JPS59124772A - Hetero-junction photovoltaic cell of crystal system semiconductor and amorphous semiconductor - Google Patents

Hetero-junction photovoltaic cell of crystal system semiconductor and amorphous semiconductor

Info

Publication number
JPS59124772A
JPS59124772A JP57234197A JP23419782A JPS59124772A JP S59124772 A JPS59124772 A JP S59124772A JP 57234197 A JP57234197 A JP 57234197A JP 23419782 A JP23419782 A JP 23419782A JP S59124772 A JPS59124772 A JP S59124772A
Authority
JP
Japan
Prior art keywords
semiconductor
amorphous
type
unit cell
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57234197A
Other languages
Japanese (ja)
Other versions
JPH0644638B2 (en
Inventor
Yoshihiro Hamakawa
濱川 圭弘
Hiroaki Okamoto
博明 岡本
Koji Okuda
浩司 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP57234197A priority Critical patent/JPH0644638B2/en
Priority to US06/528,988 priority patent/US4496788A/en
Priority to EP83112159A priority patent/EP0113434B2/en
Priority to DE8383112159T priority patent/DE3379565D1/en
Publication of JPS59124772A publication Critical patent/JPS59124772A/en
Publication of JPH0644638B2 publication Critical patent/JPH0644638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve conversion efficiency, and to manufacture the photovoltage cell at low cost by joining a unit cell consisting of an amorphous semiconductor with the amorphous semiconductor hetero-junctioned with the single crystal or polycrystalline crystal system semiconductor. CONSTITUTION:K+2C (K=1 or 2 and C is zero or an integer) P type polycrystalline semiconductors 11p and at least each one of P type, I type and N type 2-K+3A (A is an integer) amorphous or crystallite semiconductors 20n are hetero-junctioned HJ, thus forming the unit cell. P type amorphous silicon (P-aSi) 21p, I type amorphous silicon (I-aSi) 21i and N type amorphous silicon (N-aSi) or N type crystallite silicon (N-thetaC.Si) 21n constitute an amorphous unit cell P-I-N joined. A transparent conductive film 10 as an electrode is formed on the semiconductor 21n. The unit cell of the semiconductor 20n absorbs light on the short wavelength side in incident light, and the semiconductor 11p absorbs light on the long wavelength side, thus effectively utilizing light extending over a wide range by the single photovoltaic cell.

Description

【発明の詳細な説明】 技術分野 本発明は、単結晶または多結晶半導体とアモルファス半
導体とを組合せた太陽電池、検出素子等に使用する光起
電力素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a photovoltaic element used in solar cells, detection elements, etc., which is a combination of a single crystal or polycrystalline semiconductor and an amorphous semiconductor.

従来技術 従来、半導体材料を使用した太陽電池としては、Si 
SGa As 、Cd S、Cd Te等のP型および
N型の01結晶または多結晶の結晶系半導体を、ホモ接
合またはへテロ接合した太陽電池のほかに、N型、■型
、P型の各アモルファスシリコ2層を堆積した太陽電池
が市販されている。さらに、N型、■型およびP型の各
a−8I層を堆積した中位セルをさらに複数個積層する
ことにより、単一の素子で高電圧出力を取り出しくりる
太陽電池も提案されている。
Prior Art Conventionally, solar cells using semiconductor materials include Si.
In addition to solar cells with homojunction or heterojunction of P-type and N-type 01 crystal or polycrystalline semiconductors such as SGaAs, CdS, CdTe, etc., N-type, ■-type, and P-type Solar cells with two layers of amorphous silicon deposited are commercially available. Furthermore, a solar cell has been proposed in which high voltage output can be extracted from a single element by stacking multiple intermediate cells each deposited with N-type, ■-type, and P-type a-8I layers. .

太陽電池を安価に製造するためには薄膜化することが必
要であり、アモルファスシリコン太陽電池は、単結晶シ
リコンの300/1mにくらべてわずか0.5i1mの
厚さでづむという利点がある反面、第1図に示すごとく
、入射光の各波長に対するアモルファスシリコン太陽電
池のギヤリア収集効率曲線a−8iが囲む面積は、単結
晶シリコン太陽電池のキャリア収集効率曲線c−8iが
囲む面積のほぼ半分程度であるので、アモルファスシリ
コン太陽電池の変換効率は、単結晶シリコン太陽電池の
それよりも低い欠点がある。すなわち第1図は横軸に波
長λ[、#m]、縦軸にキャリア収集効率η[%]が示
されており、単結晶シリコン太陽電池のキャリア収集効
率曲線c−8iが比較的長波長3− の光まで広がっているのに対して、アモルファスシリコ
ン太陽電池のキャリア収集効率曲線a−3iは、比較的
短波長の光に偏っている。したがって、実用化している
アモルファスシリコン太陽電池は、結晶系半導体太陽電
池と同程度に、入射光を有効に利用することができない
ために、その変換効率は8〜9%の低い値になっている
In order to manufacture solar cells at low cost, it is necessary to make them thinner, and amorphous silicon solar cells have the advantage of being only 0.5i1m thick compared to 300/1m for single crystal silicon. , as shown in Fig. 1, the area surrounded by the gear collection efficiency curve a-8i of the amorphous silicon solar cell for each wavelength of incident light is approximately half the area surrounded by the carrier collection efficiency curve c-8i of the single-crystal silicon solar cell. As a result, the conversion efficiency of amorphous silicon solar cells is lower than that of single crystal silicon solar cells. In other words, in Figure 1, the horizontal axis shows the wavelength λ[, #m], and the vertical axis shows the carrier collection efficiency η [%], and the carrier collection efficiency curve c-8i of the single-crystal silicon solar cell has a relatively long wavelength. In contrast, the carrier collection efficiency curve a-3i of an amorphous silicon solar cell is biased toward relatively short wavelength light. Therefore, the amorphous silicon solar cells that have been put into practical use cannot utilize incident light as effectively as crystalline semiconductor solar cells, so their conversion efficiency is as low as 8-9%. .

そこで、最近、広いスペクトルを持つ太陽光に対して、
ある範囲の波長幅ごとにキャリア収集効率の最大値をも
たせて波長分割した単位セルを積層した多層単位セル構
造のa−3i太陽電池についても研究されている。アモ
ルファス半導体は、製造時における供給ガスの種類また
はその混合比を加えることによって、各波長に対するキ
ャリア収集効率を左右する光学的禁止帯幅を変化させる
ことができる。短波長用のアモルファス半導体としては
、水素化アモルファス炭化シリコンa−3iC:11、
水素化アモルファス窒化シリコンa−8iN:11、長
波長用としては、水素化アモルファスシリコンゲルマニ
ウムa −8i Ge :H,水素化4− アモルファスシリコンすずa −8i Sn :@等が
使用されている。しかし、これらの多層単位セル構造の
アモルファス太陽電池であっても、前述したように、ア
モルファス半導体が、木質的に、結晶系半導体にくらべ
て長波長用の光を、充分に吸収することができない欠点
を充分に補うことができない。
Therefore, recently, for sunlight with a wide spectrum,
A-3i solar cells having a multilayer unit cell structure in which wavelength-divided unit cells are stacked to have the maximum value of carrier collection efficiency for each wavelength width in a certain range are also being studied. For amorphous semiconductors, the optical band gap, which influences the carrier collection efficiency for each wavelength, can be changed by changing the type of gas supplied or the mixing ratio thereof during manufacturing. As amorphous semiconductors for short wavelengths, hydrogenated amorphous silicon carbide a-3iC:11,
Hydrogenated amorphous silicon nitride a-8iN:11, hydrogenated amorphous silicon germanium a-8i Ge:H, hydrogenated 4-amorphous silicon tin a-8i Sn:@, etc. are used for long wavelengths. However, even in these amorphous solar cells with a multilayer unit cell structure, as mentioned above, the amorphous semiconductor cannot absorb long wavelength light as well as the crystalline semiconductor due to its woody nature. It is not possible to fully compensate for the shortcomings.

発明の目的 本発明は、単結晶または多結晶の結晶系半導体とへテロ
接合されたアモルファス半導体に、アモルファス半導体
よりなる中位セルを接合することによって、アモルファ
ス半導体の単位セルが入射光のうちの短波長側の光を吸
収し、さらに結晶系半導体が、アモルファス半導体の単
位セルでは吸収することができない長波長側の光を吸収
し、単一の光起電力素子によって広範囲の光を有効に利
用することにより、結晶系半導体単独またはアモルファ
ス半導体単独の太陽電池よりも変換効率を向上させ、か
つ結晶系半導体単独のスタック型太陽電池よりも安価に
製造することができる光起電力素子を提供することにあ
る。
Purpose of the Invention The present invention provides an amorphous semiconductor unit cell that absorbs a large amount of incident light by joining an intermediate cell made of an amorphous semiconductor to an amorphous semiconductor heterojunctioned with a single-crystalline or polycrystalline crystalline semiconductor. A single photovoltaic element can effectively utilize a wide range of light by absorbing short-wavelength light, and the crystalline semiconductor absorbs long-wavelength light that cannot be absorbed by amorphous semiconductor unit cells. To provide a photovoltaic element that has improved conversion efficiency than a solar cell made of a crystalline semiconductor alone or an amorphous semiconductor alone, and that can be manufactured at a lower cost than a stacked solar cell made only of a crystalline semiconductor. It is in.

実施例 以下、本発明の実施例を詳細に説明する。第2図(A)
は本発明の第1の実施例の構成図であって、1はアルミ
ニウム電極、11r)はP型多結晶シリコンの基板(P
−Poly −8i ) 、2OnはN型アモルファス
シリコン(N−aSi)またはN型微結晶シリコン(N
−、&C−8i )であって、P型多結晶半導体11p
とアモルファスまたは微結晶半導体2Onとがヘテロ接
合HJされ、単位セルを形成している。21pはP型ア
モルファスシリコン(P−a Si )、21+は■型
7−E−ルファスシリコン(] −a Si >、21
nはN型アモルファスシリコン(N−aSi>またはN
型微結晶シリコン(N−、pc−si)であって、21
p121iおよび21nは、P−I−N接合されたアモ
ルファス単位セルを構成している。さらに、N型半導体
21n上に電極としての透明導電膜10が形成されてい
る。前)ホした荷電制御された微結晶半導体は、光学的
にはアモルファス半導体と同様の特性を有し、かつ電気
的には結晶系半導体と同様の特性を有している。この第
2図(A)の実施例は、K千2C(K=1または2、C
は零または整数)個の単結晶または多結晶の結晶系半導
体と少なくとも各1のP型、I型およびN型を含む2−
に+3A (Aは整数)個のアモルファス半導体とをヘ
テロ接合した光起電力素子において、K=1、C=O1
A=1の場合であって、結晶系半導イ8モルファス半導
体とがヘテロ接合されて中位セルを形成し、さらにアモ
ルファス半導体の単位セルが接合された場合である。こ
れらのアモルファス半導体2On 、21r+ 、21
i 、21nおよび透明導電膜10の厚みは、それぞれ
3000人、2図(B)は、第2図(A)の光起電力素
子のエネルギーバンド図である。同図において、E (
Jolは多結晶シリコン半導体11pの禁止帯幅で約1
.1[eVlであり、またE Oalはアモルファスシ
リコン半導体の禁1ト帯幅で約1.7ないし1.8[e
Vlであって、E(Ial > F(Iclとなってい
る。な7− お、同図において、「Cは伝導帯下限の準位、「「はフ
ェルミ−準位、EVは価電子帯上限の準位を示す。
EXAMPLES Hereinafter, examples of the present invention will be described in detail. Figure 2 (A)
1 is a configuration diagram of the first embodiment of the present invention, 1 is an aluminum electrode, 11r) is a P-type polycrystalline silicon substrate (P
-Poly-8i), 2On is N-type amorphous silicon (N-aSi) or N-type microcrystalline silicon (N
-, &C-8i), which is a P-type polycrystalline semiconductor 11p
and an amorphous or microcrystalline semiconductor 2On are formed into a heterojunction HJ to form a unit cell. 21p is P-type amorphous silicon (P-a Si ), 21+ is ■-type 7-E-rufus silicon (] -a Si >, 21
n is N-type amorphous silicon (N-aSi> or N
type microcrystalline silicon (N-, pc-si), 21
p121i and 21n constitute a P-I-N junction amorphous unit cell. Furthermore, a transparent conductive film 10 as an electrode is formed on the N-type semiconductor 21n. The charge-controlled microcrystalline semiconductor described above has optical properties similar to those of an amorphous semiconductor, and electrical properties similar to those of a crystalline semiconductor. The embodiment of FIG. 2(A) is K12C (K=1 or 2, C
is zero or an integer) single crystal or polycrystalline semiconductors and at least one each of P type, I type and N type.
In a photovoltaic device with a heterojunction of +3A (A is an integer) amorphous semiconductors, K=1, C=O1
This is a case where A=1, a crystalline semiconductor and an amorphous semiconductor are heterojunctioned to form an intermediate cell, and a unit cell of an amorphous semiconductor is further junctioned. These amorphous semiconductors 2On, 21r+, 21
i, 21n and the thickness of the transparent conductive film 10 are each 3000. FIG. 2(B) is an energy band diagram of the photovoltaic device of FIG. 2(A). In the same figure, E (
Jol is the forbidden band width of the polycrystalline silicon semiconductor 11p and is approximately 1
.. 1 [eVl, and E Oal is the forbidden band width of amorphous silicon semiconductor, which is approximately 1.7 to 1.8 [eVl].
Vl, and E(Ial > F(Icl). In the same figure, "C" is the lower limit of the conduction band, "" is the Fermi level, and EV is the upper limit of the valence band. indicates the level of

第3図は、横軸に入射光の波長λ[Pm]、縦軸にキャ
リア収集効率η[rel  ・U]を目盛り、入射光の
波長λの変化に対する太陽電池のキャリア収集効率を示
す。同図において、一点鎖線S un−8は、太陽光線
のスペクトル曲線を示す。また、禁止帯幅が大きいアモ
ルファス単位セルに入射する光の各波長λ[)Lm ]
に対するキャリア収集効率η[rel  ・ulは、同
図の実線a−3iに示すとおりとなる。
In FIG. 3, the horizontal axis is the wavelength λ [Pm] of the incident light, and the vertical axis is the carrier collection efficiency η [rel ·U], and shows the carrier collection efficiency of the solar cell with respect to the change in the wavelength λ of the incident light. In the same figure, a dashed-dotted line Sun-8 indicates the spectrum curve of sunlight. In addition, each wavelength λ[)Lm ] of light incident on an amorphous unit cell with a large forbidden band width
The carrier collection efficiency η[rel ·ul with respect to the current value is as shown by the solid line a-3i in the same figure.

つぎに禁止帯幅が小さい多結晶半導体11pは、アモル
ファス半導体を透過してきた長波長側の光を吸収し、多
結晶半導体のキャリア収集効率は、同図点線poly−
8iに示すとおりとなる。その結宋、結晶系半導体とへ
テロ接合されたアモルファス半導体に、アモルファス半
導体よりなる単位セルを接合した単一の光起電力素子に
よって、短波長から長波長までの広範囲の光を有効に利
用す−8−′ ることかできる。
Next, the polycrystalline semiconductor 11p, which has a small forbidden band width, absorbs the light on the long wavelength side that has passed through the amorphous semiconductor, and the carrier collection efficiency of the polycrystalline semiconductor is expressed by the dotted line poly-
As shown in 8i. As a result, Sung developed a single photovoltaic device that was made by bonding a unit cell made of an amorphous semiconductor to an amorphous semiconductor that was heterojunctioned with a crystalline semiconductor to effectively utilize a wide range of light from short wavelengths to long wavelengths. -8-' I can do that.

第4図は、第2図(A)の光起電力素子のT−■特性の
実測値を示す線図である。
FIG. 4 is a diagram showing actually measured values of the T-■ characteristic of the photovoltaic device shown in FIG. 2(A).

同図において、横軸は、第2図(A)の光起電力素子の
出力電圧Vout[V]を示し、縦軸は光起電力素子の
出力電流1out[m△/(Tlllを示す。
In the figure, the horizontal axis shows the output voltage Vout[V] of the photovoltaic device in FIG. 2(A), and the vertical axis shows the output current 1out[mΔ/(Tlll) of the photovoltaic device.

同図のI−V特性から求めた第2図(A)の光起電力素
子の変換効率は、発表されているアモルファス太陽電池
の8〜9%を大きく上回る11〜12%が得られた。
The conversion efficiency of the photovoltaic element shown in FIG. 2(A), determined from the IV characteristics shown in the same drawing, was 11 to 12%, which is much higher than the 8 to 9% of published amorphous solar cells.

第5図(A)は、本発明の第2の実施例を示す構成図で
あって、P−N接合された結晶系半導体が単位セルを構
成し、かつP−1−N接合されたアモルファス半導体群
が第1および第2の単位セルを構成しており、これら結
晶系半導体の中位セルとアモルファス半導体群の181
1の単位セルとかへテロ接合I」Jされている。同図に
おいて、2は金属、ガラス、レラミックなどの無機質固
体の薄板またはポリイミドなどの有機質固体のフィルム
の基板である。1は、基板2上に形成されたオ−ミック
電極、1111は、オーミック電極−にに堆積されたP
型結晶系ガリウムヒ素GaAS111nはN型結晶系ガ
リウムヒ素Ga Asであって、これらP型結晶系ガリ
ウムヒ素とN型結晶系ガリウl\ヒ素とは、P−N接合
され単位セル11を形成する。21+1はN型結晶系ガ
リウムヒ素り1n上に、j「積されたP型アモルファス
シリコン、211は■型アモルファスシリコン、21n
はN型アモルファスシリコンであって、これらのアモル
ファスシリコン21p、21iおよび21nが第1の単
位セル21を構成する。結晶系ガリウムヒ素の単位セル
の一部を構成するN型結晶系ガリウムヒ素11nと第1
のアモルファス単位セル21の一部を構成するP型アモ
ルファスシリコン21r+とはへテロ接合1−I Jさ
れている。さらにアモルファス第1の単位セル21上に
、P型アモルファス炭化シリコン(a −3i C)2
2pとI型アモルファス炭化シリコン22i とN型ア
モルファス炭化シリコン22nとが第2のアモルファス
中位セル22を構成する。N型アモルファス炭化シリコ
ン22n十に電極としての透明導電膜10が形成される
。第5図(A)の実施例は、K+2C(K=1または2
、Cは零または整数)個の単結晶または多結晶の結晶系
半導体と少なくとも各1のP型、■型およびN型を含む
2−に+3△(△は整数)個のアモルファス半導体とを
ヘテロ接合した光起電力素子において、K=2、C−0
、Δ−2の場合であって、1個の結晶系半導体の単(f
fセルと2個のアモルファス半導体の中位セルとが形成
され、形成された結晶系中位セルの結晶系半導体と形成
されたアモルファス単位セルのアモルファス半導体とが
ヘテロ接合された場合である。
FIG. 5(A) is a configuration diagram showing a second embodiment of the present invention, in which a P-N junctioned crystalline semiconductor constitutes a unit cell, and a P-1-N junctioned amorphous semiconductor The semiconductor groups constitute first and second unit cells, and the intermediate cell of these crystalline semiconductors and the 181 of the amorphous semiconductor group constitute the first and second unit cells.
1 unit cell or a heterojunction. In the figure, 2 is a substrate made of a thin plate of inorganic solid such as metal, glass, or reramic, or a film of organic solid such as polyimide. 1 is an ohmic electrode formed on the substrate 2, and 1111 is a P deposited on the ohmic electrode.
The type crystalline gallium arsenide GaAS 111n is N-type crystalline gallium arsenide GaAs, and these P-type crystalline gallium arsenide and N-type crystalline gallium arsenide are PN-junctioned to form the unit cell 11. 21+1 is P-type amorphous silicon stacked on N-type crystalline gallium arsenide 1n, 211 is ■-type amorphous silicon, 21n
is N-type amorphous silicon, and these amorphous silicones 21p, 21i, and 21n constitute the first unit cell 21. N-type crystalline gallium arsenide 11n and the first
The P-type amorphous silicon 21r+ forming a part of the amorphous unit cell 21 is in a heterojunction 1-IJ. Further, on the amorphous first unit cell 21, P-type amorphous silicon carbide (a-3i C)2
2p, I-type amorphous silicon carbide 22i, and N-type amorphous silicon carbide 22n constitute a second amorphous intermediate cell 22. A transparent conductive film 10 as an electrode is formed on the N-type amorphous silicon carbide 22n. The embodiment of FIG. 5(A) is K+2C (K=1 or 2
, C is zero or an integer) single-crystal or polycrystalline crystalline semiconductors and 2-+3△ (△ is an integer) amorphous semiconductors including at least one each of P type, ■ type, and N type. In the bonded photovoltaic device, K=2, C-0
, Δ-2, and one crystalline semiconductor unit (f
This is a case where an f cell and two amorphous semiconductor intermediate cells are formed, and the crystalline semiconductor of the formed crystalline intermediate cell and the amorphous semiconductor of the formed amorphous unit cell are heterojunctioned.

第5図(R)は、第5図(△)の光起電力素子のエネル
ギーバンド図である。同図において、「gclは結晶系
ガリウムヒ素の単位セル11の禁止帯幅で約1.4[f
3V]であり、E galは第1のアモルファス中位セ
ル21の禁止帯幅で約1.8[eVlであり、F!]a
2は第2のアモルファス単位セル22の禁止帯幅で約2
.0[eVlであって、これの禁止帯幅の関係は、Fg
a2 > EOal > Eoc111− となっている。なお、同図において、Ec 、 Ffお
J:びEVは第2図(B)と同じである。禁止帯幅が最
大のE aa2である第2のアモルファス単位セル22
は、入射光のうち比較的波長の短い光を吸収する。2番
目に禁止帯幅E galの大きい第1のアモルファス単
位セル21は、第2のアモルファス中位セル22を透過
してきた比較的波長の長い光を吸収する。さらに、禁止
帯幅E oa2が最も小さい結晶系単位セル11は、第
1のアモルファス単位セル21透過してきた波長の長い
光を吸収する。その結果、結晶系単位セル11と第1の
アモルファス単位セル21とがヘテロ接合され、さらに
第1のアモルファス単位セル21上に、第2のアモルフ
ァス単位セル22が接合されて単一の光起電力素子を構
成し、短波長から長波長までの広範囲の波長の光を吸収
することができる。
FIG. 5(R) is an energy band diagram of the photovoltaic device shown in FIG. 5(Δ). In the figure, "gcl is the forbidden band width of the unit cell 11 of crystalline gallium arsenide, which is approximately 1.4 [f
3V], E gal is about 1.8 [eVl at the forbidden band width of the first amorphous intermediate cell 21, and F! ]a
2 is the forbidden band width of the second amorphous unit cell 22, which is approximately 2
.. 0[eVl, and the relationship between the forbidden band width is Fg
a2 > EOal > Eoc111-. In addition, in the figure, Ec, Ff, J: and EV are the same as in FIG. 2(B). The second amorphous unit cell 22 whose forbidden band width is the maximum E aa2
absorbs light with a relatively short wavelength among the incident light. The first amorphous unit cell 21 having the second largest forbidden band width E gal absorbs light having a relatively long wavelength that has passed through the second amorphous intermediate cell 22 . Furthermore, the crystalline unit cell 11 with the smallest forbidden band width E oa2 absorbs the long wavelength light that has passed through the first amorphous unit cell 21 . As a result, the crystalline unit cell 11 and the first amorphous unit cell 21 are heterojunctioned, and the second amorphous unit cell 22 is further joined onto the first amorphous unit cell 21 to form a single photovoltaic power. The device can absorb light with a wide range of wavelengths from short wavelengths to long wavelengths.

第6図は、本発明の第3の実施例を示す構成図であって
、P−N接合された結晶系半導体群が第1ないし第3の
結晶系中位セルを順次に構成し、かつP−1−N接合さ
れたアモルファス半導体012− が第1ないし第3のアモルファス単位セルを順次に構成
しており、第3の結晶系?11位セルセル0表面の結晶
系半導体と第1のアモルファス単位セル21の表面のア
モルファス半導体とがヘテロ接合されている。同図にお
いて、1はステンレスの基板であって電極と兼用されて
いる。11はP−N接合の第1の結晶系単位セル、12
はP−N接合の第2の結晶系単位セル、13はP−N接
合の第3の結晶系中位セル、21はP−T−N接合の第
1のアモルファス、単位セル、22はP−1−N接合の
第2のアモルファス単位セル、23はP−T−N接合の
第3のアモルファス単位セル、10は電極を形成する透
明導電膜である。第3の結晶系単位セル130表面の結
晶系半導体と第1のアモルファス単位セル210表面の
アモルファス半導体とかへテロ接合HJされている。ま
た第1ないし第3の結晶系中位セルは、それぞれゲルマ
ニウム(Ge)、シリコン(Si )およびガリウムヒ
素(Ga As )の各半導体群によって構成され、こ
れらの中位セルの各禁止帯幅は、[”gc1= 0.7
[c Vl 、F(]c2 = 1.1 [e Vlお
J:びEgc3−1.4[eV]である。さらに第1な
いし第3のアモルファス単位セルは、それぞれアモルフ
ァスシリコンゲルマニウム(a −8i  −Ge )
、アモルファスシリコン(a−8i)およびアモルファ
ス炭化シリコン(a −8i C)の各半導体群によっ
て構成され、これらの単位セルの各禁止帯幅は、Foa
l = 1.6[e Vl 、Eaa2 = 1.8[
e VlおJ:び「ga3 = 2.0[e Vlであ
る。
FIG. 6 is a configuration diagram showing a third embodiment of the present invention, in which a group of crystalline semiconductors connected to a P-N junction sequentially constitute first to third crystalline intermediate cells, and P-1-N junction amorphous semiconductors 012- constitute first to third amorphous unit cells in sequence, and form a third crystal system. 11th cell The crystalline semiconductor on the surface of cell 0 and the amorphous semiconductor on the surface of the first amorphous unit cell 21 are in a heterojunction. In the figure, reference numeral 1 denotes a stainless steel substrate which also serves as an electrode. 11 is a first crystalline unit cell of P-N junction; 12
is the second crystalline unit cell of the P-N junction, 13 is the third crystalline intermediate cell of the P-N junction, 21 is the first amorphous unit cell of the P-T-N junction, and 22 is the P-N junction. -1-N junction second amorphous unit cell; 23 is P-T-N junction third amorphous unit cell; 10 is a transparent conductive film forming an electrode. The crystalline semiconductor on the surface of the third crystalline unit cell 130 and the amorphous semiconductor on the surface of the first amorphous unit cell 210 form a heterojunction HJ. Furthermore, the first to third crystalline intermediate cells are each composed of germanium (Ge), silicon (Si), and gallium arsenide (GaAs) semiconductor groups, and the forbidden band widths of these intermediate cells are as follows. , [”gc1=0.7
[c Vl, F(]c2 = 1.1 [e Vl and Egc3-1.4 [eV].Furthermore, the first to third amorphous unit cells are each made of amorphous silicon germanium (a-8i -Ge)
, amorphous silicon (a-8i) and amorphous silicon carbide (a-8i C), and the forbidden band width of each of these unit cells is Foa
l = 1.6[e Vl , Eaa2 = 1.8[
e Vl and J: and ``ga3 = 2.0 [e Vl.

最大の禁止帯幅を有する第3のアモルファス単位セルは
、入射光のうちの比較的波長の短い光を吸収し、2番目
に大きい禁止帯幅を有する第2のアモルファス単位セル
22は、第3のアモルファス甲(ffセル23を透過し
てきた比較的波長の長い光を吸収する。同様にして第1
のアモルファス単位セル、第3の結晶系単位セル、第2
の結晶系単位セルおよび第1の結晶系単位セルの順序で
比較的波長の短い光から順次に吸収されて後の単位セル
はど比較的波長の長い光が吸収される。このようにして
、前述した単一の光起電力素子によって短波長から長波
長までの広範囲の波長の光を吸収することができる。
The third amorphous unit cell 22 having the largest bandgap absorbs light with a relatively short wavelength of the incident light, and the second amorphous unit cell 22 having the second largest bandgap absorbs light with a relatively short wavelength of the incident light. The amorphous shell (absorbs light with a relatively long wavelength that has passed through the FF cell 23.
amorphous unit cell, a third crystalline unit cell, a second
In the order of the first crystalline unit cell and the first crystalline unit cell, light having a relatively short wavelength is absorbed in order, and in the later unit cells, light having a relatively long wavelength is absorbed. In this way, the single photovoltaic element described above can absorb light of a wide range of wavelengths from short wavelengths to long wavelengths.

第7図(Δ)は、光起電力素子内での入射光の吸収を大
にするために、結晶系半導体の基板または無機質固体の
薄板もしくは有機質固体のフィルムの基板の表面に無数
の微小四面体よりなる凹凸を形成した模型図である。同
図(B)は、同図(△)に示す凹凸を設けることにより
、入射光と表面のピラミッド面との光学的多重反射屈折
によって光の吸収を大にし、本発明の結晶系半導体とア
モルファス半導体とをヘテロ接合し、さらにアモルファ
スt1′i位セルを接合した構成、または結晶系中位セ
ルとアモルファス単位セルとのへテロ接合した構成とあ
わせて光起電力素子の変換効率を向上さゼることができ
る。同図(R)において、10は透明導電膜、21はア
モルファス半導体、11は結晶系半導体で入射光は透明
導電膜10とアモルファス半導体21との界面、アモル
ファス半導体21と結晶系半導体11との界面で、実線
で示すように、次々と多重反射し、光のとじ込め15− 効渠により光の吸収を大きくすることができる。
Figure 7 (Δ) shows that, in order to increase the absorption of incident light within a photovoltaic element, countless tiny tetragons are formed on the surface of a crystalline semiconductor substrate, an inorganic solid thin plate, or an organic solid film substrate. It is a model diagram in which unevenness made of a body is formed. The figure (B) shows that by providing the unevenness shown in the figure (△), light absorption is increased by optical multiple reflection and refraction between the incident light and the pyramid surface of the surface, and the crystalline semiconductor of the present invention and the amorphous The conversion efficiency of the photovoltaic element can be improved by combining a structure in which a semiconductor is heterojunctioned with an amorphous t1'i cell, or a structure in which a crystalline intermediate cell and an amorphous unit cell are heterojunctioned. can be done. In the same figure (R), 10 is a transparent conductive film, 21 is an amorphous semiconductor, 11 is a crystalline semiconductor, and incident light is transmitted to the interface between the transparent conductive film 10 and the amorphous semiconductor 21, and the interface between the amorphous semiconductor 21 and the crystalline semiconductor 11. As shown by the solid line, multiple reflections occur one after another, and the absorption of light can be increased by confining the light.

発明の効渠 以」:のように、本発明の光起電力素子によれば、アモ
ルファス半導体の単位セルによって、入射光のうちの短
波長側の光を吸収させ、さらにこれらのアモルファス半
導体では吸収することができず透過してきた長波長側の
光を結晶系半導体または結晶系単位セルによって吸収さ
せることにより、単一の光起電力素子によって、短波長
から長波長までの広範囲の光を吸収して、結晶系半導体
単独またはアモルファス半導体甲独の太陽電池よりも変
換効率が高く、しかも結晶系半導体単独のスタック型太
陽電池よりも安価に製作することができ、効果が大であ
る。さらに、このように、本発明の光起電力素子は、分
光感度特性の異なる材料を積層しているので、特定の波
長の光も検出する光検出素子としても用いることができ
る。
According to the photovoltaic device of the present invention, light on the shorter wavelength side of incident light is absorbed by the amorphous semiconductor unit cell, and furthermore, these amorphous semiconductors absorb light on the shorter wavelength side. A single photovoltaic element can absorb a wide range of light from short wavelengths to long wavelengths by absorbing the long-wavelength light that has been transmitted through a crystalline semiconductor or crystalline unit cell. Therefore, it has a higher conversion efficiency than a solar cell made of a crystalline semiconductor alone or an amorphous semiconductor, and can be manufactured at a lower cost than a stacked solar cell made of a crystalline semiconductor alone, and is highly effective. Furthermore, since the photovoltaic element of the present invention is made of laminated materials having different spectral sensitivity characteristics, it can also be used as a photodetecting element that also detects light of a specific wavelength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の結晶系太陽電池1−3i)およびアモル
ファス太陽電池(a −8t )の入射光16− の波長λ[Pml  (横軸)とキャリア収集効率ηL
%]  (l軸)との関係を示す線図、第2図(A)お
よび(B)はそれぞれ本発明の光起電力素子の第1の実
施例の構成図およびエネルギーバンド図、第3図は第2
図(A)の実施例の構成においてアモルファス半導体(
実線の曲線a−8t)および多結晶半導体(点線の曲線
poly−8i)への入射光λ[,1,1ml  (横
軸)とキャリア収集効率η[rel ・」1] (縦軸
)との関係を示す線図、第4図は第2図(A)の実施例
の光起電力素子のI−V特性(横軸に光起電力素子の出
力電圧Vout[Vl、縦軸に光起電力素子の出力電流
Iout  [m A/cT11])を示す絵図、第5
図(△)および(B)はそれぞれ本発明の光起電力素子
の第2の実施例の構成図およびエネルギーバンド図、第
6図は本発明の光起電力素子の第3の実施例の構成図、
第7図(Δ)および(B)はそれぞれ本発明の光起電力
素子の基板に、入射光の吸収を大にする織目模様を形成
した模型図および動作説明図である。 1・・・電極(オーミック電極または導電性基板)、2
・・・無機質固体の薄板の基板または有機質固体のフィ
ルム基板、11.12.13・・・結晶系半導体の単位
セル、11p、11n・・・結晶系半導体、21.22
.23・・・アモルファス半導体の単位セル、2On、
 21p、21i 、21n、22rl、221.22
n・・・アモルファス半導体、E(IC1、EOC2、
E(IC3・・・結晶系半導体または結晶系半導体の単
位セルの禁止帯幅、E(Ial 、Ega2 、Fga
3−・・アモルファス半導体の単位セルの禁止帯幅、H
J・・・結晶系半導体とアモルファス半導体とのへテロ
接合部分。 代理人 弁理士   中 井    宏−1つ− 図面の浄君(内容に変更なし) 一入〔μm〕 0      1.2     24     3.6
手続ネ…正書(自発) 昭和58年1月310 特許庁長官 殿 昭和57汗特iT願第23197号 2、発明の名称 結晶系半導体と)アモルファス半導体とのヘテ「]接合
光起電力素子 3、補正で−る者 事件との関係  特 許 出 願 人 兵庫県用西市南花屋敷三丁目17番4号濱用圭弘  (
ほか2名) 4、代理人 住 所  〒532  大阪重症用1ヌ田川2丁目1番
11月5、補正命令の日付    自  発 手続谷11正門(自発) 昭和59年1り//日 昭和57年特許願第23/1197号 2、発明の名称 結晶系半導体とアモルファス半導体とのペテロ接合光起
電力素子 3、補正寸ろ者 事1′1との関係  特 許 出 願 人兵庫県用西市
南花屋敷三丁目17番4号濱用圭弘  (ほか2名) 4、代理人 付 所  〒532  大阪市淀用区田用2丁目1番1
1号7、補正の内容 明細書を下記の通り訂正する。 (1)第17頁第1行の「で・きる。」の次に[また、
前述した素子は分光感度の異なる材r1を直列に積層し
た構)査を有しているため、素子を構成する各セルの異
なった分光感度を利用することにより、特別な色フィル
タを使用lノなくても色センサのような光検出素子どじ
で用いることができる。例えば、第5図(Δ)の構j告
の素子は光の3原色である青、緑、赤の独立した分光感
度を百ることができ、これらの出力を合成することによ
り、中間色も検出できるので、金色センサとして利用で
きる。色フィルタを用いた金色セン1ノと比較して、点
でも色検出が可能であり、集積化する場合、集積度をあ
げられるという点で右利である。−1を挿入する。 (2)第17頁第16行の「いるので、」の次に1素子
を構成する各セルの巽なった分光感度を利用することに
より、特別な色フィルタを使用しなくても」を挿入する
。 (3)第17頁第16行の「検出する」の次に「色セン
()のような」を1Φ人する。 346−
Figure 1 shows the wavelength λ[Pml (horizontal axis) of incident light 16- and the carrier collection efficiency ηL of a conventional crystalline solar cell 1-3i) and an amorphous solar cell (a-8t).
%] (l-axis), FIG. 2 (A) and (B) are respectively a block diagram and an energy band diagram of the first embodiment of the photovoltaic device of the present invention, and FIG. is the second
In the configuration of the embodiment shown in Figure (A), an amorphous semiconductor (
The relationship between the incident light λ[,1,1ml (horizontal axis) and the carrier collection efficiency η[rel・'1] (vertical axis) to the solid line curve a-8t) and the polycrystalline semiconductor (dotted line curve poly-8i) A diagram showing the relationship, FIG. 4 is the IV characteristic of the photovoltaic device of the example shown in FIG. Pictorial diagram showing the output current Iout [mA/cT11]) of the element, No. 5
Figures (△) and (B) are the configuration diagram and energy band diagram of the second embodiment of the photovoltaic device of the present invention, respectively, and Fig. 6 is the configuration of the third embodiment of the photovoltaic device of the present invention. figure,
FIGS. 7(Δ) and 7(B) are a model diagram and an operation explanatory diagram, respectively, in which a texture pattern that increases the absorption of incident light is formed on the substrate of the photovoltaic device of the present invention. 1... Electrode (ohmic electrode or conductive substrate), 2
...Inorganic solid thin plate substrate or organic solid film substrate, 11.12.13...Crystalline semiconductor unit cell, 11p, 11n...Crystalline semiconductor, 21.22
.. 23...Amorphous semiconductor unit cell, 2On,
21p, 21i, 21n, 22rl, 221.22
n...Amorphous semiconductor, E (IC1, EOC2,
E(IC3...The forbidden band width of a crystalline semiconductor or a unit cell of a crystalline semiconductor, E(Ial, Ega2, Fga
3-...bandgap width of unit cell of amorphous semiconductor, H
J: Heterojunction between a crystalline semiconductor and an amorphous semiconductor. Agent: Hiroshi Nakai, Patent Attorney - 1 drawing - No change to the drawing (no change in content) 1 [μm] 0 1.2 24 3.6
Procedural document (spontaneous) January 1980 310 Commissioner of the Japan Patent Office 1981 Special IT Application No. 23197 2 Title of the invention Junction photovoltaic device between a crystalline semiconductor and an amorphous semiconductor 3 , Relationship with the case filed by amendment Patent application by Keihiro Hamayo, 3-17-4 Minamihanayashiki, Yonishi City, Hyogo Prefecture (
4. Agent address: November 5, 1 Nutagawa 2-chome, Osaka 532, Date of amended order Voluntary procedure Main gate of Tani 11 (Voluntary) 1980/1/1980 Patent Application No. 23/1197 2, Name of the Invention Peter Junction Photovoltaic Element of Crystalline Semiconductor and Amorphous Semiconductor 3, Relationship with Corrected Dimensions 1'1 Patent Application Nishiichi Minami for Hyogo Prefecture Hanayashiki 3-17-4 Keihiro Hamayo (and 2 others) 4, with agent Address 2-1-1 Tanyo, Yodoyo-ku, Osaka 532
No. 1 No. 7, the statement of contents of the amendment is amended as follows. (1) On page 17, line 1, next to “de・kiru.”
Since the above-mentioned element has a structure in which materials r1 with different spectral sensitivities are stacked in series, it is possible to use special color filters by utilizing the different spectral sensitivities of each cell that makes up the element. Even without it, it can be used as a light detection element such as a color sensor. For example, the element shown in Figure 5 (Δ) can have independent spectral sensitivities for the three primary colors of light, blue, green, and red, and can also detect intermediate colors by combining these outputs. Therefore, it can be used as a golden sensor. Compared to the Golden Sensing System, which uses color filters, this method has an advantage in that it is possible to detect colors even at points, and when integrated, the degree of integration can be increased. Insert -1. (2) On page 17, line 16, after "I'm there," insert "By utilizing the unique spectral sensitivity of each cell that makes up one element, there is no need to use a special color filter." do. (3) On page 17, line 16, after "detect", add "like color sense ()" by 1Φ. 346-

Claims (1)

【特許請求の範囲】 1  K+20 (K=1または2、Cは零または整数
)個の中結晶または多結晶の結晶系半導体と少なくとも
各1のP型、I型およびN型を含む2−に+3A (A
は整数)個のアモルファス半導体とをヘテロ接合した光
起電力素子。 2 前記アモルファス半導体の一つ以上が荷電制御され
た微結晶半導体である特許請求の範囲第1項に記載の光
起電力素子。 3 前記結晶系半導体を基板とし、その基板上に、結晶
系半導体またはアモルファス半導体を堆積した特許請求
の範囲第1項に記載の光起電力素子。 4 前記結晶系半導体を、無機質固体の薄板または有機
質固体のフィルムの基板上に堆積させた特許請求の範囲
第1項に記載の光起電力素子。 5 前記結晶系半導体と前記アモルファス半導体とがヘ
テロ接合されて単位セルを形成し1=特許請求の範囲第
1項ないし第4項のいずれか1に記載のスタック形の光
起電力素子。 6 前記結晶系半導体および前記アモルファス半導体が
、それぞれ単位セルを形成し、形成された結晶系単位セ
ルの結晶系半導体と形成されたアモルファス単位セルの
アモルファス半導体とかへテロ接合された特許請求の範
囲第1項ないし第4項のいずれか1に記載のスタック形
の光起電力素子。 7 前記結晶系半導体が複数個の中位セルよりなり、各
単位セルの禁止帯幅が入射光方向からみて、F!]CI
、E(102,・、Egcn−1,Egcn  (E!
ICn−1) Egcn )の順序に積層された特許請
求の範囲第1項又は第3項から第6項までのいずれか1
に記載の光起電力素子。 8 前記アモルファス半導体が複数個の中位セルよりな
り、各単位セルの禁止帯幅が入射光方向からみて、E 
oal、 F oa2.・・・、 E 0an−1,F
 (tan(E(Jan−1> Fgan )の順序に
積層された特許請求の範囲第1項ないし第7項のいずれ
か1に記載の光起電力素子。 9 前記結晶系半導体の基板に、入射光の吸収を大にす
る織目模様を形成した特許請求の範囲第3項に記載の光
起電力素子。 10 前記無機質固体の薄板または有機質固体のフィル
ムにりなる基板に、入射光の吸収を大にする織目模様を
形成した特許請求の範囲第4項に記載の光起電力素子。
[Claims] 1 K+20 (K=1 or 2, C is zero or an integer) medium-crystalline or polycrystalline crystalline semiconductors and 2- containing at least one each of P type, I type, and N type; +3A (A
is an integer) amorphous semiconductors in a heterojunction. 2. The photovoltaic device according to claim 1, wherein one or more of the amorphous semiconductors is a charge-controlled microcrystalline semiconductor. 3. The photovoltaic device according to claim 1, wherein the crystalline semiconductor is used as a substrate, and a crystalline semiconductor or an amorphous semiconductor is deposited on the substrate. 4. The photovoltaic device according to claim 1, wherein the crystalline semiconductor is deposited on a substrate of an inorganic solid thin plate or an organic solid film. 5. The stacked photovoltaic device according to any one of claims 1 to 4, wherein the crystalline semiconductor and the amorphous semiconductor are heterojunctioned to form a unit cell. 6 The crystalline semiconductor and the amorphous semiconductor each form a unit cell, and the crystalline semiconductor of the formed crystalline unit cell and the amorphous semiconductor of the formed amorphous unit cell are heterojunctioned. Stack type photovoltaic device according to any one of Items 1 to 4. 7. The crystalline semiconductor is composed of a plurality of intermediate cells, and the forbidden band width of each unit cell is F! when viewed from the direction of incident light. ]CI
,E(102,·,Egcn-1,Egcn (E!
ICn-1)Egcn) Any one of claims 1 or 3 to 6 stacked in the following order:
The photovoltaic device described in . 8 The amorphous semiconductor is composed of a plurality of intermediate cells, and the forbidden band width of each unit cell is E when viewed from the direction of incident light.
oal, F oa2. ..., E 0an-1,F
(tan(E(Jan-1>Fgan)) The photovoltaic element according to any one of claims 1 to 7, which is stacked in the order of (tan(E(Jan-1>Fgan)). The photovoltaic device according to claim 3, wherein the photovoltaic element is formed with a textured pattern that increases the absorption of light. 5. The photovoltaic device according to claim 4, wherein the photovoltaic device is formed with a pattern of increasing texture.
JP57234197A 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells Expired - Lifetime JPH0644638B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57234197A JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells
US06/528,988 US4496788A (en) 1982-12-29 1983-09-02 Photovoltaic device
EP83112159A EP0113434B2 (en) 1982-12-29 1983-12-02 Photovoltaic device
DE8383112159T DE3379565D1 (en) 1982-12-29 1983-12-02 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234197A JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells

Publications (2)

Publication Number Publication Date
JPS59124772A true JPS59124772A (en) 1984-07-18
JPH0644638B2 JPH0644638B2 (en) 1994-06-08

Family

ID=16967201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234197A Expired - Lifetime JPH0644638B2 (en) 1982-12-29 1982-12-29 Stacked photovoltaic device with different unit cells

Country Status (1)

Country Link
JP (1) JPH0644638B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289173A (en) * 1988-05-16 1989-11-21 Sharp Corp Solar cell
JPH053332A (en) * 1991-06-25 1993-01-08 Hitachi Ltd Tandem hetero-photoelectric conversion element and its manufacture
WO1999010933A1 (en) * 1997-08-21 1999-03-04 Kaneka Corporation Thin film photoelectric transducer
JP2001217440A (en) * 2000-02-04 2001-08-10 Kanegafuchi Chem Ind Co Ltd Hybrid thin film photoelectric conversion device and translucent laminate used for the same
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
WO2006057160A1 (en) * 2004-11-29 2006-06-01 Kaneka Corporation Thin film photoelectric converter
EP2139047A2 (en) 2008-06-26 2009-12-30 Semiconductor Energy Laboratory Co, Ltd. Photoelectric Conversion Device Module and Manufacturing Method of the Photoelectric Conversion Device Module
US7915611B2 (en) 2007-11-16 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
WO2017175491A1 (en) 2016-04-07 2017-10-12 株式会社カネカ Method for manufacturing multijunction photoelectric conversion device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248994B2 (en) 2007-11-30 2013-07-31 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device
EP2075850A3 (en) 2007-12-28 2011-08-24 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152071U (en) * 1979-04-18 1980-11-01
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713778A (en) * 1980-06-20 1982-01-23 Ibm Photoelectric converter
JPS5713777A (en) * 1980-06-30 1982-01-23 Shunpei Yamazaki Semiconductor device and manufacture thereof
JPS5779674A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Multiplex battery cell with amorphous photoresponsiveness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152071U (en) * 1979-04-18 1980-11-01
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713778A (en) * 1980-06-20 1982-01-23 Ibm Photoelectric converter
JPS5713777A (en) * 1980-06-30 1982-01-23 Shunpei Yamazaki Semiconductor device and manufacture thereof
JPS5779674A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Multiplex battery cell with amorphous photoresponsiveness

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289173A (en) * 1988-05-16 1989-11-21 Sharp Corp Solar cell
JPH053332A (en) * 1991-06-25 1993-01-08 Hitachi Ltd Tandem hetero-photoelectric conversion element and its manufacture
WO1999010933A1 (en) * 1997-08-21 1999-03-04 Kaneka Corporation Thin film photoelectric transducer
US6297443B1 (en) 1997-08-21 2001-10-02 Kaneka Corporation Thin film photoelectric transducer
JP2001217440A (en) * 2000-02-04 2001-08-10 Kanegafuchi Chem Ind Co Ltd Hybrid thin film photoelectric conversion device and translucent laminate used for the same
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
WO2006057160A1 (en) * 2004-11-29 2006-06-01 Kaneka Corporation Thin film photoelectric converter
US7915611B2 (en) 2007-11-16 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US8093590B2 (en) 2007-11-16 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8173496B2 (en) 2008-06-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP2139047A2 (en) 2008-06-26 2009-12-30 Semiconductor Energy Laboratory Co, Ltd. Photoelectric Conversion Device Module and Manufacturing Method of the Photoelectric Conversion Device Module
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
WO2017175491A1 (en) 2016-04-07 2017-10-12 株式会社カネカ Method for manufacturing multijunction photoelectric conversion device
US10529882B2 (en) 2016-04-07 2020-01-07 Kaneka Corporation Method for manufacturing multijunction photoelectric conversion device

Also Published As

Publication number Publication date
JPH0644638B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US9087948B1 (en) Manufacturing method of multi-junction PV modules
US4496788A (en) Photovoltaic device
US7148417B1 (en) GaP/silicon tandem solar cell with extended temperature range
US8912428B2 (en) High efficiency multijunction II-VI photovoltaic solar cells
US9287431B2 (en) Superstrate sub-cell voltage-matched multijunction solar cells
US5223043A (en) Current-matched high-efficiency, multijunction monolithic solar cells
US6548751B2 (en) Thin film flexible solar cell
KR100974220B1 (en) Solar cell
US20130206219A1 (en) Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
EP2264787A2 (en) High efficiency multi-junction solar cells
JPS6359269B2 (en)
JPS59124772A (en) Hetero-junction photovoltaic cell of crystal system semiconductor and amorphous semiconductor
ES508455A0 (en) PROCEDURE TO FORM A PHOTOVOLTAIC TRANSDUCER OF LIGHT ENERGY IN ELECTRICS.
JPS6249672A (en) Amorphous photovoltaic element
JPH0322709B2 (en)
JPS58139478A (en) Amorphous solar battery
Wojtczuk et al. GaAs/Ge tandem-cell space concentrator development
NL2024024B1 (en) Transparent passivated contacts for Si solar cells
JP2946214B2 (en) Thin film solar cell
JPH11163376A (en) Thin-film solar cell
JPS6284570A (en) Photocell device
JPH098339A (en) Solar cell
Hermann Opportunities for Increased Efficiency for Single-and Multijunction Polycrystalline Thin-Film Solar Cells A. Hermann, K. Zweibel, B. Jackson, and R. Mitchell Solar Energy Research Institute
JPH0320454U (en)
Aiken et al. Alternative contact designs for thin epitaxial silicon solar cells