JPS59182570A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59182570A
JPS59182570A JP58057219A JP5721983A JPS59182570A JP S59182570 A JPS59182570 A JP S59182570A JP 58057219 A JP58057219 A JP 58057219A JP 5721983 A JP5721983 A JP 5721983A JP S59182570 A JPS59182570 A JP S59182570A
Authority
JP
Japan
Prior art keywords
film
gate
electrode
insulating film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057219A
Other languages
Japanese (ja)
Other versions
JPH065754B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58057219A priority Critical patent/JPH065754B2/en
Publication of JPS59182570A publication Critical patent/JPS59182570A/en
Publication of JPH065754B2 publication Critical patent/JPH065754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Abstract

PURPOSE:To obtain three-dimensional structure suitable for a NAND gate circuit by each forming two gate electrodes to upper and lower sections through a gate insulating film while holding a channel region in a semiconductor substrate and surrounding the electrodes by an insulating film thicker than the gate insulating film when preparing an MIS transistor. CONSTITUTION:An SiO2 film 11 is formed on the surface of a P type Si substrate 1, and As ions, etc. are implanted through the film 11 to shape an N<+> type Si gate electrode 2. A P type polycrystalline Si film 4 as a channel region is deposited on the whole surface including a gate insulating film 3 consisting of the film 11 positioned on the electrode 2 while selecting the quantity of an impurity so as to obtain a desired threshold value, a gate insulating film 5 corresponding to the electrode 2 is formed on the film 4, and a gate electrode 6 composed of N<+> type polycrystalline Si is deposited. N<+> type source region 7 and drain region 8 are formed to the film 4 through an ion implantation while being positioned on both sides of the electrode 6, and the electrode 6 is surrounded by a thick insulating film.

Description

【発明の詳細な説明】 (a+  発明の技術分野 本発明は半導体装置のうち、特に複数のMisトランジ
スタを立体的に積み上げた三次元論理素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a+) Technical Field of the Invention The present invention relates to semiconductor devices, and particularly to a three-dimensional logic element in which a plurality of Mis transistors are stacked three-dimensionally.

fb)  従来技術と問題点 周知のように、半導体集積回路(IC)は益々高集積化
されており、それは集積度が上ると動作が高速になる等
の著しい性能向上が期待できるためである。
fb) Prior Art and Problems As is well known, semiconductor integrated circuits (ICs) are becoming increasingly highly integrated, and this is because as the degree of integration increases, significant performance improvements such as faster operation can be expected.

ところで、論理回路においては、例えば第1図に示すよ
うなエンハンスメント/デプレッション型NANDゲー
1−回路が汎用されており、このようなゲート回路は殆
どすべてがM’IS)ランジスタで構成されている。即
ち、同図において1..12は入力ゲート素子、Lは負
荷のMIS素子である。
By the way, in logic circuits, for example, an enhancement/depression type NAND gate circuit as shown in FIG. 1 is commonly used, and almost all of such gate circuits are composed of M'IS) transistors. That is, in the same figure, 1. .. 12 is an input gate element, and L is a load MIS element.

かようなMIS)ランジスタからなる論理ICは当然、
l”j +6積化が進められているが、現状の半導体基
板面乙二平面的(二次元)に形成するIC構造では集積
化にも限界がある。
Of course, a logic IC consisting of such MIS) transistors,
1"j+6 integration is progressing, but there is a limit to integration with the current IC structure that is formed two-dimensionally (two-dimensionally) on a semiconductor substrate.

従って、立体的(三次元)構造が懸案となっており、そ
うすれば一層高集積化され、一層高性能化されることは
言うまでもない。
Therefore, a three-dimensional (three-dimensional) structure is a concern, and it goes without saying that this will lead to even higher integration and higher performance.

[C)  発明の目的 本発明はこのような観点より、上記NANDケー1〜回
路の立体的な構造を提案するものである。
[C) Object of the Invention From this viewpoint, the present invention proposes a three-dimensional structure of the above-mentioned NAND circuit.

(dl  発明の構成 その目的は、基板上にチャネル領域を挟んで、」−下に
それぞれゲート絶縁膜を介して2つのゲート電極が設け
られた双ゲート電極形M1st−ランシスタ構輩を有す
る半導体装置によつ−で達成される。
(dl)Structure of the InventionThe object of the invention is to provide a semiconductor device having a double-gate electrode type M1st-run transistor structure in which two gate electrodes are provided on a substrate with a channel region sandwiched therebetween, and two gate electrodes are provided below each with a gate insulating film interposed therebetween. This is achieved in a timely manner.

且つ、上記の基板を半導体基板とし、該半導体基板内に
設りだゲート電極の周囲にケート&色kAll灸より厚
い絶縁膜が設けられた半導体装置によって達成される。
In addition, this can be achieved by a semiconductor device in which the above substrate is a semiconductor substrate, and an insulating film thicker than that of Kate & Color KAll Moxibustion is provided around a gate electrode provided in the semiconductor substrate.

(Ql  発明の実施例 以下2図面を参照して実施例によって詳細に説明する。(Ql Embodiments of the invention Examples will be described in detail below with reference to two drawings.

第2図−ば本発明にかかる一実施例の断面図を示し、本
例は上記第1図の入力素子1.、I2を積層した構造断
面図である。図示のよ痕こ、P型ンリコン基板lにN+
型シリコンゲート電)勇2を形成し、二酸化シリコン(
S i O2) H’A 3カ・らなるデー1−絶縁股
上にP型チャネル領域4を設置d、更にその上にSiO
□膜5からなるゲート絶牟柔膜を介してN”型シリコソ
ゲ−1−電極6が設けてあり、かくしてケート電極2と
5i02膜3とチャネル領域4とて1個の入力素子11
が形成され、またケート電極6とSiO□膜5とチャネ
ル領域4とで1′個の入力素子I2が形成された構造で
、ソース領@7とドレイン領域8がその両側に共通して
設けられている。尚、9は5i02膜からなるカバー絶
縁膜、10は導出電極である。
FIG. 2 is a sectional view of an embodiment according to the present invention, and this example is the input element 1 shown in FIG. 1 above. , I2 are laminated. As shown in the figure, N+ on the P type silicon substrate l.
type silicon gate electrode) to form silicon dioxide (
S i O2) H'A 3 parts 1 - P-type channel region 4 is installed on the insulation crotch, and SiO is further placed on it.
□An N'' type silicon gate electrode 6 is provided through a gate insulation film consisting of a film 5, and thus the gate electrode 2, the 5i02 film 3, and the channel region 4 form one input element 11.
is formed, and 1' input elements I2 are formed by the gate electrode 6, the SiO□ film 5, and the channel region 4, and a source region @7 and a drain region 8 are provided in common on both sides. ing. Note that 9 is a cover insulating film made of a 5i02 film, and 10 is a lead-out electrode.

このようにすれば、2つの入力素子が立体的に作成され
ているため、集積度は著しく向」ニする。
In this way, since the two input elements are three-dimensionally formed, the degree of integration is significantly improved.

且つ、ラテラルエピタキシャル成長法等の単結晶薄膜形
成方法を利用すれば、このような構造は容易に形成する
ことができる。
In addition, such a structure can be easily formed by using a single crystal thin film forming method such as a lateral epitaxial growth method.

第3図ないし第6図にその形成工程順の概要断面図を示
す。まづ、第3図に示すようにP型シリコン基板1の表
面を熱酸化して5i02膜11を形成し、次に選択的に
窓あけして砒素イオンを注入し膜厚0.5〜1μmのN
+型シリコンゲ−1・電極2を形成し、更にその上に膜
厚400人の5i02膜3 (ゲート絶縁膜)を生成す
る。この際、5i02膜3を形成した後に、ゲート電極
2をイオン注入する方法を用いてもよい。ここに、厚い
膜厚をもった5iO21EIILを予め形成しているが
、これは重要なことで、以降の工程で形成されるMO’
Sトランシスクの寄生容量を小さくして動作速度を早く
することに極めて効果のあるものである。
3 to 6 show schematic cross-sectional views of the order of the forming steps. First, as shown in FIG. 3, the surface of a P-type silicon substrate 1 is thermally oxidized to form a 5i02 film 11, and then windows are selectively opened and arsenic ions are implanted to form a film with a thickness of 0.5 to 1 μm. N of
A + type silicon gate electrode 1 and electrode 2 are formed, and a 5i02 film 3 (gate insulating film) having a thickness of 400 nm is further formed thereon. At this time, a method may be used in which ions are implanted into the gate electrode 2 after the 5i02 film 3 is formed. Here, 5iO21EIIL with a thick film thickness is formed in advance, but this is important because MO' formed in the subsequent steps
This is extremely effective in reducing the parasitic capacitance of the S transisk and increasing the operating speed.

次いで、第4図に示ずように膜厚4000人の多結晶シ
リコン膜を化学気相成長(CVD)法で被着し、その上
にキャップ層12 (反射防止膜)を被覆して上面から
レーザ照射によって溶融しスキャンニングして、多結晶
シリコン膜をシリコン結晶膜4にする。これが上記した
ラテラルエピタキシャル成長法である。次いで、キャッ
プ層7を除去した後、第5図に示すように濃度1〜5×
1016の硼素イオンを注入しP型シリコン結晶膜4と
してスレーショルド値を決定する。
Next, as shown in FIG. 4, a polycrystalline silicon film with a thickness of 4,000 yen was deposited by chemical vapor deposition (CVD), and a cap layer 12 (an antireflection film) was coated on top of the polycrystalline silicon film. The polycrystalline silicon film is melted and scanned by laser irradiation to form a silicon crystal film 4. This is the lateral epitaxial growth method described above. Next, after removing the cap layer 7, as shown in FIG.
1016 boron ions are implanted to form a P-type silicon crystal film 4 and a threshold value is determined.

次いで、第6図に示すようにCVD法によって膜W2O
3人の5i02膜5(ゲート絶縁膜)および多結晶シリ
コン膜6を被着し、ついで5i02膜5と多結晶シリコ
ン膜6とを同時にパターンニングする。次いで、全面に
高濃度の燐イオンを注入して、多結晶シリコン膜6をN
+型シリコンゲート電極とし、又同時にN+型のソース
領域7およびドレイン領域8をも形成した後、厚t+′
l5i02膜9を被着し、それに窓開けして電極10を
形成すると、第2図に示すように完成される。なお、こ
の場合ケート電極6は結晶化しても、また多結晶のまま
でもどちらでも構わない。
Next, as shown in FIG. 6, a film W2O is formed by CVD method.
Three 5i02 films 5 (gate insulating films) and polycrystalline silicon films 6 are deposited, and then the 5i02 films 5 and polycrystalline silicon films 6 are patterned simultaneously. Next, highly concentrated phosphorus ions are implanted over the entire surface to make the polycrystalline silicon film 6 N.
After forming a + type silicon gate electrode and simultaneously forming an N+ type source region 7 and drain region 8, a thickness t+'
After depositing the l5i02 film 9 and forming a window thereon to form the electrode 10, the structure is completed as shown in FIG. In this case, the gate electrode 6 may be crystallized or remain polycrystalline.

次に、第7図は本発明にかかる他の実施例を示しており
、1色線基板13上に同様のMISトランジスタを形成
した例で、その形成方法は上記と殆ど変わりがない。ま
た、ゲート電極はモリフ゛デンなどの金属を用いてもよ
い。
Next, FIG. 7 shows another embodiment of the present invention, in which a similar MIS transistor is formed on a monochromatic line substrate 13, and the method of formation is almost the same as that described above. Furthermore, the gate electrode may be made of metal such as molybdenum.

次ぎに、第8図は入力ゲート素子を更に増加した本発明
にかかる実施例の断面図を示してしする。
Next, FIG. 8 shows a sectional view of an embodiment according to the present invention in which the number of input gate elements is further increased.

図において、14はチャネル領域、15(よケ−1・絶
縁膜、16はゲート電極で、2つのチャネル領域と4つ
のゲート糸色縁膜と3つのゲ 1〜電(工が形成されて
おり、ソース領域17とトレイン領域18は共通である
。この例の論理記号は第9図に示すようになる。また、
この第8図の実施例の、ようQこ形成すれば、更に入力
ゲート素子を積み上げることができる。
In the figure, 14 is a channel region, 15 is an insulating film, 16 is a gate electrode, and two channel regions, four gate thread-colored border films, and three gates are formed. , the source region 17 and the train region 18 are common.The logic symbols in this example are as shown in FIG.
If the Q-shaped structure of the embodiment shown in FIG. 8 is formed, more input gate elements can be stacked.

第8図の実施例の形成方法も上記例と略同(工であるが
、上記例の形成方法にゲ−1・電極16の(クリ面にS
iC,)1央19を被着しバク ンニンクする工程がケ
ート電(]16の画定後に追加することが必要になる。
The method of forming the embodiment shown in FIG. 8 is approximately the same as that of the above example.
It is necessary to add a step of applying and bakunnin the iC, )1 center 19 after defining the gate electrode ( )16.

次いで、第10図は絶縁基(反20上にメユ子を形成し
た本発明にかかる他の例を示しており、ゲl〜電極には
タングステン電極21を用いたものである。タングステ
ンの他にモリブアン、あるいはそれらのシリサイドを用
いてもよい。形成方法も上記と変わりはない。
Next, FIG. 10 shows another example according to the present invention in which a melon layer is formed on an insulating base (20), and a tungsten electrode 21 is used as the gel electrode.In addition to tungsten, Molybuan or a silicide thereof may also be used.The formation method is also the same as above.

ffl  発明の効果 以上の説明から明らかなように、本発明によればICは
一層高集積化されて、著しくその1生能か向上するもの
である。
ffl Effects of the Invention As is clear from the above explanation, according to the present invention, the IC can be more highly integrated and its performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNAND形ゲ−1・回路図、第2図は本発明に
かかる−・実施例の半導体装置断面図、第3図へ第6図
はその工程順概要断面図、第7図、第8図および第10
図は本発明にかかる他の実施例の″−11導体製;1°
断面図、第9図は第8図の実施例の論理記号でする。 図中、1はP型半導体基板、2.G、’6はゲート電極
、3,5.15はゲ−1−1鱒(1厘 ’i+14はヂ
、1−二tル領域、7.17は゛ハース領域、8.18
はドレイン領J或、9..11.19は′:、酸化シリ
コン(SiC2)117.10は導出電極、12はキー
2・ツブ層(反射防止膜)、13.20は絶縁基(反、
21はタングステン電極を示している。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 6 第9図 第 10図 フ1
1 is a circuit diagram of a NAND type gate 1, FIG. 2 is a sectional view of a semiconductor device according to an embodiment of the present invention, FIG. Figures 8 and 10
The figure shows another embodiment of the present invention made of ``-11 conductor; 1°
The cross-sectional view, FIG. 9, is a logical symbol of the embodiment of FIG. In the figure, 1 is a P-type semiconductor substrate, 2. G, '6 is the gate electrode, 3, 5.15 is the gate electrode (1 rin 'i + 14 is the 1-2t area, 7.17 is the hearth area, 8.18
is the drain territory J or 9. .. 11.19 is ':, silicon oxide (SiC2) 117.10 is a lead-out electrode, 12 is a key 2/bulk layer (antireflection film), 13.20 is an insulating base (anti-reflection film),
21 indicates a tungsten electrode. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 6 Figure 9 Figure 10 F1

Claims (2)

【特許請求の範囲】[Claims] (1)、基板上にチャネル領域を挟んで、上下にそれぞ
れゲート絶縁膜を介して2つのゲート電極か設けられた
双ゲート電極形MIS)ランジスタ構造を有することを
特徴とする半導体装置。
(1) A semiconductor device characterized by having a dual-gate electrode type MIS transistor structure in which two gate electrodes are provided on the upper and lower sides of a substrate with a channel region sandwiched therebetween, with gate insulating films interposed therebetween.
(2)、基板を半導体基板とし、該半導体基板内に設け
たゲート電極の周囲にゲート絶縁膜より厚い絶縁膜が設
けられたごとを特徴とする特許請求範囲第1項記載の半
導体装置。
(2) The semiconductor device according to claim 1, wherein the substrate is a semiconductor substrate, and an insulating film thicker than a gate insulating film is provided around a gate electrode provided in the semiconductor substrate.
JP58057219A 1983-03-31 1983-03-31 Semiconductor device Expired - Lifetime JPH065754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057219A JPH065754B2 (en) 1983-03-31 1983-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057219A JPH065754B2 (en) 1983-03-31 1983-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59182570A true JPS59182570A (en) 1984-10-17
JPH065754B2 JPH065754B2 (en) 1994-01-19

Family

ID=13049413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057219A Expired - Lifetime JPH065754B2 (en) 1983-03-31 1983-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH065754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224165A (en) * 1983-06-03 1984-12-17 Agency Of Ind Science & Technol Semiconductor device
US8765598B2 (en) 2011-06-02 2014-07-01 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods
US9941209B2 (en) 2016-03-11 2018-04-10 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678155A (en) * 1979-11-30 1981-06-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5688354A (en) * 1979-12-20 1981-07-17 Toshiba Corp Semiconductor integrated circuit device
JPS5783059A (en) * 1980-11-11 1982-05-24 Toshiba Corp Manufacture of mos type semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678155A (en) * 1979-11-30 1981-06-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5688354A (en) * 1979-12-20 1981-07-17 Toshiba Corp Semiconductor integrated circuit device
JPS5783059A (en) * 1980-11-11 1982-05-24 Toshiba Corp Manufacture of mos type semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224165A (en) * 1983-06-03 1984-12-17 Agency Of Ind Science & Technol Semiconductor device
US8765598B2 (en) 2011-06-02 2014-07-01 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods
US9536823B2 (en) 2011-06-02 2017-01-03 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods
US9911692B2 (en) 2011-06-02 2018-03-06 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods
US10290575B2 (en) 2011-06-02 2019-05-14 Micron Technology, Inc. Memory devices, semiconductor devices and related methods
US10930585B2 (en) 2011-06-02 2021-02-23 Micron Technology, Inc. Memory devices, semiconductor devices and related methods
US9941209B2 (en) 2016-03-11 2018-04-10 Micron Technology, Inc. Conductive structures, systems and devices including conductive structures and related methods
US10290581B2 (en) 2016-03-11 2019-05-14 Micron Technology, Inc. Methods of forming conductive structures including stair step or tiered structures having conductive portions
US10879175B2 (en) 2016-03-11 2020-12-29 Micron Technology, Inc. Memory devices including stair step or tiered structures and related methods
US11430734B2 (en) 2016-03-11 2022-08-30 Micron Technology, Inc. Methods of forming memory devices including stair step structures

Also Published As

Publication number Publication date
JPH065754B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
CN101772839A (en) Circuit structure with metal gate and high-K dielectric
JPS5921067A (en) Semiconductor device and manufacture thereof
JPS61263261A (en) Manufacture of mos type semiconductor element
JP2003298063A (en) Field effect transistor
JPS59182570A (en) Semiconductor device
JPH01114070A (en) Manufacture of semiconductor device
JPS63133678A (en) Manufacture of vertical field effect transistor
JPH04116846A (en) Semiconductor device and its manufacture
JPS59168675A (en) Manufacture of semiconductor device
JPS62202559A (en) Semiconductor device and its manufacture
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPS59151467A (en) Vertical type metal oxide semiconductor field-effect transistor
JPS59151465A (en) Vertical type metal oxide semiconductor field-effect transistor
JPH0395937A (en) Soi type semiconductor device and manufacture thereof
JPS63226070A (en) Mis transistor
JP2000124461A (en) Thin film transistor and its manufacture
JPS61281558A (en) Mos type semiconductor device
JPH0684939A (en) Manufacture of mis field-effect semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPS59151466A (en) Vertical type metal oxide semiconductor field-effect transistor
JPH0548100A (en) Manufacture of semiconductor device
JPH06181312A (en) Manufacture of semiconductor device
JP2861576B2 (en) Method of manufacturing insulated gate field effect transistor
JPH0466108B2 (en)
JPH0517701B2 (en)