JPS61281558A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPS61281558A
JPS61281558A JP60123589A JP12358985A JPS61281558A JP S61281558 A JPS61281558 A JP S61281558A JP 60123589 A JP60123589 A JP 60123589A JP 12358985 A JP12358985 A JP 12358985A JP S61281558 A JPS61281558 A JP S61281558A
Authority
JP
Japan
Prior art keywords
oxide film
film
insulating layer
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60123589A
Other languages
Japanese (ja)
Inventor
Tatsuo Noguchi
達夫 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60123589A priority Critical patent/JPS61281558A/en
Publication of JPS61281558A publication Critical patent/JPS61281558A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To obtain a MOS semiconductor device, threshold voltage thereof can be changed by simple operation, by burying a conductive pattern into an insulating layer while being insulated from other semiconductor elements and wirings. CONSTITUTION:P-type silicon 21 is thermally oxidized and treated, an oxide film 22 is formed, phosphorus is doped to a polycrystalline silicon film deposited on the whole surface, and the phosphorus-doped polycrystalline silicon film is patterned through a photoetching method to shape a polycrystalline silicon pattern (a floating electrode) 23 on the oxide film 22. An SiO2 film 24 is deposited on the oxide film 22, and the floating electrode 23 is buried into an insulating layer consisting of the oxide film 22 and the SiO2 film 24. When the concentration and thickness of regions between source and drain regions in a semiconductor layer are selected so that a depletion layer generated when voltage is applied to a gate electrode reaches up to the surface of the insulating layer at that time, the threshold voltage of a semiconductor device is represented by the function of the quantity of carriers injected to a floating conductive pattern. Accordingly, threshold voltage can be changed by simple operation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、MOS型半導体装置に関し、同一チップ上に
閾値電圧の異なるMOSトランジスタを有する多値論理
回路やEPROM等のMOS型半導体装置の改良に係わ
る。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a MOS semiconductor device, and is used to improve MOS semiconductor devices such as multivalued logic circuits and EPROMs having MOS transistors with different threshold voltages on the same chip. Involved.

〔発明の技術的背景〕[Technical background of the invention]

従来、閾値電圧の異なるMOSトランジスタを有する多
値論理回路は、第3図に示す構造のものが知られている
。第3図中の1は、例えばp型シリコン基板であり、こ
の基板1表面にはトランジスタを分離するためのフィー
ルド酸化膜2が設けられている。このフィールド酸化l
I2で分離された島状の基板領域には閾値電圧が互いに
異なるMOSトランジ4スタTrt 、Tr2が造られ
ている。
Conventionally, a multi-value logic circuit having MOS transistors having different threshold voltages has a structure shown in FIG. 3. 1 in FIG. 3 is, for example, a p-type silicon substrate, and a field oxide film 2 for isolating transistors is provided on the surface of this substrate 1. This field oxidation
Four MOS transistors Trt and Tr2 having different threshold voltages are formed in the island-shaped substrate region separated by I2.

これらトランジスTrt 、Tr2は、基板1表面に互
いに電気的に分離されて設けられたn+型のソース、ド
レイン領域3.4と、これら領域3.4間のチャンネル
領域を含む基板1表面上にゲート酸化膜5を介して設け
られたゲート電極6とにより構成されている。そして、
各トランジスタTrl、Te3のチャンネル領域711
72 への不純物(通常、p型不純物)のイオン注入量
を変化させることにより、それらトランジスタTr1、
Te3の閾値電圧を互いに変化させている。
These transistors Trt and Tr2 have gates on the surface of the substrate 1 including n+ type source and drain regions 3.4 provided electrically isolated from each other on the surface of the substrate 1, and a channel region between these regions 3.4. A gate electrode 6 is provided through an oxide film 5. and,
Channel region 711 of each transistor Trl, Te3
By changing the amount of ion implantation of impurities (usually p-type impurities) into the transistors Tr1 and Tr72,
The threshold voltages of Te3 are mutually changed.

一方、EPROMは第4図に示す構造のものが従来より
知られている。第4図中の11は、例えばp型シリコン
基板であり、この基板11表面にはトランジスタを分離
するためのフィールド酸化膜12が設けられている。こ
のフィールド酸化膜12で分離された島状の基板領域に
は、互いに電気的に分離されたn+型のソース、ドレイ
ン領域13.14が設けられている。これらソース、ト
レイン領域13.14間のチャンネル領域を含む基板1
1表面上には、ゲート酸化膜15を介して多結晶シリコ
ンからなる浮遊ゲート16が設けられている。この浮遊
ゲート16の周囲には該ゲート16の熱酸化等により形
成された酸化膜17が設けられている。前記浮遊ゲート
16上面の酸化膜17上には多結晶シリコンからなる制
御ゲート18が設けられている。かかる構成のEPRO
Mにおいで、制御ゲート18とドレイン領域14に高電
圧を印加してドレイン領域14近傍で発生するホットエ
レクトロンをゲート酸化膜15を通して浮遊ゲート16
に注入することにより、トランジスタの閾値電圧を変化
させている。
On the other hand, an EPROM having a structure shown in FIG. 4 is conventionally known. Reference numeral 11 in FIG. 4 is, for example, a p-type silicon substrate, and a field oxide film 12 for isolating transistors is provided on the surface of this substrate 11. In the island-shaped substrate region separated by the field oxide film 12, n+ type source and drain regions 13 and 14 electrically isolated from each other are provided. A substrate 1 including a channel region between these source and train regions 13 and 14.
A floating gate 16 made of polycrystalline silicon is provided on one surface with a gate oxide film 15 interposed therebetween. An oxide film 17 formed by thermal oxidation of the gate 16 is provided around the floating gate 16. A control gate 18 made of polycrystalline silicon is provided on the oxide film 17 on the upper surface of the floating gate 16. EPRO with such configuration
In M, a high voltage is applied to the control gate 18 and the drain region 14, and hot electrons generated near the drain region 14 are transferred to the floating gate 16 through the gate oxide film 15.
The threshold voltage of the transistor is changed by injecting it into the transistor.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した第3図図示の多値論理回路にお
いて、イオン注入法により閾値電圧の異なるトランジス
タを作製する場合には閾値電圧の異なるトランジスタの
数だけ写真蝕刻法及びイオン注入を行なう必要があるた
め、工程が多く、生産性の低下を招く。また、イオン注
入法により閾値電圧を制御する場合には各トランジスタ
を作製した後でなければ閾値電圧をチョックできないた
め、ゲート酸化膜の膜厚等が設定値からずれると、閾値
電圧が変化して回路動作がなされなく問題が生じる。
However, in the multivalued logic circuit shown in FIG. 3 described above, when transistors with different threshold voltages are manufactured by ion implantation, it is necessary to perform photolithography and ion implantation for the number of transistors with different threshold voltages. , there are many steps, which leads to a decrease in productivity. In addition, when controlling the threshold voltage using ion implantation, the threshold voltage cannot be checked until after each transistor has been fabricated, so if the thickness of the gate oxide film deviates from the set value, the threshold voltage will change. A problem occurs when the circuit does not operate.

一方、第4図図示のEPROMではチャンネル領域で発
生したホットエレクトロンをゲート酸化膜15を通して
浮遊ゲート16中に注入する時、シリコン基板11と該
ゲート酸化膜15との間の界面単位が増加し、トランジ
スタ特性が劣化するという問題がある。
On the other hand, in the EPROM shown in FIG. 4, when hot electrons generated in the channel region are injected into the floating gate 16 through the gate oxide film 15, the number of interface units between the silicon substrate 11 and the gate oxide film 15 increases. There is a problem that transistor characteristics deteriorate.

〔発明の目的〕[Purpose of the invention]

本発明は、チャンネル領域の不純物濃度等を変化させる
ことなく、簡単な操作で閾値電圧を変化させることが可
能なMOS型半導体装置を提供しようとするものである
The present invention aims to provide a MOS type semiconductor device in which the threshold voltage can be changed by a simple operation without changing the impurity concentration of the channel region.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁層上に設けられた半導体層と、この半導
体層に前記絶縁層表面まで達するように互いに電気的に
分離して設けられた一導電型のソース、ドレイン領域と
、これらソース、トレイン領域間のチャンネル領域を含
む半導体層表面にゲート酸化膜を介して設けられたゲー
ト電極とを具備したMOS型半導体装置において、前記
絶縁層内に導電性パターンを他の半導体素子や配線と絶
縁して埋込むことを特徴とするものである。かかる本発
明よれば、絶縁層中にに浮遊した導電性パターンを埋め
込んでいるため、ゲート電極及びドレイン領域に高電圧
を印加し、ドレイン領域近傍の高電界によりホットエレ
クトロンを前記導電性パターンに注入でき、該導電性パ
ターンのバックゲート作用によりソース、トレイン領域
間の半導体層領域の閾値電圧を変化させることが可能と
なる。この場合、ゲート電極に電圧を印加した時に生じ
る空乏層が絶縁層の表面にまで達するように半導体層の
ソース、ドレイン領域間の領域の濃度及び厚さを選定す
れば、半導体装置の閾値電圧は浮遊した導電性パターン
に注入したキャリアの量の関数とすることができる。従
って、既述の如くチャンネル領域の不純物濃度等を変化
させることなく、簡単な操作で閾値電圧を変化させるこ
とが可能なMOS型半導体装置を得ることができる。
The present invention provides a semiconductor layer provided on an insulating layer, a source and a drain region of one conductivity type provided on the semiconductor layer so as to be electrically separated from each other so as to reach the surface of the insulating layer, and these source and drain regions. In a MOS type semiconductor device including a gate electrode provided on the surface of a semiconductor layer including a channel region between train regions via a gate oxide film, a conductive pattern is insulated in the insulating layer from other semiconductor elements and wiring. It is characterized by the fact that it can be embedded. According to the present invention, since the floating conductive pattern is embedded in the insulating layer, a high voltage is applied to the gate electrode and the drain region, and hot electrons are injected into the conductive pattern by a high electric field near the drain region. The back gate effect of the conductive pattern makes it possible to change the threshold voltage of the semiconductor layer region between the source and train regions. In this case, if the concentration and thickness of the region between the source and drain regions of the semiconductor layer are selected so that the depletion layer generated when a voltage is applied to the gate electrode reaches the surface of the insulating layer, the threshold voltage of the semiconductor device can be It can be a function of the amount of carriers injected into the floating conductive pattern. Therefore, it is possible to obtain a MOS type semiconductor device in which the threshold voltage can be changed by a simple operation without changing the impurity concentration of the channel region as described above.

〔発明の実施例〕[Embodiments of the invention]

以下、SOIを用いたMOSICに適用した例について
第1図(a)〜(C)の製造方法を併記して詳細に説明
する。
Hereinafter, an example applied to a MOSIC using SOI will be described in detail, together with the manufacturing method shown in FIGS. 1(a) to 1(C).

まず、例えばp型シリコン21を熱酸化処理を施して例
えば厚さ1μmの酸化膜22を形成した。
First, for example, p-type silicon 21 was thermally oxidized to form an oxide film 22 having a thickness of, for example, 1 μm.

つづいて、全面に例えば厚さ4000人の多結晶シリコ
ン膜を堆積し、該多結晶シリコン膜にリンをドーピング
した後、写真蝕刻法によりリンドープ多結晶シリコン膜
をパターニングして酸化膜22上に多結晶シリコンパタ
ーン(浮遊電極)23を形成した(第1図(a)図示)
Subsequently, a polycrystalline silicon film with a thickness of, for example, 4,000 wafers is deposited on the entire surface, and the polycrystalline silicon film is doped with phosphorus.The phosphorus-doped polycrystalline silicon film is then patterned by photolithography to form a polycrystalline silicon film on the oxide film 22. A crystalline silicon pattern (floating electrode) 23 was formed (as shown in FIG. 1(a)).
.

次いで、浮遊電極23を含む酸化膜22上にバイアスス
パッタリング法により表面が平坦な厚さ5000人の5
i02膜24を堆積した。これにより、浮遊電極23は
酸化膜22及びSiO2膜24膜厚4る絶縁層中に埋め
込まれる。なお、浮遊電極23上のSiO2膜24膜厚
4は、例えば1000人である。この工程において、C
VD法によりSiO2膜を堆積し、全面にレジスト膜を
塗布し、該レジスト膜とSiO2膜をエッチバックする
ことによって表面が平坦なSiO2膜を形成してもよい
。つづいて、全面にシリコン膜を堆積した後、レーザア
ニール又は電子ビームアニールを施してSiO2膜24
上24上結晶シリコン層25を形成した(同図(b>図
示)。この時の単結晶シリコン層25のボロン濃度は、
I X 10” !’ /cm3以下である。このよう
な厚さ6000人、ボロン濃度が1×1016/cm3
以下の単結晶シリコン層25を形成すれば、後接するゲ
ート電極に電圧を印加した際、空乏層は単結晶シリコン
層25より絶縁層を構成するS+02膜24表面まで充
分に到達する。
Next, a film with a thickness of 5,000 mm with a flat surface is deposited on the oxide film 22 including the floating electrode 23 by bias sputtering.
An i02 film 24 was deposited. As a result, the floating electrode 23 is embedded in the insulating layer with the thickness of the oxide film 22 and the SiO2 film 24. Note that the thickness 4 of the SiO2 film 24 on the floating electrode 23 is, for example, 1000. In this process, C
An SiO2 film having a flat surface may be formed by depositing a SiO2 film by a VD method, applying a resist film over the entire surface, and etching back the resist film and the SiO2 film. Next, after depositing a silicon film on the entire surface, laser annealing or electron beam annealing is performed to form the SiO2 film 24.
An upper crystalline silicon layer 25 was formed on the upper layer 24 (as shown in FIG.
I x 10"!'/cm3 or less. Such a thickness of 6000 people, boron concentration of 1 x 1016/cm3
By forming the following single-crystal silicon layer 25, when a voltage is applied to the subsequent gate electrode, the depletion layer sufficiently reaches the surface of the S+02 film 24 constituting the insulating layer from the single-crystal silicon layer 25.

次いで、単結晶シリコン層25に選択酸化法等によりフ
ィールド酸化膜26を形成した後、熱酸化処理を施して
該フィールド酸化膜26で分離された単結砕シリコン層
の島状領域表面ド厚さ500人の熱酸化膜を成長した。
Next, a field oxide film 26 is formed on the single crystal silicon layer 25 by a selective oxidation method or the like, and then a thermal oxidation treatment is performed to reduce the surface thickness of the island-like regions of the single crystal silicon layer separated by the field oxide film 26. 500 people grew thermal oxide films.

つづいて、全面に厚さ4000人の多結晶シリコン膜を
堆積し、リンをドーピングした後、写真蝕刻法によりリ
ンドープ多結晶シリコン膜をパターニングしてゲート電
極27を形成し、更に該ゲート電極27をマスクとして
熱酸化膜を選択的にエツチング除去してゲート酸化膜2
8を形成した。ひきつづき、ゲート電極27及びフィー
ルド酸化膜26をマスクとしてn型不純物、例えばリン
をイオン注入し、活性化して単結晶シリコン層25の島
状領域にSiO2膜24膜面4表面達するn+型のソー
ス、ドレイン領域29.30を形成した。この後、基板
21裏面にバイアス用電極31を形成してnチャンネル
MOSICを製造した(同図(C))。
Subsequently, a polycrystalline silicon film with a thickness of 4,000 wafers is deposited on the entire surface and doped with phosphorus, and then the phosphorus-doped polycrystalline silicon film is patterned by photolithography to form a gate electrode 27. Gate oxide film 2 is formed by selectively etching away the thermal oxide film as a mask.
8 was formed. Subsequently, using the gate electrode 27 and the field oxide film 26 as a mask, an n-type impurity, for example, phosphorus, is ion-implanted and activated to reach the island-like region of the single crystal silicon layer 25 to the surface 4 of the SiO2 film 24. Drain regions 29 and 30 were formed. Thereafter, a bias electrode 31 was formed on the back surface of the substrate 21 to manufacture an n-channel MOSIC (FIG. 2(C)).

しかして、本発明によれば閾値電圧を変化させたいトラ
ンジスタのゲート電極27及びドレイン領域30に通常
使用される電圧に比べて高い電圧を印加すると、酸化w
A22及び5i02膜24からなる絶縁層中に埋め込ま
れた浮遊電極23にキャリアが注入され、該浮遊電極2
3のバックゲート作用によりトランジスタの閾値を変化
できる。
According to the present invention, when a voltage higher than the voltage normally used is applied to the gate electrode 27 and drain region 30 of a transistor whose threshold voltage is to be changed, oxidation w
Carriers are injected into the floating electrode 23 embedded in the insulating layer made of A22 and 5i02 films 24, and the floating electrode 2
The threshold value of the transistor can be changed by the back gate effect of No. 3.

この際、ソース、ドレイン領域29.30間の単結晶シ
リコン層領域は、ゲート電極27に電圧を印加した時に
生じる空乏層が浮遊電極23を埋め込んだ絶縁層を構成
する5if2膜24膜面4で到達するように濃度及び厚
さを選定されているため、該当するトランジスタの閾値
電圧は浮遊電極23に注入されたキャリアの量の関数と
することができる。なお、前記キャリアの注入において
浮遊電極2♀にホールを注入したい時は、基板21専面
の電極31にバイアス電圧を印加せず、エレクトロンを
注へしたい時、には、該電極に正のバイアス電圧を印加
する。こうした操作により、トランジスタの閾値電圧を
正方向へも貴方、向にも変化できる。
At this time, in the single crystal silicon layer region between the source and drain regions 29 and 30, the depletion layer generated when a voltage is applied to the gate electrode 27 forms the film surface 4 of the 5if2 film 24, which constitutes the insulating layer in which the floating electrode 23 is buried. The threshold voltage of the relevant transistor can be a function of the amount of carriers injected into the floating electrode 23, since the concentration and thickness are chosen to reach it. In addition, when it is desired to inject holes into the floating electrode 2♀ in the carrier injection, no bias voltage is applied to the electrode 31 which is exclusively on the substrate 21, and when it is desired to inject electrons, a positive bias voltage is applied to the electrode. Apply. Through such operations, the threshold voltage of the transistor can be changed either in the positive direction or in the positive direction.

9一体、的には、集―回路、においで最初全てのトラン
ジスタをノーマリ−オフの状態とし、所、定のトランジ
スタの閾値電圧を上述した要領で変化させてノーマリ−
オンや、状輯することによってEPR。
Specifically, all transistors in the integrated circuit are initially set to a normally off state, and the threshold voltage of a given transistor is changed in the manner described above to set the normally off state.
EPR by turning on or changing the condition.

OMとして利用できる。こうし′FFEPROMへの応
用において、従来のEPROMのようにホットエレクト
ロンを基板上のゲート酸化膜を通し正浮遊グー、ト、1
に4往入せず、トランジスタ動作に関係のない絶縁層に
埋め込んだ浮遊電極にキャリアを注入するため、従来の
よ、うに基板とゲート酸化膜の間の界、面準培が増大す
るというトランジスタの特性劣化を防止できる。
Can be used as OM. In this application to FFEPROM, hot electrons are positively floating through the gate oxide film on the substrate, as in conventional EPROM.
Because carriers are injected into a floating electrode buried in an insulating layer that is not related to transistor operation, instead of flowing into and out of the transistor, the interface between the substrate and the gate oxide film increases as in conventional transistors. can prevent deterioration of characteristics.

また、複数のトランジスタの閾値電圧を上述した要領で
選。択的に、変化させれば、容易に多値論理回路を実現
できる。
In addition, the threshold voltages of the plurality of transistors are selected in the manner described above. Alternatively, by changing it, a multivalued logic circuit can be easily realized.

なお、上記実施例では絶縁層を半導体基板表面に形成し
た酸化膜及びバイアススパッタリングで堆積されたSi
O2膜により構成したが、これに限定されない。例えば
、ガラス等の絶縁基板と導電性パターン(浮遊電極)を
覆って埋込むためのSiO2膜等により構成してもよい
In the above embodiment, the insulating layer is an oxide film formed on the surface of the semiconductor substrate and a Si deposited by bias sputtering.
Although the structure is made of an O2 film, it is not limited thereto. For example, it may be composed of an insulating substrate such as glass and a SiO2 film for covering and embedding the conductive pattern (floating electrode).

上記実施例では導電性パターンをリンドープ多結晶シリ
コンより形成したが、これに限定されない。例えば、タ
ングステン、モリブデン、チタン等の高融点金属やタン
グステンシリサイド、モリブデンシリサイド、チタンシ
リサイド等の高融点金属シリサイドで形成してもよい。
In the above embodiment, the conductive pattern is formed from phosphorus-doped polycrystalline silicon, but the present invention is not limited thereto. For example, it may be formed of a high melting point metal such as tungsten, molybdenum, or titanium, or a high melting point metal silicide such as tungsten silicide, molybdenum silicide, or titanium silicide.

上記実施例では、絶縁層中に導電性パターン(浮遊電極
)を埋込む工程を酸化膜22上に該浮遊電極23を形成
し、バイアススパッタリングにより5102膜24を堆
積することによって行なったが、これに限定されない。
In the above embodiment, the step of embedding the conductive pattern (floating electrode) in the insulating layer was performed by forming the floating electrode 23 on the oxide film 22 and depositing the 5102 film 24 by bias sputtering. but not limited to.

例えば、まずp型シリコン基板21の酸化膜22上にリ
ンドープ多結晶シリコン膜32を堆積し、この多結晶シ
リコン膜32上に耐酸化性の窒化シリコンパターン33
を形成する(第2図(a)図示)。つづいて、窒化シリ
コンパターン33をマスクとして熱酸化処理を施して露
出する多結晶シリコン膜を酸化し、更に窒化シリコンパ
ターン33を除去した後、残存多結晶シリコン膜の表面
層を酸化することにより同図(b)に示すように基板2
1上の酸化膜22と熱酸化膜34で埋め込まれた多結晶
シリコンパターン(浮遊電極)23′を形成してもよい
For example, first, a phosphorus-doped polycrystalline silicon film 32 is deposited on the oxide film 22 of the p-type silicon substrate 21, and an oxidation-resistant silicon nitride pattern 33 is deposited on the polycrystalline silicon film 32.
(as shown in FIG. 2(a)). Next, a thermal oxidation process is performed using the silicon nitride pattern 33 as a mask to oxidize the exposed polycrystalline silicon film, and after removing the silicon nitride pattern 33, the surface layer of the remaining polycrystalline silicon film is oxidized to oxidize the exposed polycrystalline silicon film. Substrate 2 as shown in figure (b)
A polycrystalline silicon pattern (floating electrode) 23' may be formed, which is buried with the oxide film 22 and the thermal oxide film 34 on the oxide film 1.

上記実施例では、ゲート電極に電圧を印加した時に生じ
る空乏層が絶縁層の表面にまで達するように半導体層の
ソース、ドレイン領域間の領域の濃度及び厚さを選定す
る手段として、単結晶シリコン層の形成時に行なったが
、これに限定されない。例えば、単結晶シリコン層を形
成し、フィールド酸化膜を形成した後、各島状領域に不
純物をイオン注入して濃度を調節することによって、前
記目的を達成するようにしてもよい。
In the above embodiment, single crystal silicon is used as a means of selecting the concentration and thickness of the region between the source and drain regions of the semiconductor layer so that the depletion layer generated when a voltage is applied to the gate electrode reaches the surface of the insulating layer. Although this was carried out at the time of layer formation, the present invention is not limited thereto. For example, the above object may be achieved by forming a single crystal silicon layer, forming a field oxide film, and then implanting impurity ions into each island region to adjust the concentration.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればチャンネル領域の不
純物濃度等を変化させることなく、簡単な操作で閾値電
圧を変化させることができ、ひいては多値論理回路やE
 P’ R’ OM等に適用し得るMOS型半導体装置
を提供できる。
As described in detail above, according to the present invention, the threshold voltage can be changed with a simple operation without changing the impurity concentration etc. of the channel region.
A MOS type semiconductor device applicable to P'R' OM and the like can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の実施例におけるnチャ
ンネル間O8ICを得るための製造工程を示す断面図、
第2図(a)、(b)は本発明の他の実施例を示す導電
パターンの形成工程を示す断面図、第3図は従来の多値
論理回路を示す断面図、第4図は従来のEPROMを示
すm1面図である。 21・・・p型シリコン基板、22・・・酸化膜、23
.23′・・・多結晶シリコンパターン(浮遊電極)、
24・・・5i02HIA、25・・・単結晶シリコン
層、26・・・フィールド酸化膜、27・・・ゲート電
極、28・・・ゲート酸化膜、29・・・ソース領域、
30・・・ドレイン領域、33・・・窒化シリコンパタ
ーン、34・・・熱酸化jI。
FIGS. 1(a) to (C) are cross-sectional views showing the manufacturing process for obtaining an n-channel O8 IC in an embodiment of the present invention,
2(a) and 2(b) are cross-sectional views showing the process of forming a conductive pattern according to another embodiment of the present invention, FIG. 3 is a cross-sectional view showing a conventional multivalued logic circuit, and FIG. 4 is a conventional FIG. 21...p-type silicon substrate, 22... oxide film, 23
.. 23'...polycrystalline silicon pattern (floating electrode),
24...5i02HIA, 25... Single crystal silicon layer, 26... Field oxide film, 27... Gate electrode, 28... Gate oxide film, 29... Source region,
30...Drain region, 33...Silicon nitride pattern, 34...Thermal oxidation jI.

Claims (2)

【特許請求の範囲】[Claims] (1)、絶縁層上に設けられた半導体層と、この半導体
層に前記絶縁層表面まで達するように互いに電気的に分
離して設けられた一導電型のソース、ドレイン領域と、
これらソース、ドレイン領域間のチャンネル領域を含む
半導体層表面にゲート酸化膜を介して設けられたゲート
電極とを具備したMOS型半導体装置において、前記絶
縁層内に導電性パターンを他の半導体素子や配線と絶縁
して埋込むことを特徴とするMOS型半導体装置。
(1) a semiconductor layer provided on an insulating layer; a source and drain region of one conductivity type provided in this semiconductor layer and electrically separated from each other so as to reach the surface of the insulating layer;
In these MOS type semiconductor devices equipped with a gate electrode provided through a gate oxide film on the surface of the semiconductor layer including the channel region between the source and drain regions, a conductive pattern is formed in the insulating layer to connect other semiconductor elements or A MOS type semiconductor device characterized by being buried and insulated from wiring.
(2)、ソース、ドレイン領域間の半導体層領域の不純
物濃度及び厚さを、ゲート電極に印加したバイアスによ
り該半導体層領域に形成される空乏層の少なくとも一部
が絶縁層の表面に達するように選定することを特徴とす
る特許請求の範囲第1項記載のMOS型半導体装置。
(2) The impurity concentration and thickness of the semiconductor layer region between the source and drain regions are adjusted so that at least a portion of the depletion layer formed in the semiconductor layer region reaches the surface of the insulating layer by applying a bias to the gate electrode. A MOS type semiconductor device according to claim 1, characterized in that the MOS type semiconductor device is selected as follows.
JP60123589A 1985-06-07 1985-06-07 Mos type semiconductor device Pending JPS61281558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123589A JPS61281558A (en) 1985-06-07 1985-06-07 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123589A JPS61281558A (en) 1985-06-07 1985-06-07 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61281558A true JPS61281558A (en) 1986-12-11

Family

ID=14864335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123589A Pending JPS61281558A (en) 1985-06-07 1985-06-07 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61281558A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459864A (en) * 1987-08-31 1989-03-07 Sony Corp Mos transistor
JP2006186403A (en) * 1997-04-28 2006-07-13 Nippon Steel Corp Semiconductor device and its manufacturing method
US7808033B2 (en) 1997-04-28 2010-10-05 Yoshihiro Kumazaki Shield plate electrode for semiconductor device
JP2012146957A (en) * 2010-12-21 2012-08-02 Seiko Instruments Inc Semiconductor nonvolatile memory device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459864A (en) * 1987-08-31 1989-03-07 Sony Corp Mos transistor
JP2006186403A (en) * 1997-04-28 2006-07-13 Nippon Steel Corp Semiconductor device and its manufacturing method
US7808033B2 (en) 1997-04-28 2010-10-05 Yoshihiro Kumazaki Shield plate electrode for semiconductor device
US8253186B2 (en) 1997-04-28 2012-08-28 Intellectual Ventures I Llc Semiconductor device having controllable transistor threshold voltage
JP2012146957A (en) * 2010-12-21 2012-08-02 Seiko Instruments Inc Semiconductor nonvolatile memory device

Similar Documents

Publication Publication Date Title
US6344663B1 (en) Silicon carbide CMOS devices
US4422885A (en) Polysilicon-doped-first CMOS process
GB2157885A (en) Process for producing CMOS structures with bipolar transistors
JPH05160396A (en) Mos field effect transistor
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JPS61187224A (en) Method of making electric field effect device on silicon substrate
US9136157B1 (en) Deep N wells in triple well structures
US4754314A (en) Split-level CMOS
JP4065580B2 (en) Silicon-on-insulator base for transistor manufacture and method for manufacturing the base
GB2064866A (en) Field effect semiconductor device
JPS61281558A (en) Mos type semiconductor device
US3930893A (en) Conductivity connected charge-coupled device fabrication process
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
US20070057281A1 (en) Method of Fabricating an Integrated Circuit with Gate Self-Protection, and an Integrated Circuit with Gate Self-Protection
US6756279B2 (en) Method for manufacturing a bipolar transistor in a CMOS integrated circuit
JPH01223769A (en) Semiconductor device and manufacture of the same
JPS59168675A (en) Manufacture of semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPH0684939A (en) Manufacture of mis field-effect semiconductor device
JPH0395937A (en) Soi type semiconductor device and manufacture thereof
JP3399206B2 (en) Semiconductor layer insulation separation method, semiconductor device manufacturing method, and semiconductor device
JPH08111511A (en) Fabrication of semiconductor device
EP0112662A1 (en) Stacked MOS devices with polysilicon interconnects
JPS59182570A (en) Semiconductor device