JPS5921067A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5921067A
JPS5921067A JP13140782A JP13140782A JPS5921067A JP S5921067 A JPS5921067 A JP S5921067A JP 13140782 A JP13140782 A JP 13140782A JP 13140782 A JP13140782 A JP 13140782A JP S5921067 A JPS5921067 A JP S5921067A
Authority
JP
Japan
Prior art keywords
film
region
insulating film
gate electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13140782A
Other languages
Japanese (ja)
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13140782A priority Critical patent/JPS5921067A/en
Publication of JPS5921067A publication Critical patent/JPS5921067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To enable to manufacture by self-alignment system by relaxing short channel effect by a method wherein a source and drain having a shallow junction is provided in an MOS-FET. CONSTITUTION:A PSG film 11 is adhered on an insulation plate 10 by chemical vapor growing method, a polycrystalline Si film is adhered on the upper surface thereof, a gate electrode 12 is patterned, and thereafter an SiO2 film 13 is producted by thermal oxidation treatment. This SiO2 film 13 is a gate insulation film. Next, the second polycrystalline Si film 20 is adhered on the upper surface thereof and patterned, and further the second SiO2 film 17 is produced on the surface thereof. After the second polycrystalline Si film 20 is changed into an Si crystal film 20' by the irradiation of argon laser, it is changed into a P type layer by ion implantation of boron. After forming two windows through the SiO2 film 17, the second PSG film 18 is adhered over the entire surface by CVD method. Then, phosphorus is diffused from up and down PSG film 11 and 18 into the P type Si crystal film 20' by heat treatment, and accordingly the N type source region 15 and drain region 16 are formed. The P type Si crystal film 20' turns a channel region 14. A window is opened through the PSG film 18, and then an Al electrode 19 is formed.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置とその製造方法、特にMOS  F
ET(MO8電界効果トランジヌタ)の新規な構造とそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field of the invention The present invention relates to a semiconductor device and a method for manufacturing the same, particularly a MOS F
This invention relates to a novel structure of ET (MO8 field effect transistor) and its manufacturing method.

(旬 従来技術と問題点 周知のよ’5にMOS  F’ETid、LSI、VL
SIと高密度高集積化される半導体集積回路(工C)に
おいて主体となっているトランジスタ素子である。それ
はバイポーラ形素子などと比べて構造がwI牢で、セル
フアブイン(自己整合)で製造が可能なため餓細化でき
ることが大きな利点となっている。
(The conventional technology and problems are well known in 2005. MOS F'ETid, LSI, VL
It is a transistor element that is the main component in SI and semiconductor integrated circuits (engineering C), which are becoming increasingly dense and highly integrated. Compared to bipolar elements, etc., it has a WI structure and can be manufactured by self-abin (self-alignment), so it has the great advantage of being able to be made thinner.

第1図(a+にコノような通常ty) M OS  F
” I!f T 4g造断面をボしており、セルファラ
インとは半導体基板I J二にゲート絶縁膜2.ゲート
電極3を形成し、これケマスクとしてソー゛ヌ領域4と
ドレイン領域5とが形成されることを意味しており、こ
れは小ノtL!化に極めて効果的な製法である。寸だ、
第1図(b)にザファイヤ基板6七に形成した絶縁体分
離構造のMOS  FTBT構造断面を示しており、こ
れも同様にセルファライン方式で形成することができる
Figure 1 (Normal ty like Kono on a+) M OS F
"I!f T 4G fabrication cross section is exposed, and self-line is a process in which a gate insulating film 2 and a gate electrode 3 are formed on a semiconductor substrate IJ2, and a solenoid region 4 and a drain region 5 are formed as a mask. This means that it is formed, and this is an extremely effective manufacturing method for making it small.
FIG. 1(b) shows a cross section of a MOS FTBT structure having an insulator isolation structure formed on a Zaphire substrate 67, which can also be formed by the self-line method in the same manner.

ところが、このようなMOS  FETを余り小型に形
成すると、例えばゲート長りを1〜2μm又はそれ以下
とすると、短チャネ/l/(ショートチャネル ( Vth )の変!lt/1などの好ましからざる問
題がおこることが知られており、その面からの制約が大
きな障害となっている。
However, if such a MOS FET is made too small, for example, if the gate length is set to 1 to 2 μm or less, undesirable problems such as short channel /l/(short channel (Vth) change!lt/1) may occur. It is known that this phenomenon occurs, and restrictions in this respect are a major obstacle.

(C)@明の目的 本発明はかような短チャネル効果が緩和され、且つセル
ファライン方式で製造される絶縁体分離構造の新規なM
 O EE  11’ ]、u Tを提供するものであ
る。
(C)@Ming's purpose The present invention is a novel M with an insulator isolation structure in which such short channel effects are alleviated and which is manufactured by a self-line method.
O EE 11'], u T.

(d)発明の構成 本発明の特徴は、絶縁膜上にゲー[電極,その表面にゲ
ート絶縁膜が設けられ、そのゲート電極の、1一部にゲ
ート絶縁膜を介して−4電型チャネル領域が設けられ、
且つゲート屯瘤の両側に絶縁膜を介1〜で反えj4’U
F゛νのソース・ドレイン両領域が設けられた半導体装
置であり、徒だその製造方法として、ソーヌ響ドレイン
両領域全セルファライン方式で形成することにあるもの
である。
(d) Structure of the Invention The feature of the present invention is that a gate electrode is provided on the insulating film, a gate insulating film is provided on the surface of the gate electrode, and a -4 voltage type channel is formed in one part of the gate electrode through the gate insulating film. An area is set up,
In addition, an insulating film is provided on both sides of the gate bulge at 1~j4'U.
This is a semiconductor device in which both the source and drain regions of F゛ν are provided, and its manufacturing method consists in forming both the Saone sound drain and both regions using an all-self-line method.

te+  発明の実施例 以下、本発明を図面を参照して一実施例によって詳細に
説明する。第2図は本発明にか−るMOS  FFAT
の断面構造図を示し、図示のように絶縁板lO上の燐シ
リケートガラス(PSG)膜11の−に面に多結晶シリ
コンからなるゲート電極12を形成し、その外部表面に
二酸化シリコンQ’Ej−02)膜からなるゲート絶縁
膜IBを形成し、このゲート絶縁膜18上にP型チA1
ネル領域14,またゲート絶縁膜1Bの両側面にn型ソ
ーヌ領域15およびトレイン領域16が設けられた構造
で、従来のMOS  F”)uTとは■下逆のゲート電
極が最下面に形成された構造である。このような構造に
すると、絶縁体分離のため、寄生容量が小さくなる長所
があると共に、チャネル領域に対してソース・ドレイン
両領域を浅く接合することができるから、短チャネル効
果が緩和される利点がある。且つ、セルファライン方式
によってソース・ドレイン両領域を形成して、高密度化
ができる製造方法を採ることができる。尚、図中、17
は第2のSiO2  膜、18はPSG膜、19はアル
ミニウム(Al)電極である。
te+ Embodiment of the Invention The present invention will now be described in detail by way of an embodiment with reference to the drawings. Figure 2 shows a MOS FFAT according to the present invention.
As shown in the figure, a gate electrode 12 made of polycrystalline silicon is formed on the negative side of a phosphorus silicate glass (PSG) film 11 on an insulating plate lO, and silicon dioxide Q'Ej is formed on the outer surface of the gate electrode 12. -02) A gate insulating film IB consisting of a film is formed, and a P-type film A1 is formed on this gate insulating film 18.
It has a structure in which an n-type Sone region 15 and a train region 16 are provided on both sides of the channel region 14 and the gate insulating film 1B, and unlike the conventional MOS F'') uT, the gate electrode is formed on the bottom surface. This structure has the advantage of reducing parasitic capacitance due to insulator isolation, and also reduces the short channel effect because both the source and drain regions can be shallowly connected to the channel region. This has the advantage of alleviating the problem.Furthermore, it is possible to form both the source and drain regions using the self-line method and adopt a manufacturing method that can achieve high density.
18 is a PSG film, and 19 is an aluminum (Al) electrode.

次に、第8図ないし第7図は本発明にか\る半導体装置
の製造工程順断面図を示す。先づ、第8図に示すように
絶縁板101,に化学気相成長(CVD)法で厚さ1〜
2μmのPSG膜11を被着し、その上面に同じ( C
VD法で膜厚0.4μmの多結晶シリコン膜を被着し、
リソグラフィ技術によつしだ後、熱酸化処理によって膜
厚400 AのSiO2膜1B全1Bする。このSi.
0 2膜1Bがゲート絶縁膜である。−また、旧制の基
板は絶縁板lOに限るものでなく、シリコン基板などで
もよい。
Next, FIGS. 8 to 7 show cross-sectional views in the order of manufacturing steps of a semiconductor device according to the present invention. First, as shown in FIG.
A 2 μm thick PSG film 11 is deposited, and the same (C
A polycrystalline silicon film with a thickness of 0.4 μm was deposited using the VD method,
After applying the lithography technique, a thermal oxidation treatment is performed to form a SiO2 film 1B with a thickness of 400 Å. This Si.
02 film 1B is a gate insulating film. -Also, the old system substrate is not limited to the insulating plate IO, but may also be a silicon substrate or the like.

次いで、第4図に示すようにその上面にCVD法にて再
び膜厚0,4μ〃jの第2の多結晶シリコン膜20を被
着し、リソグラフィ技術によってパターンニングし,更
に熱酸化処理によってその表面に膜厚880人の第2の
SiOIjII!ti[ 1 7を生成する。
Next, as shown in FIG. 4, a second polycrystalline silicon film 20 with a thickness of 0.4 μm is deposited on the top surface again by CVD, patterned by lithography, and then thermally oxidized. The second SiOIjII with a film thickness of 880 people on its surface! Generate ti[ 1 7.

次いで、第6図に示すようにアルゴンレーザヲ照JI=
I’ してレーザアニールによって第2の多結晶シリコ
ン膜20をシリコン結晶膜20にしだ後、更に加速電圧
140KeVにて硼素をイオン注入して、濃度I X 
I O16/al のP型−にする。この場合、第2の
Si08膜17の膜厚はアルゴンレーザの吸収がよくな
るよう考慮して,’/4(λ; SiO,、中のレーザ
波長)の厚さ即ち880Aとする方法が望ましい。
Next, as shown in FIG. 6, the argon laser is illuminated.
After I', the second polycrystalline silicon film 20 is turned into a silicon crystal film 20 by laser annealing, and then boron ions are implanted at an acceleration voltage of 140 KeV to increase the concentration I
Make it P-type of I O16/al. In this case, the thickness of the second Si08 film 17 is desirably set to a thickness of '/4 (λ; laser wavelength in SiO, .), that is, 880A, in order to improve absorption of the argon laser.

次いで、第6図に示すようにSj−OIll膜17に2
の第2のPSG膜18を全面に被着する。この2つの窓
はソースおよびドレインの奄蕩コンタクト部となるもの
である。次いで、第7図に不すように窒素ガス気流中に
て1050′C,15分間熱処理して、」ユ下のPSG
膜11,18より燐をP型シリコン結晶膜20に拡散し
、naのソース領域15およびドレイン領@16を形成
する。住つ、P型シリコン結晶膜20はチャネル領域1
4と7zる。
Next, as shown in FIG.
A second PSG film 18 is deposited over the entire surface. These two windows serve as source and drain contact areas. Next, as shown in Fig. 7, heat treatment was performed at 1050'C for 15 minutes in a nitrogen gas flow to obtain the PSG under the
Phosphorus is diffused into the P-type silicon crystal film 20 from the films 11 and 18 to form a source region 15 and a drain region @16 of na. The P-type silicon crystal film 20 is located in the channel region 1.
4 and 7zru.

この場合、ゲーi・電極12にも燐は拡散されて、これ
らのn型濃度はl X 1.0”/cyxa 程度とな
る。このようにすればP型シリコン結晶とこれらのn型
領域との接合は浅く形成される。以降は、PSG膜18
を窓あけして、Aββ他極19形成し、第2図に示すM
OS  Fli:Tが完成される。
In this case, phosphorus is also diffused into the gate i-electrode 12, and the n-type concentration therein becomes approximately l x 1.0"/cyxa. In this way, the p-type silicon crystal and these n-type regions are The junction of the PSG film 18 is formed shallowly.
A window is opened to form the Aββ other pole 19, and the M shown in FIG.
OS Fli:T is completed.

(f)@明の効果 以上が一実施例の説明であるが、このように本発明によ
る半導体装置は浅い接合をもったソース・ドレインが設
けられた構造となるためアバランシェがおこりにくくて
、短チヤネル効果が緩和され、■シhなどが安定する。
(f) Effects of @Akira The above is an explanation of one embodiment, but since the semiconductor device according to the present invention has a structure in which the source and drain are provided with shallow junctions, avalanche is difficult to occur and short The channel effect is alleviated, and ■shih etc. are stabilized.

しかも、上下のPSG膜からソース・ドレイン両領域が
セルファラインで形成されるため小型化しやすくて、集
積度の向上に極めて好適な構造である。
Moreover, since both the source and drain regions are formed by self-line from the upper and lower PSG films, miniaturization is easy and the structure is extremely suitable for improving the degree of integration.

尚、PSG膜の代りに硼素シリケートガラス(PSG 
)膜を用いれば、Pチャネ/l/lφO8E”E1゛を
も形成できることはざう1でもない。
Note that boron silicate glass (PSG) is used instead of the PSG film.
) film, it is very possible to form a P channel/l/lφO8E"E1".

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alおよび(′b)は従来の半導体装置の断面
構造図、第2図は本発明にか象る半導体装置の断面構造
図、第8図ないし第7図は本発明にか−る製造方法の工
程順断面図である。 図中、lは半導体基板、2.18はゲート絶縁膜、B、
1.2はゲート1凱4.15はソース領域、5.16は
ドレイン領域、6.10は絶縁板(サファイヤ基板)、
11はPSG膜、14はチャネル領域、17は第2のS
iO、膜、18は第20PSG#、19はアルミニウム
電極、20は第2の多結晶シリコン膜、20はシリコン
結晶膜を示す。 リ              D
FIG. 1 (al and 'b) is a cross-sectional structural diagram of a conventional semiconductor device, FIG. 2 is a cross-sectional structural diagram of a semiconductor device according to the present invention, and FIGS. 8 to 7 are cross-sectional structural diagrams of a conventional semiconductor device. 1 is a step-by-step cross-sectional view of a manufacturing method. In the figure, l is a semiconductor substrate, 2.18 is a gate insulating film, B,
1.2 is the gate 1, 4.15 is the source region, 5.16 is the drain region, 6.10 is the insulating plate (sapphire substrate),
11 is a PSG film, 14 is a channel region, and 17 is a second S
18 is the 20th PSG#, 19 is the aluminum electrode, 20 is the second polycrystalline silicon film, and 20 is the silicon crystal film. Ri D

Claims (2)

【特許請求の範囲】[Claims] (1)  絶縁膜上にゲート電極、その表向にゲート絶
縁膜が設けられ、該ゲート電極の上部にゲート絶縁膜を
介して−4電型チャネル領域が設けられ、且つ該ゲート
電極の両側に絶縁膜を介して反対4紙型のソース領域お
よびトレイン領域が設けられてなることを特徴とする半
導体装置。
(1) A gate electrode is provided on the insulating film, a gate insulating film is provided on the surface of the gate electrode, a -4 voltage type channel region is provided above the gate electrode via the gate insulating film, and a -4 voltage type channel region is provided on both sides of the gate electrode. A semiconductor device characterized in that a source region and a train region are provided in an opposite four-paper shape with an insulating film interposed therebetween.
(2)燐シリケートガラス膜上に多結晶シリコン膜を被
着し、パターンニングした後、該多結晶シリコン膜の外
表面を酸化してゲート絶縁膜とする工程1次いでその上
面に第2の多結晶シリコン膜を被着し、これをパターン
ニングした後、該第2の多結晶シリコン膜の外表面を酸
化して、第2の絶縁膜を形成する工程1次いで該第2の
絶縁膜上からレーザアニールをおこなっテ、上記第2の
多結晶シリコン膜を単結晶化し、更にその上面からアク
セプタ不純物を導入してPi領領域する工程1次いでゲ
ート電極の両側の第2の絶縁膜に所望の窓を形成した後
、その上面に第2の燐ンリケートガラス膜km着し熱処
理して、ゲート電極両11111の単結晶領域に土面お
よび下面の燐シリケートガラス膜から燐を熱拡散させて
n型結晶領域とする工程が含まれてなることを特徴とす
る半導体装置の製造方法。
(2) After depositing and patterning a polycrystalline silicon film on the phosphorus silicate glass film, the outer surface of the polycrystalline silicon film is oxidized to form a gate insulating film. Step 1 of depositing a crystalline silicon film and patterning it, and then oxidizing the outer surface of the second polycrystalline silicon film to form a second insulating film. Laser annealing is performed to make the second polycrystalline silicon film into a single crystal, and acceptor impurities are introduced from the top surface of the second polycrystalline silicon film to create a Pi region. Step 1: Next, desired windows are formed in the second insulating film on both sides of the gate electrode. After forming a second phosphorus silicate glass film, a second phosphorus silicate glass film is deposited on the top surface and heat treated to thermally diffuse phosphorus from the phosphorus silicate glass film on the soil surface and the bottom surface into the single crystal region of both gate electrodes 11111, thereby forming an n-type A method of manufacturing a semiconductor device, comprising a step of forming a crystal region.
JP13140782A 1982-07-27 1982-07-27 Semiconductor device and manufacture thereof Pending JPS5921067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13140782A JPS5921067A (en) 1982-07-27 1982-07-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13140782A JPS5921067A (en) 1982-07-27 1982-07-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5921067A true JPS5921067A (en) 1984-02-02

Family

ID=15057246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13140782A Pending JPS5921067A (en) 1982-07-27 1982-07-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5921067A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
JPH05160153A (en) * 1991-12-03 1993-06-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH05267667A (en) * 1991-08-23 1993-10-15 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH05283694A (en) * 1991-08-23 1993-10-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH0653509A (en) * 1991-05-11 1994-02-25 Semiconductor Energy Lab Co Ltd Insulated gate field effect semiconductor device and fabrication thereof
JPH06196500A (en) * 1991-05-16 1994-07-15 Semiconductor Energy Lab Co Ltd Insulated gate field effect semiconductor device and manufacture thereof
JPH06244200A (en) * 1991-03-06 1994-09-02 Semiconductor Energy Lab Co Ltd Insulating gate type field effect semiconductor device and its manufacture
JPH08248445A (en) * 1995-12-22 1996-09-27 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device
US5681760A (en) * 1995-01-03 1997-10-28 Goldstar Electron Co., Ltd. Method for manufacturing thin film transistor
US5962870A (en) * 1991-08-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US6130120A (en) * 1995-01-03 2000-10-10 Goldstar Electron Co., Ltd. Method and structure for crystallizing a film
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6624450B1 (en) 1992-03-27 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126971A (en) * 1980-03-10 1981-10-05 Fujitsu Ltd Thin film field effect element
JPS57128957A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126971A (en) * 1980-03-10 1981-10-05 Fujitsu Ltd Thin film field effect element
JPS57128957A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
JPH06244200A (en) * 1991-03-06 1994-09-02 Semiconductor Energy Lab Co Ltd Insulating gate type field effect semiconductor device and its manufacture
JPH0653509A (en) * 1991-05-11 1994-02-25 Semiconductor Energy Lab Co Ltd Insulated gate field effect semiconductor device and fabrication thereof
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
JPH06196500A (en) * 1991-05-16 1994-07-15 Semiconductor Energy Lab Co Ltd Insulated gate field effect semiconductor device and manufacture thereof
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
JPH05283694A (en) * 1991-08-23 1993-10-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH05267667A (en) * 1991-08-23 1993-10-15 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US7821011B2 (en) 1991-08-26 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US5962870A (en) * 1991-08-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices
US6803600B2 (en) 1991-08-26 2004-10-12 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
JPH05160153A (en) * 1991-12-03 1993-06-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6476447B1 (en) 1992-02-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a transistor
US6624450B1 (en) 1992-03-27 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6610998B1 (en) 1995-01-03 2003-08-26 Goldstar Electron Co., Ltd. Method and structure for crystallizing a film
US6130120A (en) * 1995-01-03 2000-10-10 Goldstar Electron Co., Ltd. Method and structure for crystallizing a film
US5681760A (en) * 1995-01-03 1997-10-28 Goldstar Electron Co., Ltd. Method for manufacturing thin film transistor
JPH08248445A (en) * 1995-12-22 1996-09-27 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device

Similar Documents

Publication Publication Date Title
JPH05183159A (en) Semiconductor device and fabrication thereof
JPS5921067A (en) Semiconductor device and manufacture thereof
JPS59208851A (en) Semiconductor device and manufacture thereof
JPS6360549B2 (en)
JPS5885520A (en) Manufacture of semiconductor device
JPH0548100A (en) Manufacture of semiconductor device
JPH0481327B2 (en)
JPS59182570A (en) Semiconductor device
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JP2500688B2 (en) Method for manufacturing vertical field effect transistor
JPS594169A (en) Manufacture of semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPS6028383B2 (en) Selective impurity diffusion method into semiconductor substrate
JPH05190848A (en) Manufacture of mosfet
JPS6081866A (en) Manufacture of semiconductor device
JPS6331156A (en) Semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JPS6136974A (en) Manufacture of mos semiconductor device
JPH01169962A (en) Semiconductor device
JPS61102057A (en) Manufacture of semiconductor device
JPS6182456A (en) Manufacture of semiconductor device
JPH04111361A (en) Thin-film semiconductor device
JPH02117166A (en) Semiconductor device
JPH06275839A (en) Manufacture of vertical semiconductor element
JPH01128570A (en) Manufacture of semiconductor device