JPS63237573A - Manufacture of mis semiconductor device - Google Patents

Manufacture of mis semiconductor device

Info

Publication number
JPS63237573A
JPS63237573A JP7324887A JP7324887A JPS63237573A JP S63237573 A JPS63237573 A JP S63237573A JP 7324887 A JP7324887 A JP 7324887A JP 7324887 A JP7324887 A JP 7324887A JP S63237573 A JPS63237573 A JP S63237573A
Authority
JP
Japan
Prior art keywords
film
oxide film
resist
semiconductor device
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7324887A
Other languages
Japanese (ja)
Other versions
JPH061837B2 (en
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7324887A priority Critical patent/JPH061837B2/en
Publication of JPS63237573A publication Critical patent/JPS63237573A/en
Publication of JPH061837B2 publication Critical patent/JPH061837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To avoid increase of degradation and variation of Vt of an SOI type MOS-FET by forming a 2nd oxide film in the region of a semiconductor film except an element isolation region by subjecting the semiconductor film to an oxidizing treatment. CONSTITUTION:A semiconductor film 8 is removed by etching until its thickness becomes less than a half of the initial thickness with a resist layer 9, a nitride film 12 and a 1st oxide film 11 as a mask and impurity ions are implanted into the semiconductor film 8. After the resist later 9 is removed and the semiconductor film 8 is subjected to an oxidizing treatment to convert the semiconductor film 8 except an element isolation region into a 2nd oxide film 10, the nitride film 12 and the 1st oxide film 11 are removed and the semiconductor film 8 is polished to level the substrate surface and isolate the element. As the SiO2 film 10 as this exists, the gate SiO2 film of the 2nd MOS-FET is thicker than the gate SiO2 film of the 1st MOS-FET. With this constitution, degradation and variation of Vt of an SOI type MOS-FET composed of the 2nd MOS-FET can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an MIS type semiconductor device.

〔従来の技術〕[Conventional technology]

絶縁膜上の半導体膜に形成したMIS型半導体装置、イ
わゆるSOI(Semiconductor on I
n5ulator)構造のMIS型半導体装置は、従来
のMIS型半導体装置に比較して接合容量が小さく、素
子分離が完全かつ簡便であることから高速の大規模集積
回路(LSI)に適した半導体装置であるといわれる。
MIS type semiconductor device formed on a semiconductor film on an insulating film, so-called SOI (Semiconductor on I)
MIS type semiconductor devices with n5ulator) structure have smaller junction capacitance than conventional MIS type semiconductor devices, and element isolation is complete and simple, making them suitable for high-speed large-scale integrated circuits (LSIs). It is said that there is.

従来、SOI構造のMIS型半導体装置の製造方法にお
いて、その素子分離法の一つに絶縁体上の半導体膜のう
ち不要な部分をすべて除去し、半導体膜をアイランド状
に形成する方法がある。例えばニス・デー・ニス マル
ヒ(S、 D、 S、 Malhi)らは1982  
シンポジウム オン ブイ・エル・ニス・アイ チクノ
ロシイ ダイジェスト オン テクニカル ペーパーズ
(1982Symposium on VLST T−
echnologey Digest of Tech
nical PaperS) 、 107ページにこの
方法を報告している。第2図はこのアイランド法で素子
分離を行ったSOI型のMIS型半導体装置の模式的断
面図である。ここで第2図(a)のB−8面の断面が第
2図(b)である。図中、1はSL基板、2はSin、
膜、3はSi膜中のソース・ドレイン拡散層、4はゲー
トSiO□膜、5はゲート電極。
Conventionally, in a method of manufacturing a MIS type semiconductor device having an SOI structure, one of the element isolation methods is a method of removing all unnecessary portions of a semiconductor film on an insulator and forming the semiconductor film in an island shape. For example, Nis de Nis Malhi (S, D, S, Malhi) et al. 1982
1982Symposium on VLST T-
Technology Digest of Technology
This method is reported on page 107 of Nical PaperS). FIG. 2 is a schematic cross-sectional view of an SOI-type MIS-type semiconductor device in which element isolation is performed using this island method. Here, FIG. 2(b) is a cross section taken along plane B-8 in FIG. 2(a). In the figure, 1 is SL board, 2 is Sin,
3 is a source/drain diffusion layer in the Si film, 4 is a gate SiO□ film, and 5 is a gate electrode.

6は第1のチャネル領域、7は第2のチャネル領域であ
る。
6 is a first channel region, and 7 is a second channel region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしアイランド法で素子分離を行ったSOI構造のM
isi半導体装置(MIS型半導体装置/5OI)の場
合、第2図(b)に示すようにSL模膜上通常の第1の
チャネル領域6の他にSi膜の側壁に第2のチャネル領
域7が形成される。これら第1および第2のチャネル領
域6,7は、それぞれ第1のMiSi半導体装置と第2
の半導体装置を形成し、これら第1および第2のMIS
型半導体装置は並列に結合したことと等価である。この
場合、第1のチャネル領域と同様に第2のチャネル領域
7.においてもソースとドレイン間に電流が流れはじめ
るゲート電極5への印加電圧(閾値電圧、vシ)が存在
する。このため、第1のMIS型半導体装置6のlVt
、lと第2ノMIS型半導体装置717)l V t 
21との関係が1vtzl<Ivtlとなった場合、M
IS型半導体装置/SOIのVtは第2のMIS型半導
体装置のVt2に等しくなる。しかしながら、一般にV
tはゲート膜厚、チャネル領域の不純物濃度や結晶性に
依存し、これらの制御が難しい第2のMIS型半導体装
置7においてはVt2を制御することは非常に難しい。
However, the M
In the case of an isi semiconductor device (MIS type semiconductor device/5OI), as shown in FIG. 2(b), in addition to the usual first channel region 6 on the SL pattern film, a second channel region 7 is formed on the side wall of the Si film. is formed. These first and second channel regions 6 and 7 are connected to the first MiSi semiconductor device and the second MiSi semiconductor device, respectively.
semiconductor devices are formed, and these first and second MIS
type semiconductor devices are equivalent to being connected in parallel. In this case, the second channel region 7. similar to the first channel region. There is also a voltage applied to the gate electrode 5 (threshold voltage, v) at which a current begins to flow between the source and drain. Therefore, lVt of the first MIS type semiconductor device 6
, l and the second MIS type semiconductor device 717) l V t
If the relationship with 21 is 1vtzl<Ivtl, then M
Vt of the IS type semiconductor device/SOI becomes equal to Vt2 of the second MIS type semiconductor device. However, in general V
t depends on the gate film thickness, impurity concentration and crystallinity of the channel region, and it is very difficult to control Vt2 in the second MIS type semiconductor device 7 where these are difficult to control.

それゆえlVt、l<1vt11ノ場合、MIS型半導
体装置/SOI c7) Vtは、作製目的である第1
のMIS型半導体装置6のvtlより低下し、またばら
つきも増大する。
Therefore, if lVt, l<1vt11, the MIS type semiconductor device/SOI c7) Vt is the first
The vtl of the MIS type semiconductor device 6 is lower than that of the MIS type semiconductor device 6, and the variation is also increased.

本発明の目的は、上述した従来の問題点を解決したSO
I構造のMIS型半導体装置の製造方法を提供すること
にある。
The object of the present invention is to solve the above-mentioned conventional problems by
An object of the present invention is to provide a method for manufacturing an MIS type semiconductor device having an I structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は絶M膜上に形成された半導体薄膜にMIS型半
導体装置を形成する方法において、前記半導体薄膜上に
第1の酸化膜、窒化膜を形成し、その表面にレジストを
塗布し、前記レジストがMIS型トランジスタを作製す
る素子領域上に残るようにパターンニングした後、エツ
チングにより前記レジストをマスクにして前記窒化膜と
第1の酸化膜とをパターンニングした後、前記レジスト
、窒化膜、第1の酸化1換をマスクにして前記半導体+
11!1をその膜厚が半分以下になるまでエツチングに
より除去して、前記半導体膜中に不純物をイオン注入し
、その後、前記レジストを除去し、酸化処理を施して素
子領域以外の前記半導体膜を第2の酸化膜にした後、前
記窒化膜と第1の酸化膜を除去し、その後、前記半導体
膜の研磨により鋸板表面を平坦化して素子分離を行うこ
とを特徴とする一工S型半導体装置製造方法である。
The present invention provides a method for forming an MIS type semiconductor device on a semiconductor thin film formed on an absolute M film, in which a first oxide film and a nitride film are formed on the semiconductor thin film, a resist is applied to the surface of the first oxide film and a first nitride film, and a resist is applied to the surface of the first oxide film and a nitride film. After patterning the resist so that it remains on the element region where the MIS type transistor is to be fabricated, etching the nitride film and the first oxide film using the resist as a mask, etching the resist, the nitride film, The semiconductor + using the first oxidation monomer as a mask
11!1 by etching until its film thickness becomes less than half, impurity ions are implanted into the semiconductor film, and then the resist is removed and an oxidation treatment is performed to remove the semiconductor film in areas other than the element region. after forming the semiconductor film into a second oxide film, removing the nitride film and the first oxide film, and then polishing the semiconductor film to flatten the surface of the saw plate to perform element isolation. This is a method for manufacturing a type semiconductor device.

〔実施例〕〔Example〕

以下、本発明について実施例を用いて説明する。 The present invention will be explained below using examples.

本実施例においては、半導体膜としてSi膜、絶縁膜と
してSi0□11侍、 MIS型半導体装置としてnチ
ャネルMO3FETを用いている。
In this embodiment, a Si film is used as the semiconductor film, a Si0□11 film is used as the insulating film, and an n-channel MO3FET is used as the MIS type semiconductor device.

第1図はSOI構造のnチャネルMO5FETの製造工
程を示す模式的断面図である。SOI構造の基板は第1
図(a)に示すようにSi基板1上に膜jヅ1pのSi
n。
FIG. 1 is a schematic cross-sectional view showing the manufacturing process of an n-channel MO5FET having an SOI structure. The SOI structure substrate is the first
As shown in FIG.
n.

膜2.膜厚0.5.のSi膜8が順次形成されたものを
用いる。このSi膜膜上上第1図(b)に示すように膜
厚0.04pの5in2膜1】と膜厚0.12nのSL
、N4膜12とを順次形成する。次にS13 N411
簗12上に第1図(c)に示すようにレジスト9を塗布
し、 MOSFETの素子領域上にレジスト9が残るよ
うにパターンニングする。その後、レジスト9をマスク
にしてSi3N4膜12と5iOz III 11をド
ライエツチングし、さらに5i11り8を膜厚0.3声
だけドライエツチングで除去する。その後、第1図(d
)に示すように、レジスト9をマスクにしてSi膜8の
うちの領域13にボロンをイオン注入する。注入条件は
加速電圧150にeV、ドーズ量5X101:′ロー2
である。その後、領域13のSi膜8をすべての酸化に
必要な条件で酸化を行い、SiO□膜10を得る。この
時、ボロンをイオン注入したS i IIIは、イオン
注入しなかったSi膜に比べて酸化速度が約3倍速い。
Membrane 2. Film thickness 0.5. A Si film 8 formed in sequence is used. On this Si film, as shown in FIG.
, N4 film 12 are sequentially formed. Next S13 N411
A resist 9 is applied onto the screen 12 as shown in FIG. 1(c), and patterned so that the resist 9 remains on the MOSFET element region. Thereafter, using the resist 9 as a mask, the Si3N4 film 12 and 5iOz III 11 are dry-etched, and 5i11 and 8 are further removed by dry etching to a film thickness of 0.3 mm. After that, Figure 1 (d
), boron ions are implanted into region 13 of Si film 8 using resist 9 as a mask. The implantation conditions were an acceleration voltage of 150 eV and a dose of 5 x 101:'low 2.
It is. Thereafter, the Si film 8 in the region 13 is oxidized under the conditions necessary for all oxidations, and the SiO□ film 10 is obtained. At this time, the oxidation rate of Si III into which boron ions were implanted was about three times faster than that of the Si film into which no ions were implanted.

このため領域13のSi膜8(膜厚0.2p)が酸化さ
れたときには、領域13以外の5illisの側面は表
面から0.07μmだけ酸化され、試斜断面は第1図(
e)に示すようになる。次にSi3N4膜12を除去し
た後、5in2膜が0.07.たけ除去するのに必要な
時間だけSin、膜のウェットエツチングを行う。その
結果、第1図げ)に示すように、5ilf18が5in
2膜10の表面から約o、t3IlvI飛び出した基板
が得られる。その後、ボリシングにより5itFJ8を
薄1摸化する。薄1摸化が進み、Si膜8とSiO□膜
10膜厚0が同じになると、5in2のボリシング進行
速度はSiのそれに比べて非常に遅いのでSin、膜1
0の領域はボリシングのストッパーとなり、それ以上ポ
リシングは進まなくなる。この結果、第1図(幻に示す
ような基板表面が平坦であり、かつSi膜8が素子分離
されたSOI構造の基板が得られる。
Therefore, when the Si film 8 (film thickness 0.2p) in region 13 is oxidized, the side surfaces of 5illi other than region 13 are oxidized by 0.07 μm from the surface, and the test oblique cross section is shown in FIG.
It becomes as shown in e). Next, after removing the Si3N4 film 12, the 5in2 film was 0.07. Wet etching of the Sin film is performed for the time necessary to remove the remaining amount. As a result, as shown in Figure 1), 5ilf18 is 5in.
A substrate in which about 0, t3IlvI protrudes from the surface of the 2 film 10 is obtained. Thereafter, the 5it FJ8 is made into a thin one by borizing. As the thickness of the Si film 8 and the SiO□ film 10 become the same, the rate of boring progress for the 5in2 film is much slower than that of Si, so the Si film 1
The area of 0 serves as a polishing stopper, and polishing does not proceed any further. As a result, a substrate having an SOI structure as shown in FIG. 1 (phantom) with a flat substrate surface and with the Si film 8 separated into elements is obtained.

この基板を用い作製したときのSOI構造のMOSFE
Tの模式的断面図を第1図(ロ)、(i)に示す。ここ
で第1図(h)のI−I面の断面図が第1図G)である
。図中、3はMOSFETのソース・ドレイン拡散層、
4はゲート5in2膜、5はゲート電極、6は第1のチ
ャネル領域、7は第2のチャネル領域である。
SOI structure MOSFE produced using this substrate
A schematic cross-sectional view of T is shown in FIGS. 1(b) and 1(i). Here, FIG. 1G) is a sectional view taken along the line II in FIG. 1(h). In the figure, 3 is the source/drain diffusion layer of MOSFET,
4 is a gate 5in2 film, 5 is a gate electrode, 6 is a first channel region, and 7 is a second channel region.

本発明のSOI型MO3FETも従来法と同様に、Si
膜8の上面の第1のチャネル領域に形成される第1のM
 OS F E TとSi膜8の側壁の第2のチャネル
領域に形成される第2のM OS FE Tがi)9.
列に結合して構成されている。ただし、本発明の場合に
は5j02膜IOが存在しているために第2のMOSF
ETのゲートS10.膜は第1のMOSFETのゲート
5in2膜よりも厚い。
The SOI type MO3FET of the present invention also uses Si
A first M formed in the first channel region on the upper surface of the membrane 8
i)9.
It is constructed by joining into columns. However, in the case of the present invention, since the 5j02 film IO exists, the second MOSF
ET gate S10. The film is thicker than the gate 5in2 film of the first MOSFET.

ここでnチャネルMO3FI<TのVtは5i−3j、
02界面の界面準位が小さいとすると、 VtyV、B+2V、+   □ Ci= − ここでVFnはフラットバンド電圧、ψ8はSiのフェ
ルミ準位、 Ks’、 Kiはそれぞれシリコン、シリ
コン酸化膜の比誘電率、ε。は誘電率、qは電子の電荷
量+ NAは単位体積あたりのアクセプタ不純物の密度
、C1はゲート酸化膜の単位面積あたりのキャパシタン
ス、dはゲート酸化膜厚である。
Here, Vt for n-channel MO3FI<T is 5i-3j,
Assuming that the interface level at the 02 interface is small, VtyV, B+2V, + □ Ci= - where VFn is the flat band voltage, ψ8 is the Fermi level of Si, and Ks' and Ki are the relative permittivity of silicon and silicon oxide film, respectively. rate, ε. is the dielectric constant, q is the charge amount of electrons + NA is the density of acceptor impurities per unit volume, C1 is the capacitance per unit area of the gate oxide film, and d is the thickness of the gate oxide film.

ゲート酸化膜が厚くなると前述の式よりvしは高くなる
。本発明の場合、第2のMO5FIETのゲート酸化膜
は第1のMOSFETのゲート酸化膜より厚くなるので
、第1.第2のMOSFET (1)閾値電圧vt、、
 vt、ノ関係はVtl<Vt、となる。また、一般に
第1のMOSFETのチャネル幅は第2のM OS F
 I: Tのそれより大きい。
As the gate oxide film becomes thicker, v becomes higher according to the above equation. In the case of the present invention, since the gate oxide film of the second MOSFET is thicker than the gate oxide film of the first MOSFET, the gate oxide film of the second MOSFET is thicker than the gate oxide film of the first MOSFET. Second MOSFET (1) Threshold voltage vt,
The relationship between Vt and Vt is Vtl<Vt. In addition, generally the channel width of the first MOSFET is the same as that of the second MOSFET.
I: larger than that of T.

それゆえ第1.第2のMOSFETのソース・ドレイン
間電流ID11 ID2の関係は常にIr)i > I
Dzとなり、5(II構造のMOSFETのソース・ド
レイン間電流は第1のMOSFETのソース・ドレイン
間電流で近似できる。
Therefore, number one. The relationship between the source-drain current ID11 and ID2 of the second MOSFET is always Ir)i > I
Dz, and the source-drain current of the MOSFET with the 5(II structure) can be approximated by the source-drain current of the first MOSFET.

すなわち、SOI構造のMOSFETの静特性は第1の
MOS F E Tの静特性にほとんど等しくなる。そ
れゆえ、従来法で問題となった第2のMOSFETによ
るSOi構造のMOSFETのVtの低下やばらつきは
生じない。
That is, the static characteristics of the MOSFET having the SOI structure are almost equal to the static characteristics of the first MOSFET. Therefore, the decrease or variation in Vt of the SOi structure MOSFET caused by the second MOSFET, which was a problem in the conventional method, does not occur.

以上実施例においては、半導体膜としてSi膜、絶縁膜
として5in2膜、MIS型半導体装置としてMOSF
ETを用いたが、他の半導体膜、絶縁膜、チャネルタイ
プのMIS型半導体装置を用いても問題はなむ1゜ 〔発明の効果〕 以」−のように、本発明によればSOI型MO5FET
におけるVtの低下やばらつきの増大、またリーク電流
の増大等を抑制することができる。
In the above embodiments, the semiconductor film is a Si film, the insulating film is a 5in2 film, and the MIS type semiconductor device is a MOSFET.
Although ET is used, there is no problem even if other semiconductor films, insulating films, or channel type MIS semiconductor devices are used.
It is possible to suppress a decrease in Vt, an increase in variation, and an increase in leakage current.

また、ポリシングにより薄膜のSDI型MO5FETを
作製することができる効果を有する。
Further, it has the effect that a thin film SDI type MO5FET can be manufactured by polishing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜■は本発明によるSOI型MO3FET
の製造工程の実施例を工程順に示す模式的断面図、(1
)は(荀のI−I線断面図、第2図(a)は従来法で素
子分離を行ったSDI型MO5FIETの模式的断面図
、(b)は(a)の8−B線断面図である6 1・・・Si基板         2,10.11・
・・5iO7ll’!3・・・MOSFETのソース・
ドレイン拡散層4・・・ゲート5io21摸     
 −・・・ゲート耐構6・・・第1のチャネル領域  
 7・・・第2のチャネル領域8・・・Si膜    
      9・・・レジス1−12・・・Si3N4
膜 13・・・Sil漠8のうちボロンをイオン注入する領
域(a) 篤1図 13−・−Sム脹8のうちボロン友イオン注入するi@
j或集1図 3−5L服中のソース・ドレイン拡散層4−・ゲート5
し02月灸 5−・ケ゛−ト電極 6−・−第1のチャネル預域 7−・−第2のチャネル預域 策1図 R)) 懺2図 手続補正書(自発) 63.2.18 昭和  年  月  日
FIG. 1(a) to ■ are SOI type MO3FETs according to the present invention.
A schematic cross-sectional view showing an example of the manufacturing process in the order of steps, (1
) is a cross-sectional view taken along the line I-I of (Xun), FIG. 6 1...Si substrate 2,10.11.
...5iO7ll'! 3...MOSFET source
Drain diffusion layer 4...Gate 5io21 model
-... Gate resistance structure 6... First channel region
7... Second channel region 8... Si film
9...Regis 1-12...Si3N4
Membrane 13...A region (a) where boron ions are implanted in the silicon layer 8.
Figure 3-5 Source/drain diffusion layer 4--Gate 5
February Moxibustion 5--Cate electrode 6--First channel deposit 7--Second channel deposit 1 Figure R)) Diagram 2 Procedural amendment (voluntary) 63.2. 18 Showa year month day

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁膜上に形成された半導体薄膜にMIS型半導
体装置を形成する方法において、前記半導体薄膜上に第
1の酸化膜、窒化膜を形成し、その表面にレジストを塗
布し、前記レジストがMIS型トランジスタを作製する
素子領域上に残るようにパターンニングした後、エッチ
ングにより前記レジストをマスクにして前記窒化膜と第
1の酸化膜とをパターンニングした後、前記レジスト、
窒化膜、第1の酸化膜をマスクにして前記半導体膜をそ
の膜厚が半分以下になるまでエッチングにより除去して
、前記半導体膜中に不純物をイオン注入し、その後、前
記レジストを除去し、酸化処理を施して素子領域以外の
前記半導体膜を第2の酸化膜にした後、前記窒化膜と第
1の酸化膜を除去し、その後、前記半導体膜の研磨によ
り基板表面を平坦化して素子分離を行うことを特徴とす
るMIS型半導体装置製造方法。
(1) In a method for forming an MIS type semiconductor device on a semiconductor thin film formed on an insulating film, a first oxide film and a nitride film are formed on the semiconductor thin film, a resist is applied to the surface thereof, and the resist After patterning the nitride film and the first oxide film so as to remain on the element region for manufacturing the MIS type transistor, etching the nitride film and the first oxide film using the resist as a mask, and then patterning the resist,
using a nitride film and a first oxide film as a mask, removing the semiconductor film by etching until the film thickness becomes less than half, implanting impurity ions into the semiconductor film, and then removing the resist; After performing oxidation treatment to turn the semiconductor film other than the element region into a second oxide film, the nitride film and the first oxide film are removed, and then the semiconductor film is polished to planarize the substrate surface to form the element. A method for manufacturing an MIS type semiconductor device characterized by performing separation.
JP7324887A 1987-03-26 1987-03-26 MIS type semiconductor device manufacturing method Expired - Lifetime JPH061837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324887A JPH061837B2 (en) 1987-03-26 1987-03-26 MIS type semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324887A JPH061837B2 (en) 1987-03-26 1987-03-26 MIS type semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPS63237573A true JPS63237573A (en) 1988-10-04
JPH061837B2 JPH061837B2 (en) 1994-01-05

Family

ID=13512686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324887A Expired - Lifetime JPH061837B2 (en) 1987-03-26 1987-03-26 MIS type semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JPH061837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225356A (en) * 1991-01-14 1993-07-06 Nippon Telegraph & Telephone Corporation Method of making field-effect semiconductor device on sot
US5656537A (en) * 1994-11-28 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having SOI structure
US5905286A (en) * 1994-11-02 1999-05-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225356A (en) * 1991-01-14 1993-07-06 Nippon Telegraph & Telephone Corporation Method of making field-effect semiconductor device on sot
US5905286A (en) * 1994-11-02 1999-05-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6144072A (en) * 1994-11-02 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US6509583B1 (en) 1994-11-02 2003-01-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US6653656B2 (en) 1994-11-02 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US7001822B2 (en) 1994-11-02 2006-02-21 Renesas Technology Corp. Semiconductor device formed on insulating layer and method of manufacturing the same
US5656537A (en) * 1994-11-28 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having SOI structure

Also Published As

Publication number Publication date
JPH061837B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US5573961A (en) Method of making a body contact for a MOSFET device fabricated in an SOI layer
JPS5688354A (en) Semiconductor integrated circuit device
JPS5921067A (en) Semiconductor device and manufacture thereof
JPS63237573A (en) Manufacture of mis semiconductor device
JPH01220858A (en) Manufacture of semiconductor device
JPS63237572A (en) Manufacture of mis semiconductor device
JPH0481327B2 (en)
JPH023270A (en) Manufacture of hct semiconductor device
JPH065757B2 (en) Semiconductor device manufacturing method
JPS6043865A (en) Manufacture of semiconductor device
JPS577153A (en) Preparation of semiconductor device
JPS5342560A (en) Production of semiconductor device
JPS6059777A (en) Manufacture of semiconductor device
JPS63160277A (en) Manufacture of semiconductor element
JPH036040A (en) Semiconductor device
JPS61102057A (en) Manufacture of semiconductor device
JPS5936959A (en) Manufacture of semiconductor device
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device
JPS63237569A (en) Manufacture of mis type semiconductor device
JPH033367A (en) Manufacture of mis type semiconductor device
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPS60149148A (en) Formation of groove into semiconductor substrate
JPS57194562A (en) Semiconductor device and manufacture thereof
JPS63237574A (en) Manufacture of mis semiconductor device
JPH02117166A (en) Semiconductor device