JPH01114070A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01114070A
JPH01114070A JP62270157A JP27015787A JPH01114070A JP H01114070 A JPH01114070 A JP H01114070A JP 62270157 A JP62270157 A JP 62270157A JP 27015787 A JP27015787 A JP 27015787A JP H01114070 A JPH01114070 A JP H01114070A
Authority
JP
Japan
Prior art keywords
silicide
forming
diffusion layer
substrate
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270157A
Other languages
Japanese (ja)
Inventor
Tadashi Suzuki
匡 鈴木
Nobuyoshi Kashu
夏秋 信義
Shizunori Oyu
大湯 静憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62270157A priority Critical patent/JPH01114070A/en
Publication of JPH01114070A publication Critical patent/JPH01114070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To simplify construction and a manufacturing process by forming a diffusion layer on the channel neighboring part only and composing all the element separation and wiring parts of silicide. CONSTITUTION:After forming a polycrystalline Si gate 1 and an SiO2 side wall 3 on Si on an SiO2 layer 2, an Si exposed part is converted to a silicide up to the SiO2 layer 2 by a self-matching silicide technics, while an n-type diffusion layer 5 and a p-type diffusion layer 6 are formed by drive-in diffusion from silicide 4. By this construction, a complementary MOS transistor having little parasitic resistance and parasitic capacity on a substrate is formed so as to simplify construction and a manufacturing process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特に、S OI
 (Silicon on In5ulator)基板
上に寄生領域が極めて少ない相補形MOSトランジスタ
(0MO8)を形成するのに適した方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device.
(Silicon on In5ulator) This invention relates to a method suitable for forming a complementary MOS transistor (0MO8) with extremely few parasitic regions on a substrate.

〔従来の技術〕[Conventional technology]

LSIの高集積化、高速化に伴ない、寄生領域の影響に
よる特性劣化が無視できないものとなってきている。そ
の例としては、素子と基板間の寄生容量やMOSトラン
ジスタの拡散層部分の寄生抵抗があげられ、これらはい
ずれも高速化を妨げる要因となる。寄生容量に対する解
決策の代表的なものとして、絶縁膜上の単結晶Siに素
子を形成するいわゆるSOI技術がある。SOI技術は
As LSIs become more highly integrated and operate at higher speeds, the deterioration of their characteristics due to the effects of parasitic regions has become impossible to ignore. Examples of this include parasitic capacitance between the element and the substrate and parasitic resistance in the diffusion layer of a MOS transistor, both of which impede speeding up. A typical solution to parasitic capacitance is the so-called SOI technology, in which elements are formed in single-crystal Si on an insulating film. What is SOI technology?

3次元素子形成の為の要素技術としても注目されている
ものである。また、拡散層部分の寄生抵抗低減に対して
は、例えば、アイ イーイーイー。
It is also attracting attention as an elemental technology for forming tertiary elements. In addition, for example, IEEEEI is effective in reducing parasitic resistance in the diffusion layer portion.

トランザクション オン エレクトロンデバイセズ イ
ーデー33.第345頁から第353頁(1986年)
  (IEEE Trans Electron De
vices。
Transaction on Electron Devices Eday 33. Pages 345 to 353 (1986)
(IEEE Trans Electron De
vices.

ED−33,pp、345−353 (1986))に
記載のように、拡散層全面に自己整合的に金属シリサイ
ドを形成する方法が注目されている。
ED-33, pp. 345-353 (1986)), a method of forming metal silicide in a self-aligned manner over the entire surface of a diffusion layer is attracting attention.

第2図は、SOI技術と自己整合シリサイド技術を駆使
して形成した0MO8構造の例である。
FIG. 2 is an example of an 0MO8 structure formed by making full use of SOI technology and self-aligned silicide technology.

5iOz2上のSi20に、ゲート1.n型拡散層5.
p型拡散層6.シリサイド膜4.AQ配線8とから成る
0MO8を形成している。
Si20 on 5iOz2 with gate 1. n-type diffusion layer 5.
p-type diffusion layer6. Silicide film 4. 0MO8 consisting of AQ wiring 8 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方法では、寄生容量、寄生抵抗の問
題については解決できる反面、構造あるいは製造プロセ
スが複雑化してくるという欠点がある。構造の複雑さは
、素子の微細化を進めていく上でも障害となるものであ
る。
However, while this method can solve the problem of parasitic capacitance and parasitic resistance, it has the disadvantage that the structure or manufacturing process becomes complicated. The complexity of the structure is also an obstacle in advancing the miniaturization of elements.

本発明の目的は、寄生容量、寄生抵抗の少ないCMO8
素子を微細化に適応できる簡便な構造およびプロセスで
実現゛することにある。
The purpose of the present invention is to provide a CMO8 with low parasitic capacitance and parasitic resistance.
The objective is to realize a device with a simple structure and process that can be adapted to miniaturization.

〔問題点を解決するための手段〕 第2図の例における構造の主な複雑さは、nチャネルM
O8素子とpチャネルMO3素子の間の素子分離・配線
部にある。また、ソース・ドレイン拡散層において、実
際にデバイス動作に関与するのは、チャネル両側近傍部
のみであり、本質的にはその部分だけ形成されていれば
十分である。
[Means for solving the problem] The main complexity of the structure in the example of FIG.
It is located in the element isolation/wiring section between the O8 element and the p-channel MO3 element. Further, in the source/drain diffusion layer, only the portions near both sides of the channel are actually involved in device operation, and it is essentially sufficient to form only those portions.

以上の考えのもとに、拡散層をチャネル近傍部のみとし
、素子分離・配線部をすべてシリサイドとしてしまうこ
とにより、上記目的、即ち構造・プロセスの簡単化は達
成される。
Based on the above considerations, the above object, that is, simplification of structure and process, can be achieved by making the diffusion layer only in the vicinity of the channel and making all the element isolation/wiring parts silicide.

第1図を用いて、本発明について説明する。The present invention will be explained using FIG.

S i Ox層層上上Siに、多結晶Siゲート1及び
5ins側壁3を形成した後、自己整合シリサイド技術
を用いてSi露出部をS i Oz層2までシリサイド
化し、拡散層5,6はシリサイド4からのドライブイン
拡散で形成する。
After forming a polycrystalline Si gate 1 and a 5ins sidewall 3 on the Si on the SiOx layer, the exposed Si is silicided using self-aligned silicide technology up to the SiOz layer 2, and the diffusion layers 5 and 6 are It is formed by drive-in diffusion from silicide 4.

〔作用〕[Effect]

このような構造にすれば、素子分離・配線形成工程がシ
リサイド形成工程に置換えられるため、プロセスが簡単
になる。また、第2図の構造に比して構造が簡単である
ことと、シリサイド及び拡散層形成に対して自己整合技
術を用いていることから、素子微細化に適している。
With such a structure, the element isolation/wiring formation process can be replaced with a silicide formation process, which simplifies the process. Furthermore, since the structure is simpler than the structure shown in FIG. 2 and self-alignment technology is used for forming silicide and diffusion layers, it is suitable for miniaturization of elements.

〔実施例〕〔Example〕

以下、本発明について、実施例を用いて詳細に説明する
Hereinafter, the present invention will be explained in detail using Examples.

実施例1 第3図は、本発明の一実施例の製造工程を説明する図で
ある。公知技術である同相エピタキシャル成長法によっ
て5iOz2上に厚さ200nmの単結晶Si層を形成
しn型ウェル10.p型ウェル9ゲート酸化膜11多結
晶Siゲート1゜5iOzゲート側壁3を形成した(第
3図(a))。
Example 1 FIG. 3 is a diagram illustrating the manufacturing process of an example of the present invention. A single crystal Si layer with a thickness of 200 nm is formed on 5iOz2 by a well-known in-phase epitaxial growth method, and an n-type well 10. A p-type well 9 gate oxide film 11 polycrystalline Si gate 1°5iOz gate sidewalls 3 were formed (FIG. 3(a)).

ゲート長は0.8μmである。次に、厚さ200nmの
Ti12をスパッタ法により堆積しく第3図(b))、
N2雰囲気中で7oO℃30分の熱処理をすることによ
りチタンシリサイド13を形成した後、未反応のTiを
ウェットエツチングにより除去し、さらにAr雰囲気中
で800℃30秒の熱処理を行なった(第3図(C))
。この条件の下ではチタンシリサイドは5i023に接
するように形成された。
The gate length is 0.8 μm. Next, Ti12 with a thickness of 200 nm is deposited by sputtering (Fig. 3(b)).
After forming titanium silicide 13 by heat treatment at 700°C for 30 minutes in a N2 atmosphere, unreacted Ti was removed by wet etching, and further heat treatment was performed at 800°C for 30 seconds in an Ar atmosphere (third Figure (C))
. Under these conditions, titanium silicide was formed in contact with 5i023.

次に、n型ウェル10を形成した領域をホトレジスト1
4でマスクした上でAsを150 k e V 。
Next, the area where the n-type well 10 has been formed is covered with photoresist 1.
4 and then exposed to As at 150 k e V.

5 X 10 ”cm−”の条件でイオン打込みし、レ
ジストを除去した後、1000℃20秒の熱処理を行な
うことによってドライブイン拡散によりn型拡散層5を
形成した(第3図(d))。さらに同様にして、p型ウ
ェル形成領域をマスクしなからBを25keV2X10
工8cffI−2の条件でイオン打込みした後、too
o℃20秒の熱処理によりp型拡散層6を形成した(第
3図(e))。
After ion implantation under the conditions of 5 x 10 "cm-" and removal of the resist, an n-type diffusion layer 5 was formed by drive-in diffusion by heat treatment at 1000°C for 20 seconds (Fig. 3(d)). . Furthermore, in the same manner, without masking the p-type well formation region, B was applied at 25keV2X10.
After ion implantation under the conditions of 8cffI-2, too
A p-type diffusion layer 6 was formed by heat treatment at 0° C. for 20 seconds (FIG. 3(e)).

本実施例によれば、寄生抵抗減少の為、従来技術により
SOI基板上に形成した0MO9と比較して、伝達コン
ダクタンスg1の値で1.6倍の1.2 X 10−4
 ’IJ″/ tt mが得られた。
According to this embodiment, in order to reduce parasitic resistance, the value of transfer conductance g1 is 1.2 x 10-4, which is 1.6 times that of 0MO9 formed on an SOI substrate by the conventional technology.
'IJ''/ttm was obtained.

実施例2 シリサイドとしてタングステンシリサイドを用いて実施
例1と同様の製造工程により形成した0MO8を基本と
した64キロビットスタティックRAMを作製した。設
計ルールは1.3μmである。本実施例によれば、従来
のSOT基板を用いないCMO8構成の場合に比べて、
アクセス時間で約0.6倍に短縮され20n sが得ら
れた。
Example 2 A 64 kilobit static RAM based on 0MO8 was fabricated using tungsten silicide as the silicide and using the same manufacturing process as in Example 1. The design rule is 1.3 μm. According to this embodiment, compared to the conventional CMO8 configuration that does not use an SOT substrate,
The access time was reduced by about 0.6 times to 20 ns.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、寄生抵抗、寄生容量の極めて少ないC
uO2を形成できるため、素子の高速化が実現できる。
According to the present invention, C with extremely low parasitic resistance and parasitic capacitance
Since uO2 can be formed, the speed of the device can be increased.

また、構造が簡単であり、製造プロセスでは自己整合技
術を利用している為、素子の微細化に適している。
In addition, since the structure is simple and the manufacturing process uses self-alignment technology, it is suitable for miniaturization of elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する断面図、第2図は従来
技術を説明する断面図、第3図は本発明の一実施例を説
明する工程説明のための断面図である。 1・・・ゲート電極、2・・・絶縁膜(SiOz)、4
・・・金属シリサイド、5・・・n型拡散層、6・・・
P型拡散層。
FIG. 1 is a sectional view for explaining the present invention in detail, FIG. 2 is a sectional view for explaining the prior art, and FIG. 3 is a sectional view for explaining the steps of an embodiment of the present invention. 1... Gate electrode, 2... Insulating film (SiOz), 4
...metal silicide, 5...n-type diffusion layer, 6...
P-type diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 1、SOI(シリコン オン インシユレータ:Sil
icon on Insulator)基板上に相補形
MOSトランジスタを形成する製造工程において、SO
I基板上にゲート電極を形成する工程と、ゲート電極以
外のSi露出部の全領域にSOI基板内部の絶縁膜層を
接するように金属シリサイドを形成する工程と、該金属
シリサイドにイオン打込みする工程と、該金属シリサイ
ドからのドライブイン拡散により拡散層を形成する工程
を含むことを特徴とする半導体装置の製造方法。
1. SOI (Silicon on Insulator: Sil)
icon on Insulator) In the manufacturing process of forming complementary MOS transistors on a substrate, SO
A step of forming a gate electrode on the I substrate, a step of forming metal silicide so that the entire area of exposed Si except the gate electrode is in contact with an insulating film layer inside the SOI substrate, and a step of implanting ions into the metal silicide. and forming a diffusion layer by drive-in diffusion from the metal silicide.
JP62270157A 1987-10-28 1987-10-28 Manufacture of semiconductor device Pending JPH01114070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270157A JPH01114070A (en) 1987-10-28 1987-10-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270157A JPH01114070A (en) 1987-10-28 1987-10-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01114070A true JPH01114070A (en) 1989-05-02

Family

ID=17482334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270157A Pending JPH01114070A (en) 1987-10-28 1987-10-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01114070A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269862A (en) * 1991-02-26 1992-09-25 Fujitsu Ltd Semiconductor device
JPH07111334A (en) * 1993-08-20 1995-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6867431B2 (en) 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2006344804A (en) * 2005-06-09 2006-12-21 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
JP2007227865A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Silicide forming method, and semiconductor device manufacturing method
WO2015072366A1 (en) 2013-11-12 2015-05-21 オリンパスメディカルシステムズ株式会社 Basket forceps

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269862A (en) * 1991-02-26 1992-09-25 Fujitsu Ltd Semiconductor device
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH07111334A (en) * 1993-08-20 1995-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US6867431B2 (en) 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2006344804A (en) * 2005-06-09 2006-12-21 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
JP2007227865A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Silicide forming method, and semiconductor device manufacturing method
WO2015072366A1 (en) 2013-11-12 2015-05-21 オリンパスメディカルシステムズ株式会社 Basket forceps

Similar Documents

Publication Publication Date Title
US5818085A (en) Body contact for a MOSFET device fabricated in an SOI layer
US5252502A (en) Method of making MOS VLSI semiconductor device with metal gate
US5407837A (en) Method of making a thin film transistor
JPS63281465A (en) Manufacture of field effect transistor and its intermediate product
JPH01114070A (en) Manufacture of semiconductor device
JPH0697192A (en) Manufacture of semiconductor device
JP3161408B2 (en) Semiconductor device and manufacturing method thereof
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH05183160A (en) Semiconductor device and fabrication thereof
JPS594067A (en) Semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JPH01765A (en) semiconductor equipment
JP3277434B2 (en) Method for manufacturing transistor
JP2924491B2 (en) Semiconductor device
JPH03173175A (en) Semiconductor device
JPH07135313A (en) Fet transistor and its fabrication
JPH05198686A (en) Semiconductor device and its manufacture
JPS61194764A (en) Manufacture of semiconductor device
JPH0517701B2 (en)
JPH056345B2 (en)
JPH02206130A (en) Manufacture of mos-type field-effect transistor
JP3191313B2 (en) Method for manufacturing semiconductor device
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device
JPS60223162A (en) Manufacture of semiconductor device
JPH06275839A (en) Manufacture of vertical semiconductor element