, since the lattice constant and the coefficient of thermal expansion of the substrate Si and the GaAs crystal constituting the solar cell are different, cracks occur when the GaAs crystal is grown to a thickness of 3 μm or more on Si. However, a large number of crystal defects are generated. This crystal defect works as a center of recombination for extinguishing the charge generated by the photoelectric conversion, resulting in a significant decrease in efficiency.

【0012】そこで、本発明の目的は、上記課題を解決
し、膜厚が薄膜の状態で十分な光電変換率を得ることが
できる太陽電池を提供することにある。
Accordingly, an object of the present invention is to solve the above problems and to provide a solar cell capable of obtaining a sufficient photoelectric conversion rate in a thin film state.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明は、基板上にpn接合からなる半導体を設けた
太陽電池において、pn接合と基板との間に光反射用半
導体膜を設けたものである。
In order to achieve the above object, the present invention provides a solar cell in which a semiconductor comprising a pn junction is provided on a substrate, wherein a light reflecting semiconductor film is provided between the pn junction and the substrate. It is a thing.

【0014】光反射用半導体膜が単層または複数層であ
り、下記の数式 150/n<d<1240/(2・Eg・n) 但し、nは光反射用半導体膜の屈折率、dは光反射用半
導体膜の膜厚(nm)、Egは太陽電池のバンドギャッ
プエネルギー(eV)を満足することが好ましい。
The light reflecting semiconductor film is a single layer or a plurality of layers, and the following formula: 150 / n <d <1240 / (2 · Eg · n) where n is the refractive index of the light reflecting semiconductor film, and d is It is preferable that the film thickness (nm) and Eg of the semiconductor film for light reflection satisfy the band gap energy (eV) of the solar cell.

【0015】また本発明は、基板上にpn接合からなり
バンドギャップエネルギーが異なる半導体が2層積層さ
れた太陽電池において、各pn接合と基板との間に光反
射用半導体膜を設け、各光反射用半導体膜が下記の数式 150/n<d 1 <1240/(2・Eg 1 ・n)<d 2 <124
0/(2・Eg 2 ・n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は下層光反射用半導体膜の膜厚(nm)、Eg 1 は上
層太陽電池のバンドギャップエネルギー(eV)、Eg
2 は下層太陽電池のバンドギャップエネルギー(eV)
を満足するものである。
Further, according to the present invention, in a solar cell having two layers of semiconductors having different band gap energies each composed of a pn junction on a substrate, a light reflecting semiconductor film is provided between each pn junction and the substrate. The semiconductor film for reflection has the following formula: 150 / n <d 1 <1240 / (2 · Eg 1 · n) <d 2 <124
0 / (2 · Eg 2 · n) where d 1 is the film thickness (nm) of the upper light reflecting semiconductor film, d
2 is the film thickness (nm) of the lower light reflecting semiconductor film, Eg 1 is the band gap energy (eV) of the upper solar cell, Eg
2 is the band gap energy (eV) of the lower solar cell
Is satisfied.

【0016】さらに本発明は、基板上にpn接合からな
りバンドギャップエネルギーが異なる半導体が3層積層
された太陽電池において、各pn接合と基板との間に光
反射用半導体膜を設け、各光反射用半導体膜が下記の数
式 150/n<d 1 <1240/(2・Eg 1 ・n)<d 2 <124
0/(2・Eg 2 ・n)<d 3 <1240/(2・Eg 3
n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は中層光反射用半導体膜の膜厚(nm)、d 3 は下層
光反射用半導体膜の膜厚(nm)、Eg 1 は上層太陽電
池のバンドギャップエネルギー(eV)、Eg 2 は中層
太陽電池のバンドギャップエネルギー(eV)、Eg 3
は下層太陽電池のバンドギャップエネルギー(eV)を
満足するものである。
Further, the present invention provides a solar cell comprising three layers of semiconductors having different band gap energies comprising pn junctions on a substrate, wherein a light reflecting semiconductor film is provided between each pn junction and the substrate. The semiconductor film for reflection has the following formula: 150 / n <d 1 <1240 / (2 · Eg 1 · n) <d 2 <124
0 / (2 · Eg 2 · n) <d 3 <1240 / (2 · Eg 3 ·
n) where d 1 is the thickness (nm) of the upper light reflecting semiconductor film, d
2 is the thickness (nm) of the middle light reflecting semiconductor film, d 3 is the thickness of the lower light reflecting semiconductor film (nm), Eg 1 is the band gap energy (eV) of the upper solar cell, and Eg 2 is the middle solar light. Battery band gap energy (eV), Eg 3
Satisfy the band gap energy (eV) of the lower solar cell.

【0017】[0017]

【作用】上記構成によれば、太陽電池に入射した光がp
n接合に入射して光電変換され、pn接合で吸収されず
透過した残りの光が光反射用半導体膜で反射して再度p
n接合に戻されて光電変換されるので、膜厚が薄膜の状
態でも十分な光電変換率を得ることができる。
According to the above arrangement, the light incident on the solar cell is p
The remaining light that is incident on the n-junction and is photoelectrically converted and is not absorbed by the pn-junction but is transmitted is reflected by the light-reflecting semiconductor film and is re-emitted.
Since the photoelectric conversion is returned to the n-junction, a sufficient photoelectric conversion rate can be obtained even when the film thickness is thin.

【0018】[0018]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0019】図1は本発明の太陽電池の一実施例の断面
図である。
FIG. 1 is a sectional view of one embodiment of the solar cell of the present invention.

【0020】基本的には図3に示した従来の太陽電池と
同様な方法、基板を用い、共通の部材には共通の符号を
用いた。
Basically, the same method and substrate as in the conventional solar cell shown in FIG. 3 were used, and common members were denoted by common reference numerals.

【0021】まず、GaAs基板1上に0.075μ
m、5.0×1017cm-3のn型Al 0.2 Ga 0.8 As
層と0.075μm、5.0×1017cm-3のn型Al
0.9 Ga 0.1 As層とを交互に3回ずつ計6回成長させ
た層8を形成した後、膜厚を1.0μmとした5.0×
1017cm-3のn型GaAs層2を成長させ、その上に
0.5μm、1.0×1013cm-3のp型GaAs層3
を成長させてpn接合を形成し、0.05μm、1.0
×1018cm-3のp型Al 0.85 Ga 0.15 As層4、0.
2μm、1.0×1019cm-3のp型GaAs層5を順
次成長させた。成長膜厚は2.20μmである。そし
て、結晶の表面及び裏面に電極6、7を形成した。層8
はGaAsの吸収端波長より短波長の光を反射させる光
反射用半導体膜であり、この層8の膜厚0.075μm
は数1より求めた。
First, 0.075 μm on the GaAs substrate 1
m, 5.0 × 10 17 cm -3 n-type Al 0.2 Ga 0.8 As
Layer and n-type Al of 0.075 μm, 5.0 × 10 17 cm -3
After forming a layer 8 in which a 0.9 Ga 0.1 As layer was alternately grown three times, that is, six times in total, 5.0 × with a thickness of 1.0 μm was formed.
A 10 17 cm −3 n-type GaAs layer 2 is grown, and a 0.5 μm, 1.0 × 10 13 cm −3 p-type GaAs layer 3 is formed thereon.
To form a pn junction, 0.05 μm, 1.0 μm
× 10 18 cm -3 p-type Al 0.85 Ga 0.15 As layer 4, 0.
A p-type GaAs layer 5 of 2 μm and 1.0 × 10 19 cm −3 was sequentially grown. The grown film thickness is 2.20 μm. Then, electrodes 6 and 7 were formed on the front and back surfaces of the crystal. Layer 8
Is a light-reflecting semiconductor film for reflecting light having a wavelength shorter than the absorption edge wavelength of GaAs, and the thickness of this layer 8 is 0.075 μm.
Was determined from Equation 1.

【0022】[0022]

【数1】150/n<d<1240/(2・Eg・n) 但し、nは光反射用半導体膜の屈折率、dは光反射用半
導体膜の膜厚(nm)、Egは太陽電池のバンドギャッ
プエネルギー(eV)をそれぞれ示す。
150 / n <d <1240 / (2 · Eg · n) where n is the refractive index of the light-reflecting semiconductor film, d is the film thickness (nm) of the light-reflecting semiconductor film, and Eg is the solar cell. Are respectively shown.

【0023】本実施例の成長膜厚2.20μmは、従来
技術による成長膜厚4.75μmに比べて54%も薄く
なっている。尚、太陽電池の表面には、結晶表面での反
射を抑えるため反射防止膜が設けられるが、ここでは従
来技術と本発明とを比較するために必要ないので設けて
いない。
The growth film thickness of 2.20 μm in this embodiment is 54% smaller than the growth film thickness of 4.75 μm according to the prior art. An antireflection film is provided on the surface of the solar cell to suppress reflection on the crystal surface, but is not provided here because it is not necessary to compare the prior art with the present invention.

【0024】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0025】太陽電池に光9が入射するとp型Al 0.85
Ga 0.15 As層4及びp型GaAs層3を透過してpn
接合面Cpnに到達し、太陽光スペクトルの短波長域の
光が光電変換される。n型GaAs層2で吸収されず透
過した残りの長波長域の太陽光スペクトルの光は、層8
で反射されて再度n型GaAs層2を透過して裏側(図
では下側)からpn接合面Cpnに到達して光電変換さ
れ、電極6、7から電流として取り出すことができる。
このため、太陽光スペクトルを分割利用することにな
り、有効に太陽光エネルギーを電気エネルギーに変換さ
れ、膜厚が薄膜の状態でも十分な光電変換率を得ること
ができる。
When light 9 is incident on the solar cell, p-type Al 0.85
After passing through the Ga 0.15 As layer 4 and the p-type GaAs layer 3, pn
Light that reaches the bonding surface Cpn and is in a short wavelength region of the sunlight spectrum is photoelectrically converted. The light of the remaining long wavelength region of the sunlight spectrum which is not absorbed and transmitted by the n-type GaAs layer 2 is applied to the layer 8.
At the pn junction surface Cpn from the back side (the lower side in the figure), is photoelectrically converted, and can be extracted from the electrodes 6 and 7 as a current.
For this reason, the solar spectrum is divided and used, so that solar energy is effectively converted into electric energy, and a sufficient photoelectric conversion rate can be obtained even in a thin film state.

【0026】ここで3つの太陽電池の真性変換効率を測
定したところ、従来の太陽電池はn型GaAs層2が
4.0μmのとき16.8%で、2.0μmのとき1
4.5%であった。これに対して本実施例の太陽電池は
真性変換効率が16.5%であった。
When the intrinsic conversion efficiencies of the three solar cells were measured, the conventional solar cell was 16.8% when the n-type GaAs layer 2 was 4.0 μm, and 1% when the n-type GaAs layer 2 was 2.0 μm.
It was 4.5%. In contrast, the solar cell of this example had an intrinsic conversion efficiency of 16.5%.

【0027】従来の太陽電池の場合はn型GaAs層2
が4.0μmから2.0μmへ薄くなったことにより、
変換効率で2.3%(比率で14%)低下した。これに
対して本実施例の太陽電池の場合は従来の4.0μmの
GaAs層を有するものと略同等の性能を発揮したこと
になる。
In the case of a conventional solar cell, the n-type GaAs layer 2
Is reduced from 4.0 μm to 2.0 μm,
The conversion efficiency decreased by 2.3% (14% in ratio). On the other hand, in the case of the solar cell of this example, the performance was substantially the same as that of the conventional solar cell having the 4.0 μm GaAs layer.

【0028】図2は図1に示した太陽電池と図3に示し
た従来の太陽電池とを比較するための分光感度曲線であ
り、横軸が光の波長を示し、縦軸が量子効率をそれぞれ
示している。曲線10、11は従来の太陽電池の特性曲
線であり、曲線12は本実施例の太陽電池の特性曲線で
ある。曲線10はn型GaAs層2の厚さが4.0μ
m、曲線11はn型GaAs層2の厚さが2.0μm、
曲線12はn型GaAs層2の厚さが1.0μmの場合
をそれぞれ示している。
FIG. 2 is a spectral sensitivity curve for comparing the solar cell shown in FIG. 1 with the conventional solar cell shown in FIG. 3. The horizontal axis indicates the wavelength of light, and the vertical axis indicates the quantum efficiency. Each is shown. Curves 10 and 11 are characteristic curves of the conventional solar cell, and curve 12 is a characteristic curve of the solar cell of this embodiment. Curve 10 shows that the thickness of the n-type GaAs layer 2 is 4.0 μm.
m, curve 11 indicates that the thickness of the n-type GaAs layer 2 is 2.0 μm,
Curve 12 shows the case where the thickness of the n-type GaAs layer 2 is 1.0 μm.

【0029】同図より曲線10、11よりn型GaAs
層2の厚さが薄くすると、650μmから870μmの
波長領域で感度が低下するのがわかる。これに対して本
実施例の太陽電池はn型GaAs層2の厚さが1.0μ
mしかないのに従来のn型GaAs層2の厚さが4.0
μmの太陽電池と略同等の感度を有しているのがわか
る。これは、n型GaAs層2を一度透過した650μ
mから870μmの波長領域の光を層8で反射させ、再
びn型GaAs層2に戻して有効に利用していることを
示している。
As shown in FIG.
It can be seen that when the thickness of the layer 2 is reduced, the sensitivity is reduced in the wavelength region from 650 μm to 870 μm. On the other hand, in the solar cell of this embodiment, the thickness of the n-type GaAs layer 2 is 1.0 μm.
m, but the thickness of the conventional n-type GaAs layer 2 is 4.0.
It can be seen that the sensitivity is substantially the same as that of a solar cell of μm. This is due to the fact that 650 μm once transmitted through the n-type GaAs layer 2.
This indicates that light in the wavelength range from m to 870 μm is reflected by the layer 8 and returned to the n-type GaAs layer 2 for effective use.

【0030】尚、本実施例では太陽電池が1層(pn接
合面Cpnが1つ)の場合で説明したが、これに限定さ
れるものではなく、2層や3層であってもよい。
In this embodiment, the case where the solar cell has one layer (one pn junction surface Cpn) has been described. However, the present invention is not limited to this, and two or three layers may be used.

【0031】2層の場合には光反射用半導体膜の厚さは
数2を満足するように設定される。
In the case of two layers, the thickness of the light reflecting semiconductor film is set so as to satisfy Equation 2.

【0032】[0032]

【数2】150/n<d 1 <1240/(2・Eg 1 ・n)<
2 <1240/(2・Eg 2 ・n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は下層光反射用半導体膜の膜厚(nm)、Eg 1 は上
層太陽電池のバンドギャップエネルギー(eV)、Eg
2 は下層太陽電池のバンドギャップエネルギー(eV)
をそれぞれ示す。
[Equation 2] 150 / n <d 1 <1240 / (2 · Eg 1 · n) <
d 2 <1240 / (2 · Eg 2 · n) where d 1 is the film thickness (nm) of the upper light reflecting semiconductor film, d
2 is the film thickness (nm) of the lower light reflecting semiconductor film, Eg 1 is the band gap energy (eV) of the upper solar cell, Eg
2 is the band gap energy (eV) of the lower solar cell
Are respectively shown.

【0033】3層の場合には光反射用半導体膜の厚さは
数3を満足するように設定される。
In the case of three layers, the thickness of the light reflecting semiconductor film is set so as to satisfy Equation 3.

【0034】[0034]

【数3】150/n<d 1 <1240/(2・Eg 1 ・n)<
2 <1240/(2・Eg 2 ・n)<d 3 <1240/(2・
Eg 3 ・n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は中層光反射用半導体膜の膜厚(nm)、d 3 は下層
光反射用半導体膜の膜厚(nm)、Eg 1 は上層太陽電
池のバンドギャップエネルギー(eV)、Eg 2 は中層
太陽電池のバンドギャップエネルギー(eV)、Eg 3
は下層太陽電池のバンドギャップエネルギー(eV)を
それぞれ示す。
[Equation 3] 150 / n <d 1 <1240 / (2 · Eg 1 · n) <
d 2 <1240 / (2 · Eg 2 · n) <d 3 <1240 / (2 ·
Eg 3 · n) where d 1 is the film thickness (nm) of the upper light reflecting semiconductor film, d
2 is the thickness (nm) of the middle light reflecting semiconductor film, d 3 is the thickness of the lower light reflecting semiconductor film (nm), Eg 1 is the band gap energy (eV) of the upper solar cell, and Eg 2 is the middle solar light. Battery band gap energy (eV), Eg 3
Indicates the band gap energy (eV) of the lower solar cell.

【0035】以上において、本実施例によれば太陽電池
に入射した光がpn接合に入射して光電変換され、pn
接合で吸収されず透過した残りの光が光反射用半導体膜
で反射されて再度pn接合に入射して光電変換されるの
で、膜厚が薄膜の状態でも十分な光電変換率を得ること
ができる。
As described above, according to this embodiment, the light incident on the solar cell is incident on the pn junction and is photoelectrically converted.
The remaining light that is not absorbed and transmitted by the junction is reflected by the light-reflecting semiconductor film, again enters the pn junction, and is photoelectrically converted. Therefore, a sufficient photoelectric conversion rate can be obtained even when the film thickness is thin. .

【0036】[0036]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0037】(1) 膜厚が薄膜の状態で十分な光電変換率
を得ることができる。
(1) A sufficient photoelectric conversion rate can be obtained in a thin film state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of a solar cell of the present invention.

【図2】図1に示した太陽電池と図3に示した従来の太
陽電池とを比較するための分光感度曲線である。
FIG. 2 is a spectral sensitivity curve for comparing the solar cell shown in FIG. 1 with the conventional solar cell shown in FIG. 3;

【図3】従来の太陽電池の断面図である。FIG. 3 is a cross-sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 基 板 2、4 半導体 8 光反射用半導体膜(層) 1 substrate 2, 4 semiconductor 8 light reflecting semiconductor film (layer)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上にpn接合からなりバンドギャップ
エネルギーが異なる半導体が2層積層された太陽電池に
おいて、前記各pn接合と前記基板との間に光反射用半
導体膜を設け、該各光反射用半導体膜が下記の数式 150/n<d 1 <1240/(2・Eg 1 ・n)<d 2 <1240/(2・Eg 2 ・n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は下層光反射用半導体膜の膜厚(nm)、Eg 1 は上
層太陽電池のバンドギャップエネルギー(eV)、Eg
2 は下層太陽電池のバンドギャップエネルギー(eV)
を満足することを特徴とする太陽電池。
1. A solar cell comprising two layers of semiconductors comprising pn junctions and having different band gap energies laminated on a substrate, wherein a light reflecting semiconductor film is provided between each of the pn junctions and the substrate. The reflecting semiconductor film has the following formula: 150 / n <d 1 <1240 / (2 · Eg 1 · n) <d 2 <1240 / (2 · Eg 2 · n) where d 1 is the upper light reflecting semiconductor film. Film thickness (nm), d
2 is the film thickness (nm) of the lower light reflecting semiconductor film, Eg 1 is the band gap energy (eV) of the upper solar cell, Eg
2 is the band gap energy (eV) of the lower solar cell
A solar cell characterized by satisfying the following.
【請求項2】基板上にpn接合からなりバンドギャップ
エネルギーが異なる半導体が3層積層された太陽電池に
おいて、前記各pn接合と前記基板との間に光反射用半
導体膜を設け、該各光反射用半導体膜が下記の数式 150/n<d 1 <1240/(2・Eg 1 ・n)<d 2 <1240/(2・Eg 2 ・n) <d 3 <1240/(2・Eg 3 ・n) 但し、d 1 は上層光反射用半導体膜の膜厚(nm)、d
2 は中層光反射用半導体膜の膜厚(nm)、d 3 は下層
光反射用半導体膜の膜厚(nm)、Eg 1 は上層太陽電
池のバンドギャップエネルギー(eV)、Eg 2 は中層
太陽電池のバンドギャップエネルギー(eV)、Eg 3
は下層太陽電池のバンドギャップエネルギー(eV)を
満足することを特徴とする太陽電池。
2. A solar cell comprising three layers of semiconductors comprising pn junctions and having different band gap energies laminated on a substrate, wherein a light reflecting semiconductor film is provided between each of the pn junctions and the substrate. The semiconductor film for reflection has the following formula: 150 / n <d 1 <1240 / (2 · Eg 1 · n) <d 2 <1240 / (2 · Eg 2 · n) <d 3 <1240 / (2 · Eg 3 ・ N) where d 1 is the film thickness (nm) of the upper light reflecting semiconductor film, d
2 is the film thickness (nm) of the middle light reflecting semiconductor film, d 3 is the film thickness (nm) of the lower light reflecting semiconductor film, Eg 1 is the band gap energy (eV) of the upper solar cell, and Eg 2 is the middle solar light. Battery band gap energy (eV), Eg 3
Is a solar cell satisfying the band gap energy (eV) of the lower layer solar cell.
JP7159408A 1995-06-26 1995-06-26 Solar cell Expired - Fee Related JP2737705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159408A JP2737705B2 (en) 1995-06-26 1995-06-26 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159408A JP2737705B2 (en) 1995-06-26 1995-06-26 Solar cell

Publications (2)

Publication Number Publication Date
JPH098339A JPH098339A (en) 1997-01-10
JP2737705B2 true JP2737705B2 (en) 1998-04-08

Family

ID=15693117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159408A Expired - Fee Related JP2737705B2 (en) 1995-06-26 1995-06-26 Solar cell

Country Status (1)

Country Link
JP (1) JP2737705B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496600B2 (en) * 2009-10-28 2014-05-21 美和ロック株式会社 Authentication device using solar panel
EP2559903A1 (en) 2011-08-17 2013-02-20 Wabco Automotive UK Limited Improved vacuum pump
FR3047351B1 (en) 2016-02-03 2023-07-14 Soitec Silicon On Insulator ADVANCED SUBSTRATE
JP2021015939A (en) * 2019-07-16 2021-02-12 Agc株式会社 Solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269687A (en) * 1985-09-24 1987-03-30 Toshiba Corp Semiconductor photodetector
JPH03227577A (en) * 1990-02-01 1991-10-08 Mitsubishi Electric Corp Solar cell

Also Published As

Publication number Publication date
JPH098339A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
CA2743346C (en) Combined pn junction and bulk photovoltaic device
JP6975368B1 (en) Solar cells and solar cell modules
Yang et al. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies
US9590133B1 (en) Thin film solar cells on flexible substrates and methods of constructing the same
US4547622A (en) Solar cells and photodetectors
JP3561208B2 (en) Two-layer passivation structure for photovoltaic cells
US5316593A (en) Heterojunction solar cell with passivated emitter surface
JPH05114747A (en) Improved monolithic tandem-type solar cell
US20120305059A1 (en) Photon recycling in an optoelectronic device
JPS6155268B2 (en)
JPH07101753B2 (en) Stacked solar cells
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JP2737705B2 (en) Solar cell
CN111725332A (en) High-performance three-junction gallium arsenide solar cell
JP2001028452A (en) Photoelectric conversion device
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
JPH04282871A (en) Thin film solar cell
JP3606886B2 (en) Solar cell and manufacturing method thereof
CN111430493B (en) Multi-junction solar cell and power supply equipment
JPS6225275B2 (en)
JP2020061941A (en) Condensation type solar battery
WO2019196292A1 (en) Nitride thin-film solar cell
CN111430495A (en) Multi-junction solar cell and power supply equipment
Luque et al. Optical aspects in photovoltaic energy conversion
JP2004103692A (en) Solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees