JPS59151465A - Vertical type metal oxide semiconductor field-effect transistor - Google Patents

Vertical type metal oxide semiconductor field-effect transistor

Info

Publication number
JPS59151465A
JPS59151465A JP58025335A JP2533583A JPS59151465A JP S59151465 A JPS59151465 A JP S59151465A JP 58025335 A JP58025335 A JP 58025335A JP 2533583 A JP2533583 A JP 2533583A JP S59151465 A JPS59151465 A JP S59151465A
Authority
JP
Japan
Prior art keywords
region
film
gate
regions
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025335A
Other languages
Japanese (ja)
Inventor
Wataru Akiyama
秋山 亘
Shigeo Hoshino
重夫 星野
Teruyoshi Mihara
輝儀 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58025335A priority Critical patent/JPS59151465A/en
Priority to EP84100612A priority patent/EP0119400B1/en
Priority to DE8484100612T priority patent/DE3465225D1/en
Publication of JPS59151465A publication Critical patent/JPS59151465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Abstract

PURPOSE:To reduce feedback capacitance between a gate and a drain by partially burying an insulator to a section immediately under approximately the central section of a gate oxide film and lengthening an opposite distance between a gate electrode film and a drain region. CONSTITUTION:An N<-> layer (c) functioning as a drain is formed on an N<+> type Si substrate (a), and P type well regions (d) serving as channel regions are formed to the layer (c) and N<+> type well regions (e) functioning as source regions in the regions (d). A gate oxide film (g) is applied and formed between the regions (d) and (d), and a gate electrode film (i) is formed on the upper surface of the film (g). In a vertical type MOSFET formed in this manner, an insulator (h) is buried to a section immediately under approximately the central section of the film (g) shaped between the adjacent regions (d) and (d) in the surface of the base body (a). Consequently, an opposite distance between a film (i) and the region (c) positioned at the upper and lower sections of the insulator (h) while hlding the insulator is brought to a separate state. Accordingly, feedback capacitance between a gate and the drain is reduced, and the speed of switching can be increased.

Description

【発明の詳細な説明】 この発明は、ゲート・ドレイン間の帰還容量が小さく、
かつ歩留り良く製造が可能な縦型MO8FETに関する
[Detailed Description of the Invention] This invention has a small feedback capacitance between the gate and drain.
The present invention also relates to a vertical MO8FET that can be manufactured with high yield.

近年、駆動回路を簡単かつ集積化し、該回路の電源電圧
を低電圧化しようと゛する要望からパワーMO8FET
、中でもオシ抵抗が低くパワースイッチングに適する縦
型MO8FETをスイッチに応用する動きがある。
In recent years, power MO8FETs have been developed due to the desire to simplify and integrate drive circuits and lower the power supply voltage of the circuits.
Among them, there is a movement to apply vertical MO8FETs, which have low oscillation resistance and are suitable for power switching, to switches.

第1図は、従来の縦型MO8FETの一般的な構造を示
すものであり、この縦型MO8FETは、従来以下のよ
うな製造工程を経て作られていた。
FIG. 1 shows the general structure of a conventional vertical MO8FET, and this vertical MO8FET has conventionally been manufactured through the following manufacturing process.

(イ)高濃度N型(N+)の性質を有するシリコンウェ
ハからなる低抵抗ドレイン基板1上に、低濃度N型(N
” )層をエピタキシャル成長させて高抵抗ドレイン領
域2を形成する。
(a) A low-resistance drain substrate 1 made of a silicon wafer having high-concentration N-type (N+) properties is
) layer is epitaxially grown to form a high resistance drain region 2.

(ロ)この高抵抗ドレイン領域20表面に熱酸化法によ
りゲート用絶縁被膜3を形成し、更にその上面にゲート
電極5を構成するポリシリコン膜を形成する。
(b) A gate insulating film 3 is formed on the surface of this high-resistance drain region 20 by thermal oxidation, and a polysilicon film constituting the gate electrode 5 is further formed on its upper surface.

(ハ)このポリシリコンを写真蝕刻により選択的に除去
した後、該ポリシリコンをマスクとして、前記開口され
たソース窓に2重拡散法によりチャンネル形成用ウェル
領域間注入このウェル領域6内にその中心から外周へ向
けて同心状に拡散するソース領域7およびウェルコンタ
クト領域8を順次形成する。
(c) After selectively removing this polysilicon by photolithography, using the polysilicon as a mask, inject into the well region for channel formation into the opened source window by a double diffusion method. A source region 7 and a well contact region 8 which are concentrically diffused from the center toward the outer periphery are sequentially formed.

(ニ)以上の2重拡散工程を終了した後に、前記ゲート
電極5の上面には絶縁膜9を介してソース電極10を臀
空蒸着により形成するとともに、低抵抗ドレイン基板1
の裏面にドレイン電極11を形成し、同第1図に示す最
終製品を完成する。
(iv) After completing the above double diffusion process, a source electrode 10 is formed on the upper surface of the gate electrode 5 through an insulating film 9 by evaporation, and a low resistance drain substrate 10 is formed on the upper surface of the gate electrode 5.
A drain electrode 11 is formed on the back surface of the substrate to complete the final product shown in FIG.

前記方法を適用した縦型MO8F E Tによれば、チ
ャンネル形成領域を構成するウェル領域6とソース領域
7を2重拡散法により形成するために、多数のトランジ
スタをシリコンウエノ入上に同時多数製造する場合に各
トランジスタの特性を均一化でき、歩留りを著しく良好
なもめとし、小型化にところが、その半面前i己2重拡
散法によれば、ゲート電極となる余りシリコン膜をマス
クとして、ソース窓からイオン打込みを行なった後、2
m拡散でウェル領域およびソース領域を形成するために
、予め隣合うソース窓とソース窓との―に挾まれる全領
域をポリシリコン膜で覆っておく必要がある。
According to the vertical MO8FET to which the above method is applied, in order to form the well region 6 and source region 7 constituting the channel forming region by the double diffusion method, a large number of transistors can be simultaneously manufactured on a silicon wafer. In this case, the characteristics of each transistor can be made uniform, which significantly improves the yield and leads to miniaturization. After performing ion implantation from the window, 2
In order to form the well region and source region by m-diffusion, it is necessary to previously cover the entire region sandwiched between adjacent source windows with a polysilicon film.

このために、最終製品の幾何学的形状は、本来ゲート電
極として必要なチャンネル領域上面以外に、ドレイン領
域上面までポリシリコン膜が残ってしまい、その構造上
ゲート電極とトレイン電極は薄いゲート絶縁膜を挾んで
隔てられているに寸ぎず、この結果ドレイン・ゲート容
量が大きくなり、またこの容量は出力から入力への帰還
回路として働くため、スイッチング速度の高速化への妨
げとなるという問題があった。
For this reason, the geometry of the final product is such that in addition to the top surface of the channel region, which is originally required as a gate electrode, a polysilicon film remains up to the top surface of the drain region, and due to its structure, the gate electrode and train electrode are covered with a thin gate insulating film. As a result, the drain-gate capacitance becomes large, and this capacitance acts as a feedback circuit from the output to the input, so there is a problem that it becomes an obstacle to increasing the switching speed. Ta.

この発明は、このような従来の問題点に着目してなされ
たもので、その目的とするところは、ゲート・ドレイン
間の帰還容量が小さく、かつ歩留り良く製造が可能な縦
型MO8F E Tを提供することにある。
This invention was made by focusing on these conventional problems, and its purpose is to create a vertical MO8FET with a small feedback capacitance between the gate and drain and which can be manufactured with high yield. It is about providing.

この発明は上記の目的を達成するために、半導体基板面
における隣合うチャンネル形成用ウェル領域−を被覆す
るゲート酸化膜の略中央部の直下に、局部的に絶縁物を
埋め込み、これによりゲート電極膜とドレイン領域との
対向距離を離隔せしめたものである。
In order to achieve the above object, the present invention locally embeds an insulator directly under the approximate center of a gate oxide film covering adjacent channel forming well regions on a semiconductor substrate surface, thereby forming a gate electrode. The facing distance between the film and the drain region is set apart.

以下に、本発明の好適な実施例を第2図以下の図面を参
照して詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIG. 2 and the subsequent drawings.

第2図はこの発明に係わる縦型MO8F E Tの一実
施例の構造を示す素子、断面図である。
FIG. 2 is a cross-sectional view of an element showing the structure of an embodiment of a vertical MO8FET according to the present invention.

同図において、aは基板を構成する・N十型シリコンウ
ェハ、bは基板aの裏面側に被覆形成されたドレイン電
極として機能するアルミ蒸@層、Cは基板a上にエピタ
キシャル成長で形成され、かつトレインとして機能する
N一層、dはチャンネル形成領域として機能するP型ウ
ェル領域、eはツース領域として機能するN÷・型ウェ
ル領域、fはPウェルdを外部へ導出するための、コン
タクト領域として機能するP÷型小つ・エル領域9gは
相隣接するチャンネル形成用のPウェル1領域d、6間
に被覆形成されたゲート酸化膜、hはゲート酸化膜gの
中央部直下に埋め込まれた絶縁物、iはゲート酸化膜9
の上面を覆うポリシリコンよりなるゲート電極膜、jは
ゲート電極膜iの上面を覆う絶縁膜、には前記ソース領
域となるN+ウェル“領域eとP十型小つェル領域fと
に導通、するアルミ電極層である。
In the figure, a is an N0 type silicon wafer constituting the substrate, b is an aluminum evaporation layer that is coated on the back side of the substrate a and functions as a drain electrode, C is formed on the substrate a by epitaxial growth, d is a P-type well region that functions as a channel forming region, e is an N÷-type well region that functions as a tooth region, and f is a contact region for leading the P-well d to the outside. The P÷ type small T/L region 9g which functions as a gate oxide film is formed to cover between adjacent P well regions d and 6 for channel formation, and h is buried directly under the center of the gate oxide film g. i is the gate oxide film 9
A gate electrode film made of polysilicon that covers the upper surface, j is an insulating film that covers the upper surface of the gate electrode film i, and conduction is established between the N+ well "region e, which becomes the source region, and the P ten-type small well region f. , an aluminum electrode layer.

このように、本発明に、係わる縦型MO8FET5− にあっては、半導体基体eの表面における隣合うチャン
ネル形成用のウェル領域d、d間に被覆形成されるゲー
ト酸化膜Qのほぼ中心部所定領域の直下には、絶縁物り
が埋め込まれており、このためこの絶縁物I)を挾んで
その上下に位置覆るゲート電極膜iとドレイン領域Cと
の対向距離は、第1図に示す従来例に比べ離隔された状
態となる。
As described above, in the vertical MO8FET 5- according to the present invention, a predetermined portion approximately at the center of the gate oxide film Q formed between adjacent well regions d for channel formation on the surface of the semiconductor substrate e is formed. An insulating material is embedded directly under the region, and therefore, the facing distance between the gate electrode film i and the drain region C, which sandwich and cover the insulating material I), is the same as that of the conventional method shown in FIG. It will be in a separated state compared to the example.

このため、ゲート・ドレイン間における帰還容量は減少
し、スイッチングの高速化を図ることができる。
Therefore, the feedback capacitance between the gate and drain is reduced, and switching speed can be increased.

次に、第3図はこの発明を適用した縦型MO8FETの
製造工程を示している。
Next, FIG. 3 shows the manufacturing process of a vertical MO8FET to which the present invention is applied.

以下、この製造方法について各工程(A)〜(Hに従っ
て順に説明する。
Hereinafter, this manufacturing method will be explained in order according to each step (A) to (H).

(A)ドナー不純物濃度Noが約lX10”cm−3の
高濃度N型(N+)シリコン単結晶板からなる。低抵抗
ドレイン基板20上に、Noが2×10′5CIIl−
3程痕で、厚さ約15μlllの低濃度N型、(N −
)シリコン単結晶をエピタキシャル成長させ、−高抵抗
ドレイン領域21を形成する。
(A) Consists of a high-concentration N-type (N+) silicon single crystal plate with a donor impurity concentration No of about 1 x 10" cm-3. On the low resistance drain substrate 20, No.
Low concentration N type, (N -
) A silicon single crystal is epitaxially grown to form a - high resistance drain region 21;

6一 (B)高抵抗ドレイン領域21の表面において、チャン
ネル形成用ウェル領域形成予定位置以外の部分をレジス
ト22で覆い、次いでドライエツチングにより、上記レ
ジスト22に形成された窓部開口部分の表面を約1μm
エツチングして凹部21aを形成し、イの後レジスト2
2を除去する。
6-(B) Cover the surface of the high-resistance drain region 21 with a resist 22 other than the planned formation position of the channel-forming well region, and then dry-etch the surface of the window opening formed in the resist 22. Approximately 1μm
Etching is performed to form the recess 21a, and after step 2, the resist 2
Remove 2.

(C)モル濃度比3妬程度の砒素を含んだシリコン酸化
膜23をCVD法により全面に厚み1μm程度デポジッ
トし、その後写真蝕刻により凹部21aを除くシリコン
酸化膜23を除去する。この場合に、上記四部2Ia内
に充填されたシリコン酸化膜23は、その周縁が、表面
よりなだらかに盛り上がった状態となる。
(C) A silicon oxide film 23 containing arsenic with a molar concentration ratio of about 3 ml is deposited to a thickness of about 1 μm over the entire surface by CVD, and then the silicon oxide film 23 is removed except for the recesses 21a by photolithography. In this case, the periphery of the silicon oxide film 23 filled in the four portions 2Ia is gently raised from the surface.

(D)熱酸化法により表面にゲート用シリコン酸化1!
124を約1000人の厚みに形成し、その上面にCV
D法によりゲート電極25を構成するポリシリコンの層
を形成する。
(D) Silicon oxide for gate on the surface by thermal oxidation method 1!
124 to a thickness of about 1000, and a CV on the top surface.
A polysilicon layer constituting the gate electrode 25 is formed by method D.

このとき、前記凹所21a内に含有されているシリコン
酸化膜23中の砒素からなるN型不純物は、前記熱酸化
により拡散し、シリコン酸化It! 23の周縁と、高
抵抗ドレイン領域21との稈面に破線で囲んで示す如く
、N型高濃度領域(N+)23aを形成する。
At this time, the N-type impurity made of arsenic in the silicon oxide film 23 contained in the recess 21a is diffused by the thermal oxidation, and the silicon oxide It! An N-type high concentration region (N+) 23a is formed at the periphery of 23 and the culm surface of the high-resistance drain region 21, as shown by a broken line.

(E)ポリシリコンが覆っている前記ウェル領域形成予
定位置を写真蝕刻により選択的に除去した後、その残部
であるゲート電極25部分をマスク材として、イオン注
入法によりボロンイオン(B+)を注入する。
(E) After selectively removing the well region formation position covered by polysilicon by photolithography, boron ions (B+) are implanted by ion implantation using the remaining portion of the gate electrode 25 as a mask material. do.

このイオンの打ち込みエネルギーは約60 keV 。The implantation energy of this ion is approximately 60 keV.

打ち込み量は約4X 10’ 3am−2である。The implantation amount is approximately 4×10'3 am-2.

次いで、約1100℃で24時間程度熱処理すれば4〜
6μm程度の深さのチャンネル形成用P型ウェル領域2
6が形成される。
Then, if heat treated at about 1100℃ for about 24 hours, 4~
P-type well region 2 for channel formation with a depth of about 6 μm
6 is formed.

(F)次に、レジスト27をマスクとしてつIル領域2
6上面の中心部に開口形成された窓部より、イオン注入
法によりボロン(B+)を注入する。
(F) Next, using the resist 27 as a mask,
Boron (B+) is implanted by ion implantation through a window formed in the center of the upper surface of 6.

このイオンの打ち込みエネルギーは約50 keV 。The implantation energy of this ion is approximately 50 keV.

打ち込み量は約5X1015am−2であり、この作業
終了後レジスト27を除去すればウェル領域26の中心
部にP型ウェルコンタクト領域の前駆体が完成する。
The implantation amount is about 5.times.10.sup.15 am@-2, and by removing the resist 27 after completing this operation, a precursor of a P-type well contact region is completed in the center of the well region 26.

(G)前記P型ウェルコンタクト領域前駆体上をレジス
ト28で覆い、このレジスト28をマスクにしてリンイ
オン(P+)をイオン注入する。このイオンの打ち込み
エネルギーは約10.0keVで打ち込み量は約5X1
015am−2であり、またリンイオンはポリシリコン
中にも入る。
(G) The P-type well contact region precursor is covered with a resist 28, and phosphorus ions (P+) are implanted using the resist 28 as a mask. The implantation energy of this ion is approximately 10.0keV and the implantation amount is approximately 5X1.
015am-2, and phosphorus ions also enter polysilicon.

この作業終了後、前記レジスト28は除去され、前記ウ
ェルコンタクト領域の前駆体の周縁に前記リンイオン(
P+)からなるソース領域前駆体を完成する。
After this operation is completed, the resist 28 is removed and the phosphorus ions (
A source region precursor consisting of P+) is completed.

(H)CVD法により、リンのモル濃度比が約3%のリ
ンガラスからなる絶縁膜29を約7000人の厚みに形
成して表面を覆うとともに、約1050℃の窒素中で熱
処理することにより、ウェル領域26中にその中心から
周縁へと前記ボロン(’ B + ) 、リンイオン(
P+)が拡散し、それぞれP型ウェルコンタクト領域3
0およびN÷型ソース領域31が完成する。
(H) By CVD method, an insulating film 29 made of phosphorus glass with a phosphorus molar concentration ratio of about 3% is formed to a thickness of about 7,000 mm to cover the surface, and is heat-treated in nitrogen at about 1,050°C. , the boron (' B + ), phosphorus ions (
P+) diffuses into the P-type well contact region 3, respectively.
0 and N÷ type source regions 31 are completed.

(1)次に、ソース領域31およびウェルコンタ9− クト領域30の表面の窓開け、および図示しないゲート
コンタクト部の窓開けを行なった後、表面にアルミニウ
ムを真空蒸着により約1.5μmの厚さに被着後、エツ
チングによりソース電極32゜およびゲート取ら出し電
極(図示せず)を形成する。次いで、前記低抵抗ドレイ
ン基板20の裏面に□約1μmの厚さのアルミニウムを
真空蒸着により被着し、約450℃でアロイし、ドレイ
ン電極33を形成し、最終製品を完成する。
(1) Next, after opening windows on the surfaces of the source region 31 and well contact region 30, and opening windows on the gate contact portion (not shown), aluminum is vacuum-deposited on the surface to a thickness of about 1.5 μm. After deposition, a source electrode 32° and a gate lead electrode (not shown) are formed by etching. Next, aluminum with a thickness of about 1 .mu.m is deposited on the back surface of the low resistance drain substrate 20 by vacuum evaporation and alloyed at about 450.degree. C. to form a drain electrode 33, thereby completing the final product.

以上の工程を経て製造された縦型MO8FETにあって
は、同第3図(1)の構造からも明らかなように、高抵
抗ドレイン領域21とゲート・電極゛25との間におい
て、その多くの部分が厚いシリコン膜23が介在された
構造となっているために、ドレイン・ゲート間容」が大
幅に減少し、スイッチング速度が高速化するとともに、
その製造工程としては従来の二重拡散法をそのまま適用
できるために、その利点である高密度で集積した場合の
歩留り低下もなく、安価に製作できる利点を共有できる
。。
In the vertical MO8FET manufactured through the above steps, as is clear from the structure shown in FIG. 3(1), most of the Since the structure is such that the thick silicon film 23 is interposed in the region, the drain-gate capacitance is significantly reduced, and the switching speed is increased.
Since the conventional double diffusion method can be applied as is to the manufacturing process, the advantage of this method is that there is no decrease in yield when the device is integrated at high density, and it can be manufactured at low cost. .

10− また、前記実施例においては前記高抵抗ドレイン領域2
1内に埋め込まれる厚いシリコン酸化膜23中に砒素等
のN型不純物を含有せしめ、次いで前記高抵抗ドレイン
領域21の表面に、シリコン酸化膜24を形成する:過
程で熱拡散により酸化I!23と高抵抗ドレイン領域2
1との境界部分に高濃度N型(N+)領域が形成される
ため、iI流はこのN型(N+)領域を流れることにな
り、高抵抗ドレイン領域に起因する比抵抗を減少できる
10- Also, in the embodiment, the high resistance drain region 2
N-type impurities such as arsenic are contained in the thick silicon oxide film 23 embedded in the silicon oxide film 23, and then a silicon oxide film 24 is formed on the surface of the high-resistance drain region 21: in the process, oxidation of I! 23 and high resistance drain region 2
Since a high concentration N type (N+) region is formed at the boundary with 1, the iI current flows through this N type (N+) region, and the specific resistance caused by the high resistance drain region can be reduced.

なお、前記実施例ではN型基板上にP型のウェル領域を
形成してなるものであるが、前記とは逆にP型基板上に
N型のウェル領域を形成するようにしたPチャンネル縦
型MO8FETにも適用できることは勿論である。
In the above embodiment, a P-type well region is formed on an N-type substrate, but in contrast to the above, a P-channel vertical well region is formed on a P-type substrate. Of course, it can also be applied to type MO8FET.

以上実施例により詳細に説明したように、本発明に係わ
る縦型MO8FETは、半導体基板面における隣合うチ
ャンネル形成用ウェル領域間を被覆するゲート酸化膜の
略中央部の直下に、局部的に絶縁物を埋め込み、これに
よりゲート電極膜とドレイン領域との対向距離を離隔せ
しめたものであるため、ゲート・ドレイン間の帰還容量
を著しく減少させることができるとともに、在来の製造
■稈に加えて絶縁物をデポジットする工程を付加するだ
1プで全く同様に製造できる等の優れた特徴を有するも
のである。
As described in detail in the embodiments above, the vertical MO8FET according to the present invention has a structure in which local insulation is provided directly under the substantially central part of the gate oxide film that covers between adjacent channel forming well regions on the semiconductor substrate surface. Since the gate electrode film and the drain region are separated from each other by embedding the material, the feedback capacitance between the gate and the drain can be significantly reduced. It has excellent features such as being able to be manufactured in exactly the same way in a single process with the addition of an insulator depositing step.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の縦型MO8FETの一般的構造を示す断
面図、第2図は本発明に係わる縦型MO8FETの一実
施例を示す素子断面図、第3図(A)〜(1)はこの発
明の一実施例の各工程を示す素子断面図である。 20.21・・・半導体基板 21a・・・・・・・・・凹部 23・・・・・・・・・・・・絶縁膜 24・・・・・・・・・・・・絶縁層 25・・・・・・・・・・・・電極膜 26・・・・・・・・・・・・チャンネル形成用ウェル
領域31・・・・・・・・・・・・ソース領域手続補正
書(方式) 昭和58年6月 3 日 2、発明の名称   縦型MO8FET3、補正をする
者      □ 事件との関係  特許出願人 住 所  神奈川県横浜市神奈用区宝町2番地名 称 
 (399)日産自動車株式会社代表者 布 原  俊 4、代理人〒101 住 所  東京都千代田区内神田1丁目15番16号6
、補正の対象     図面 7、補正の内容 (1)添付図面に未配するように図番「第3図」を加筆
下さるように願います。 1− 320−
FIG. 1 is a cross-sectional view showing the general structure of a conventional vertical MO8FET, FIG. 2 is an element cross-sectional view showing an embodiment of the vertical MO8FET according to the present invention, and FIGS. 3(A) to (1) are FIG. 3 is a cross-sectional view of an element showing each step of an embodiment of the present invention. 20.21... Semiconductor substrate 21a...... Concavity 23... Insulating film 24... Insulating layer 25・・・・・・・・・・・・Electrode film 26・・・・・・・・・Well region for channel formation 31・・・・・・・・・Source region procedure correction document (Method) June 3, 1980 2, Title of invention: Vertical MO8FET3, Person making the amendment □ Relationship to the case Address of patent applicant Address: 2 Takaracho, Kanayō-ku, Yokohama-shi, Kanagawa Prefecture Name
(399) Nissan Motor Co., Ltd. Representative Shun Nunohara 4, Agent 101 Address 1-15-16-6 Uchikanda, Chiyoda-ku, Tokyo
, Subject of amendment Drawing 7, Contents of amendment (1) We would like you to add the drawing number "Figure 3" so that it is not placed on the attached drawing. 1-320-

Claims (1)

【特許請求の範囲】[Claims] (1)ゲート電極膜をマスクとして二φ拡散法によりチ
ャンネル形成用のウェル領域を形成するとともに、該ウ
ェル領域内にソース領域を形成してなる縦型MO8FE
Tにおいて; 半導体基板面における隣合うチャンネル形成用ウェル領
域間を被覆するゲート酸化膜の略中央部の直下に、局部
的に絶縁物を埋め込んpことを特徴とする縦型MO8F
ET。
(1) A vertical MO8FE in which a well region for channel formation is formed by the two-φ diffusion method using the gate electrode film as a mask, and a source region is formed within the well region.
In T: A vertical MO8F characterized in that an insulator is locally buried directly under the approximate center of the gate oxide film covering between adjacent channel forming well regions on the semiconductor substrate surface.
E.T.
JP58025335A 1983-02-17 1983-02-17 Vertical type metal oxide semiconductor field-effect transistor Pending JPS59151465A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58025335A JPS59151465A (en) 1983-02-17 1983-02-17 Vertical type metal oxide semiconductor field-effect transistor
EP84100612A EP0119400B1 (en) 1983-02-17 1984-01-20 A vertical-type mosfet and method of fabricating the same
DE8484100612T DE3465225D1 (en) 1983-02-17 1984-01-20 A vertical-type mosfet and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025335A JPS59151465A (en) 1983-02-17 1983-02-17 Vertical type metal oxide semiconductor field-effect transistor

Publications (1)

Publication Number Publication Date
JPS59151465A true JPS59151465A (en) 1984-08-29

Family

ID=12163045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025335A Pending JPS59151465A (en) 1983-02-17 1983-02-17 Vertical type metal oxide semiconductor field-effect transistor

Country Status (1)

Country Link
JP (1) JPS59151465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196567A (en) * 1985-02-26 1986-08-30 Nissan Motor Co Ltd Semiconductor device
JPS6468971A (en) * 1987-09-09 1989-03-15 Nec Corp Vertical field-effect transistor
US7544570B2 (en) 2003-12-22 2009-06-09 Nec Electronics Corporation Vertical-type metal insulator semiconductor field effect transistor device, and production method for manufacturing such transistor device
CN112835006A (en) * 2021-01-05 2021-05-25 成都汇蓉国科微系统技术有限公司 Method and system for tracking radar small-target detection on sea based on interframe accumulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196567A (en) * 1985-02-26 1986-08-30 Nissan Motor Co Ltd Semiconductor device
JPS6468971A (en) * 1987-09-09 1989-03-15 Nec Corp Vertical field-effect transistor
US7544570B2 (en) 2003-12-22 2009-06-09 Nec Electronics Corporation Vertical-type metal insulator semiconductor field effect transistor device, and production method for manufacturing such transistor device
CN112835006A (en) * 2021-01-05 2021-05-25 成都汇蓉国科微系统技术有限公司 Method and system for tracking radar small-target detection on sea based on interframe accumulation
CN112835006B (en) * 2021-01-05 2023-05-16 成都汇蓉国科微系统技术有限公司 Method and system for detecting small targets on sea by tracking radar based on interframe accumulation

Similar Documents

Publication Publication Date Title
US4954855A (en) Thin film transistor formed on insulating substrate
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
US3909320A (en) Method for forming MOS structure using double diffusion
EP0119400B1 (en) A vertical-type mosfet and method of fabricating the same
US5340759A (en) Method of making a vertical gate transistor with low temperature epitaxial channel
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JPH03116875A (en) Thin film field effect transistor and method of manufacturing the same
JP3489602B2 (en) Semiconductor device and manufacturing method thereof
JPS61234041A (en) Semiconductor device and manufacture thereof
US5059547A (en) Method of manufacturing double diffused mosfet with potential biases
JPS59151465A (en) Vertical type metal oxide semiconductor field-effect transistor
JPH04225568A (en) Contact structure of semiconductor device and manufacture thereof
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
JPH01209766A (en) Vertical field-effect transistor and manufacture thereof
JPS59151466A (en) Vertical type metal oxide semiconductor field-effect transistor
JPS59151467A (en) Vertical type metal oxide semiconductor field-effect transistor
JPH0728043B2 (en) Semiconductor device
JPH11145457A (en) Vertical field effect transistor
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPH065866A (en) Semiconductor device and manufacture thereof
JPS6252949B2 (en)
JPH023270A (en) Manufacture of hct semiconductor device
JPS59182570A (en) Semiconductor device
JP2654056B2 (en) Method for manufacturing semiconductor device