JPS63237569A - Manufacture of mis type semiconductor device - Google Patents

Manufacture of mis type semiconductor device

Info

Publication number
JPS63237569A
JPS63237569A JP7325087A JP7325087A JPS63237569A JP S63237569 A JPS63237569 A JP S63237569A JP 7325087 A JP7325087 A JP 7325087A JP 7325087 A JP7325087 A JP 7325087A JP S63237569 A JPS63237569 A JP S63237569A
Authority
JP
Japan
Prior art keywords
film
region
sidewall
semiconductor device
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7325087A
Other languages
Japanese (ja)
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7325087A priority Critical patent/JPS63237569A/en
Publication of JPS63237569A publication Critical patent/JPS63237569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase Vt of a transistor corresponding to the sidewall of an element region larger than that of a transistor at the top of the element region by forming a semiconductor film which contains in high concentration the same impurity as that of a substrate only at the sidewall of the region, and increasing the thickness of the oxide film of the sidewall of the region. CONSTITUTION:A polysilicon film 6 on a surface is etched to retain the film 6 diffused in high concentration with boron only on the sidewall of a silicon film 3, and the films 3, 6 are partly thermally oxidized. An Si3N4 film 4 prevents the top of an element region from being oxidized at this time. As a result, a thick oxide film 2' is formed only on the sidewall of the region. Thus, the film 6 in which boron is diffused in high concentration and the film 2' are formed on the sidewall of the region of an MOS semiconductor device of SOI structure. Thus, Vt of the transistor of second channel region corresponding to the sidewall of the region is increased larger than that of a transistor of a first channel region to remove the influence of the transistor of the sidewall.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an MIS type semiconductor device.

〔従来の技術〕[Conventional technology]

絶縁膜上の半導体膜に形成したMIS型半導体装置、い
わゆるSOI(Semiconductor on I
n5ulator)構造のMIS型半導体装置は従来の
MIS型半導体装置に比較して接合容量が小さく、素子
分離が完全かつ簡便であることから高速の大規模集積回
路(LSI)に適した半導体装置であるといわれる。
MIS type semiconductor device formed on a semiconductor film on an insulating film, so-called SOI (Semiconductor on I)
MIS type semiconductor devices with n5ulator) structure have smaller junction capacitance than conventional MIS type semiconductor devices, and element isolation is complete and simple, making them suitable for high-speed large-scale integrated circuits (LSIs). It is said that

従来、SOI構造のMIS型半導体装置の製造工程にお
いて、その素子分離法の一つに絶縁体上の半導体膜のう
ち不要な部分をすべて除去し半導体膜をアイランド状に
形成する工程がある1例えばニス・デー・ニス マルヒ
(S、D、S、Malhi)らは1982シンポジウム
 オン ブイ・エル・ニス・アイ チクノロシイ ダイ
ジェスト オン テクニカル ペーパーズ(1982S
ymposium on VLSI Technolo
geyDigeSt of Technical Pa
pers)、107ページにこの方法(アイランド法)
を報告している。第2図(a)はこのアイランド法で素
子分離を行ったSOI構造の阿IS型半導体装置の模式
的断面図である。第2図(b)は第2図(a)のB−8
面の切断面である。図中1はシリコン基板、2はSin
、膜、7はゲートSin、膜、8はゲート電極、9はシ
リコン膜中のソース・ドレイン拡散層、10は第1のチ
ャネル領域、11は第2のチャネル領域である。
Conventionally, in the manufacturing process of MIS type semiconductor devices with SOI structure, one of the element isolation methods is a process of removing all unnecessary parts of the semiconductor film on the insulator and forming the semiconductor film in an island shape. 1982 Symposium on Technical Papers (1982S)
Symposium on VLSI Technology
geyDigeSt of Technical Pa
pers), page 107 describes this method (island method).
is reported. FIG. 2(a) is a schematic cross-sectional view of an IS type semiconductor device having an SOI structure in which element isolation is performed using this island method. Figure 2 (b) is B-8 in Figure 2 (a).
This is the cut surface of the surface. In the figure, 1 is a silicon substrate, 2 is a sin
, a film, 7 a gate Sin, a film 8 a gate electrode, 9 a source/drain diffusion layer in the silicon film, 10 a first channel region, and 11 a second channel region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしアイランド法で素子分離を行ったSOI構造のM
IS型半導体装置の場合、第2図(b)に示すようにシ
リコン膜上の通常の第1のチャネル領域lOの他に5i
ItAの側壁に第2のチャネル領域11が形成される。
However, the M
In the case of an IS type semiconductor device, in addition to the usual first channel region lO on the silicon film, as shown in FIG.
A second channel region 11 is formed on the sidewall of the ItA.

このチャネル領域11は、チャネル領域lOの第1のM
IS型半導体装置に対し並列に結合した第2のMIS型
半導体装置のチャネル領域と考えられる。従って第1の
チャネル領域10と同様に第2のチャネル領域11にお
いてもソースとドレイン間に電流が流れはじめるゲート
電極7への印加電圧(しきい値電圧、 Vt)が存在す
る。このため、第1のMIS型半導体装置のlVt□1
と第2のMIS型半導体装置ノIvtzlとの関係がI
Vfzl<IVttl トなった場合、 MIS型半導
体装置/SOIのVtは第2のMIS型半導体装置のV
t2に等しくなる。しかしながら、一般にVtはゲート
膜厚、チャネル領域の不純物濃度や結晶性に依存し、こ
れらの制御が難しいので第2のMIS型半導体装置にお
いてはVt2を制御することは非常に難しい、それゆえ
l vtx I < l Vtz lの場合があり、そ
のためMIS型半導体装置/SOIのVtは1作製の目
的である第1のMIS型半導体装置のvtlより低下し
、またばらつきも増大する。
This channel region 11 is the first M of the channel region IO.
It can be considered as a channel region of a second MIS type semiconductor device coupled in parallel to the IS type semiconductor device. Therefore, in the second channel region 11 as well as in the first channel region 10, there is a voltage applied to the gate electrode 7 (threshold voltage, Vt) at which a current begins to flow between the source and drain. Therefore, lVt□1 of the first MIS type semiconductor device
The relationship between Ivtzl and the second MIS type semiconductor device is I
If Vfzl<IVttl, the Vt of the MIS type semiconductor device/SOI is equal to the Vt of the second MIS type semiconductor device.
It becomes equal to t2. However, in general, Vt depends on the gate film thickness, the impurity concentration and crystallinity of the channel region, and since it is difficult to control these, it is very difficult to control Vt2 in the second MIS type semiconductor device. Therefore, l vtx There is a case where I < l Vtz l, and therefore, the Vt of the MIS type semiconductor device/SOI is lower than the vtl of the first MIS type semiconductor device which is the purpose of manufacturing, and the variation also increases.

本発明の目的は上述した従来の問題点を解決したSOI
構造のMIS型半導体装置の製造方法を提供することに
ある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional SOI
An object of the present invention is to provide a method for manufacturing an MIS type semiconductor device having a structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところは、絶縁体基板上のMIS型
半導体装置の製造工程における素子領域の分離工程で絶
縁体基板上の第1の半導体膜上にSi、N4膜を形成し
、次いでフォトレジスト膜の露光、現像工程により素子
領域に対応するフォトレジストパターンを形成した後、
これをマスクとして前記Si、 N4膜と半導体膜をエ
ツチングし、次いで前記フォトレジスト膜を剥離した後
、第1導電型の不純物を拡散して第2の半導体膜を形成
し、これをエツチングして少なくとも前記第1の半導体
膜の側壁に前記第2の半導体膜を残し、前記第1゜第2
の半導体膜からなる素子領域を作成した後熱酸化を行い
、素子領域の側壁にのみ厚い酸化膜を形成し1次いで前
記第1の半導体膜上のSi、 N、膜をエツチング除去
することを特徴とするMIS型半導体装置の製造方法で
ある。
The gist of the present invention is to form a Si, N4 film on a first semiconductor film on an insulator substrate in the element region isolation step in the manufacturing process of a MIS type semiconductor device on an insulator substrate, and then to After forming a photoresist pattern corresponding to the element area by exposing and developing the resist film,
Using this as a mask, the Si, N4 and semiconductor films are etched, and then the photoresist film is peeled off, and impurities of the first conductivity type are diffused to form a second semiconductor film, which is then etched. The second semiconductor film is left on at least the side wall of the first semiconductor film, and
After forming an element region made of a semiconductor film, thermal oxidation is performed to form a thick oxide film only on the side walls of the element region, and then the Si, N, and films on the first semiconductor film are etched away. This is a method for manufacturing an MIS type semiconductor device.

〔原理・作用〕[Principle/effect]

一般にMIS型半導体装置のしきい値電圧VtはSi−
Sin、界面の界面準位が小さいとすると、$亙51を
− Vtl:1lIV、B+2マ、+  □Ci==  − ここでVFRはフラットバンド電圧、ψBはSiのフェ
ルミ準位、 Ks、 Kiはそれぞれシリコン、シリコ
ン酸化膜の比誘電率、ε。は誘電率、9は電子の電荷量
、N^は単位体積あたりのアクセプタ不純物の密度、C
1はゲート酸化膜の単位面積あたりのキャパシタンス、
dはゲート酸化膜厚である。
Generally, the threshold voltage Vt of a MIS type semiconductor device is Si-
Sin, assuming that the interface state at the interface is small, $51 is - Vtl: 1lIV, B+2ma, + □Ci== - where VFR is the flat band voltage, ψB is the Fermi level of Si, Ks, Ki are Relative permittivity and ε of silicon and silicon oxide film, respectively. is the dielectric constant, 9 is the electron charge, N^ is the density of acceptor impurity per unit volume, C
1 is the capacitance per unit area of the gate oxide film,
d is the gate oxide film thickness.

上記の式より判るようにKISIS型半導体装置きい値
電圧(Vt)はゲート絶縁膜厚また基板不純物濃度の平
方根に比例して大きくなる。本発明の素子領域の分離方
法は素子領域の側壁のみに基板不純物と同じ不純物を高
濃度に含んだ半導体膜を形成し、かつ素子領域の側壁の
酸化膜厚のみを厚くすることに特徴がある。従って本発
明によれば第2図(b)に示したような最終的に形成さ
れたMIS型半導体装置において第2のチャネル領域1
1のトランジスタのVtを第1のチャネル領域のトラン
ジスタのVtより大きくすることができる。
As can be seen from the above equation, the threshold voltage (Vt) of a KISIS type semiconductor device increases in proportion to the gate insulating film thickness or the square root of the substrate impurity concentration. The device region isolation method of the present invention is characterized by forming a semiconductor film containing a high concentration of the same impurity as the substrate impurity only on the sidewalls of the device region, and increasing the thickness of the oxide film only on the sidewalls of the device region. . Therefore, according to the present invention, in the finally formed MIS type semiconductor device as shown in FIG. 2(b), the second channel region 1
The Vt of one transistor can be greater than the Vt of the transistor in the first channel region.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

本発明の製造方法についてシリコン基板上のSiO2膜
上のシリコン膜に形成するnチャネルのMOS (Me
tal 0xide Sem1conductor)型
半導体装置の実施例に基づき説明する。
Regarding the manufacturing method of the present invention, an n-channel MOS (Me
A description will be given based on an example of a semiconductor device of the tal oxide semiconductor type.

第1図(a)〜(ト)は本製造方法の主要工程を示した
模式的断面図である。図中、1はシリコン基板、2はS
in、膜、3はシリコン膜、4はSi、 N4膜、5は
フォトレジスト膜、6はボロンを拡散したポリシリコン
膜、7はゲート5in2膜、8はゲート電極である。
FIGS. 1A to 1G are schematic cross-sectional views showing the main steps of the present manufacturing method. In the figure, 1 is a silicon substrate, 2 is S
3 is a silicon film, 4 is a Si/N4 film, 5 is a photoresist film, 6 is a boron-diffused polysilicon film, 7 is a gate 5in2 film, and 8 is a gate electrode.

まず第1図(a)に示すように、シリコン基板1に積層
されたシリコン膜3上にSL、N4膜4を形成した後フ
ォトレジスト膜5を塗布し、通常の露光、現像工程によ
り素子領域に対応するフォトレジスト膜パターンを形成
する。ここで5in2膜2、Si。
First, as shown in FIG. 1(a), an SL and N4 film 4 is formed on a silicon film 3 laminated on a silicon substrate 1, and then a photoresist film 5 is applied, and the element area is coated with a photoresist film 5 by normal exposure and development steps. A photoresist film pattern corresponding to the pattern is formed. Here, 5in2 film 2, Si.

N4膜4はCVD法により各+ 5ooo人、 100
0人形成する。またシリコン膜3はCVD法により5o
oo人形成し、これをレーザアニールで単結晶化する。
N4 film 4 is made by CVD method, each +500 people, 100
Form 0 people. Moreover, the silicon film 3 is formed by CVD method.
This is formed into a single crystal by laser annealing.

またフォトレジスト膜5の膜厚は1.0.である。Further, the film thickness of the photoresist film 5 is 1.0. It is.

次に第1図(b)に示すように、前記フォトレジスト膜
5をマスクに下層の5L3N、膜4とシリコン膜3とを
エツチングする。ここでエツチングはCF4ガスによる
ドライエツチングを用いる。
Next, as shown in FIG. 1(b), the lower layer 5L3N, film 4 and silicon film 3 are etched using the photoresist film 5 as a mask. Here, dry etching using CF4 gas is used for etching.

次に第1図(c)に示すように、前記フォトレジスト膜
5を剥離した後、表面にボロンを拡散したポリシリコン
膜6を形成する。ここでポリシリコン膜6はCVD法に
よ°リノンドープのポリシリコン膜を5ooo人形成し
たのちボロンをシート抵抗として20Ω/口まで拡散す
る。またSi3N4[4はボロン等の不純物が素子領域
の上部に拡散するのを防ぐマスクの役割を果たす。
Next, as shown in FIG. 1(c), after the photoresist film 5 is peeled off, a polysilicon film 6 in which boron is diffused is formed on the surface. Here, the polysilicon film 6 is formed by forming a 500% linon-doped polysilicon film by the CVD method, and then diffusing boron to a sheet resistance of 20Ω/hole. Further, Si3N4[4 serves as a mask to prevent impurities such as boron from diffusing into the upper part of the element region.

次に第1図(d)に示すように、表面の前記ポリシリコ
ン膜6をエツチングして前記シリコン膜3の側壁のみに
ボロンを高濃度に拡散したポリシリコン膜6を残す。こ
こでポリシリコン膜6のエツチングには基板に垂直な方
向がエツチングされるCF4ガスによるドライエツチン
グを用いる。
Next, as shown in FIG. 1(d), the polysilicon film 6 on the surface is etched to leave the polysilicon film 6 in which boron is diffused at a high concentration only on the side walls of the silicon film 3. Here, the polysilicon film 6 is etched using dry etching using CF4 gas, which etches in a direction perpendicular to the substrate.

さらに第1図(e)に示すように、前記シリコン膜3と
ポリシリコン膜6との一部を熱酸化する。この時、 5
L3N4膜4は素子領域の上部が酸化されるのを防ぎ、
その結果、素子領域の側面にのみ酸化膜2′が形成され
る。酸化膜厚は400人である。
Furthermore, as shown in FIG. 1(e), a portion of the silicon film 3 and polysilicon film 6 is thermally oxidized. At this time, 5
The L3N4 film 4 prevents the upper part of the element region from being oxidized,
As a result, the oxide film 2' is formed only on the side surfaces of the element region. The oxide film thickness is 400.

最後に第1図ωに示すように、前記Si、 N4膜4を
エツチング除去した後、ゲート5in2膜7とゲート電
極8のパターンを形成する。ここでゲートSiO2膜7
は熱酸化で400人形成する。゛またゲート電極8はポ
リシリコン電極であり、CVD法で5000人形成した
後フォトレジスト膜による露光、現像工程とフォトレジ
スト膜をマスクに用いたエツチング工程によりパターン
ニングする。
Finally, as shown in FIG. 1, after the Si and N4 films 4 are removed by etching, patterns of a gate 5in2 film 7 and a gate electrode 8 are formed. Here, the gate SiO2 film 7
is formed by thermal oxidation. Further, the gate electrode 8 is a polysilicon electrode, and after 5,000 layers are formed by the CVD method, it is patterned by an exposure and development process using a photoresist film and an etching process using the photoresist film as a mask.

以上のようにSOI構造のMO5型半導体装置の素子領
域の側壁のみにボロンを高濃度に拡散したポリシリコン
膜6と厚い酸化膜2′を形成し、それによって第2図(
b)に示したように前記素子領域の側壁に対応する第2
のチャネル領域のトランジスタのVtを第1のチャネル
領域のトランジスタのVtより大きくして側壁のトラン
ジスタの影響を除去する。
As described above, a polysilicon film 6 in which boron is diffused at a high concentration and a thick oxide film 2' are formed only on the side walls of the element region of an MO5 type semiconductor device having an SOI structure, thereby forming a thick oxide film 2' as shown in FIG.
As shown in b), the second
The effect of the transistor on the sidewall is eliminated by making the Vt of the transistor in the first channel region larger than the Vt of the transistor in the first channel region.

このようにして側壁のトランジスタによるVtの低下や
ばらつきの増大、またリーク電流の増大等の問題点は解
決される。また本発明は素子領域の側壁にポリシリコン
膜6を形成することによって、素子領域の段差が緩和さ
れるためアルミ配線層等の断線の低減にも効果的である
In this way, problems such as a decrease in Vt, an increase in variation, and an increase in leakage current due to sidewall transistors are solved. Furthermore, the present invention is effective in reducing disconnections in aluminum wiring layers, etc., since the step difference in the element region is alleviated by forming the polysilicon film 6 on the side walls of the element region.

尚、以上実施例では、シリコン基板上に5in2膜とシ
リコン膜を形成したSOI構造のnチャネルMOS型半
導体装置を例に本発明を説明したが他のSOI構造のM
IS型半導体装置にも適用できるのは明らかである。従
ってSOI構造の基板は石英基板等の他の絶縁基板上に
半導体膜を形成したSOI構造の基板でもよい。またS
L、 N、膜はCVD法により形成したが熱窒化膜でも
よい。またSi3N4膜とシリコン膜のエツチングにC
F4ガスによるドライエツチングを用いたが、他のエツ
チング方法でもよい。また素子領域の側壁に残す半導体
膜にボロンを拡散したポリシリコン膜を用いたが、nチ
ャネルの場合他のp形不純物を拡散した半導体膜またp
チャネルの場合リン等のn形不純物を拡散した半導体膜
でよい。またボロンを拡散したポリシリコンのエツチン
グにCF、ガスによるドライエツチングを用いたが、他
の基板に垂直な方向がエツチングされるエツチング方法
でよい。
In the above embodiments, the present invention was explained using an SOI structure n-channel MOS semiconductor device in which a 5in2 film and a silicon film were formed on a silicon substrate, but other SOI structure M
It is obvious that the present invention can also be applied to IS type semiconductor devices. Therefore, the SOI structure substrate may be a SOI structure substrate in which a semiconductor film is formed on another insulating substrate such as a quartz substrate. Also S
Although the L and N films were formed by CVD, thermal nitride films may also be used. In addition, C
Although dry etching using F4 gas was used, other etching methods may be used. In addition, a polysilicon film in which boron is diffused is used as the semiconductor film left on the side walls of the element region, but in the case of an n-channel, a semiconductor film in which other p-type impurities are diffused or a p-type semiconductor film is used.
In the case of a channel, a semiconductor film in which n-type impurities such as phosphorus are diffused may be used. Although dry etching using CF or gas was used to etch the boron-diffused polysilicon, any other etching method that etches in a direction perpendicular to the substrate may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればSOI構造のMI
S型半導体装置において、素子領域の側壁に対応するト
ランジスタのVtを素子領域の上部のトランジスタのV
tより大きくすることができ、ばらつきがなく、また本
発明によれば素子領域の側壁に半導体膜を形成すること
によって素子領域の段差を緩和することができる効果を
有する。
As explained above, according to the present invention, MI of SOI structure
In an S-type semiconductor device, the Vt of the transistor corresponding to the sidewall of the element region is equal to the Vt of the transistor above the element region.
It can be made larger than t, there is no variation, and according to the present invention, by forming a semiconductor film on the sidewalls of the element region, it is possible to reduce the step difference in the element region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (c) 、 (d) 
、 (e) 、(f)は本発明の一実施例を説明するた
めに工程順を示したSOI構造のnチャネルMO3型半
導体装置の模式的断面図、第2図(a)は従来のSOI
構造のNIS型半導体装置の模式的断面図、(b)は(
a)のB−B線断面図である。 1・・・レリコン基板    2・・・SiS1021
I・・・シリコン膜     4・・・Sia N4 
膜5・・・フォトレジスト膜 6・・・ボロンを拡散したポリシリコン膜7・・・ゲー
ト5in2膜    8・・・ゲート電極9・・・シリ
コン膜中のソース・ドレイン拡散層10・・・第1のチ
ャネル領域  11・・・第λのチャネル領域(Q、’
) (b) (C) 第1図 (d) (e) (f) 第1図 (α) (b’) 第2図 手続補正書(自発) 昭和  年e3.5.18  日 ”““#lcM t     、、、、・1、事件の表
示  昭和62年  特許願 第073250号2、発
明の名称 MIS型半導体装置の製造方法 3、補正をする者 事件との関係       出願人 東京都港区芝五丁目33番1号 (423)  日本電気株式会社 代表者 関本忠弘 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第2頁第14行目から第18行目にかけて
r 1982シンポジウム・・・・・・・Papers
) Jとあるのをr 1982インタナシヨナルエレク
トロンデバイスミーテイングテクニカルダイジエスト、
 (1982International Elect
ron Devices Meeting Techn
icalDigest) Jと辛市正す6・     
      、+:’、 、−、代理人弁理士内原 晋
、;、・、、、、=ノ\、−1l
Figure 1 (a), (b), (c), (d)
, (e) and (f) are schematic cross-sectional views of an n-channel MO3 type semiconductor device with an SOI structure showing the process order for explaining an embodiment of the present invention, and FIG.
A schematic cross-sectional view of an NIS type semiconductor device with the structure (b) is (
It is a BB sectional view of a). 1... Relicon board 2... SiS1021
I...Silicon film 4...Sia N4
Film 5...Photoresist film 6...Polysilicon film with boron diffused 7...Gate 5in2 film 8...Gate electrode 9...Source/drain diffusion layer in silicon film 10...No. 1 channel region 11...λth channel region (Q,'
) (b) (C) Figure 1 (d) (e) (f) Figure 1 (α) (b') Figure 2 procedural amendment (voluntary) Date e3.5.18, Showa lcM t ,,,,・1, Indication of the case 1988 Patent Application No. 0732502, Name of the invention Method for manufacturing MIS type semiconductor device 3, Person making the amendment Relationship to the case Applicant Shibago, Minato-ku, Tokyo Chome 33-1 No. 423 NEC Corporation Representative Tadahiro Sekimoto 4, Agent 5, Detailed explanation of the invention column 6 of the specification subject to amendment, Contents of amendment (1) Specification, page 2, 14 From line to line 18 r 1982 Symposium...Papers
) J and r 1982 International Electron Device Meeting Technical Digest,
(1982 International Elect
ron Devices Meeting Techn.
icalDigest) J and Shinichi Masaru6・
,+:', ,-,Representative Patent Attorney Susumu Uchihara,;,・,,,,=ノ\,-1l

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁体基板上のMIS型半導体装置の製造工程に
おける素子領域の分離工程で絶縁体基板上の第1の半導
体膜上にSi_3N_4膜を形成し、次いでフォトレジ
スト膜の露光、現像工程により素子領域に対応するフォ
トレジストパターンを形成した後、これをマスクとして
前記Si_3N_4膜と半導体膜をエッチングし、次い
で前記フォトレジスト膜を剥離した後、第1導電型の不
純物を拡散して第2の半導体膜を形成し、これをエッチ
ングして少なくとも前記第1の半導体膜の側壁に前記第
2の半導体膜を残し、前記第1,第2の半導体膜からな
る素子領域を作成した後熱酸化を行い、素子領域の側壁
にのみ厚い酸化膜を形成し、次いで前記第1の半導体膜
上のSi_3N_4膜をエッチング除去することを特徴
とするMIS型半導体装置の製造方法。
(1) A Si_3N_4 film is formed on the first semiconductor film on the insulating substrate in the element region separation step in the manufacturing process of the MIS type semiconductor device on the insulating substrate, and then a photoresist film is exposed and developed. After forming a photoresist pattern corresponding to the element region, using this as a mask, the Si_3N_4 film and the semiconductor film are etched, and after peeling off the photoresist film, impurities of the first conductivity type are diffused to form a second conductivity type. After forming a semiconductor film and etching it to leave the second semiconductor film on at least a side wall of the first semiconductor film to create an element region made of the first and second semiconductor films, thermal oxidation is performed. A method for manufacturing an MIS type semiconductor device, characterized in that a thick oxide film is formed only on the sidewalls of the element region, and then the Si_3N_4 film on the first semiconductor film is removed by etching.
JP7325087A 1987-03-26 1987-03-26 Manufacture of mis type semiconductor device Pending JPS63237569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7325087A JPS63237569A (en) 1987-03-26 1987-03-26 Manufacture of mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7325087A JPS63237569A (en) 1987-03-26 1987-03-26 Manufacture of mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPS63237569A true JPS63237569A (en) 1988-10-04

Family

ID=13512744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7325087A Pending JPS63237569A (en) 1987-03-26 1987-03-26 Manufacture of mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPS63237569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353530C (en) * 2003-10-16 2007-12-05 台湾积体电路制造股份有限公司 Method for producing semiconductor assenbly on SOI wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184759A (en) * 1982-04-23 1983-10-28 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184759A (en) * 1982-04-23 1983-10-28 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353530C (en) * 2003-10-16 2007-12-05 台湾积体电路制造股份有限公司 Method for producing semiconductor assenbly on SOI wafer

Similar Documents

Publication Publication Date Title
US4213139A (en) Double level polysilicon series transistor cell
KR0137974B1 (en) Semiconductor device &amp; process for manufacturing the same
US4271422A (en) CMOS SOS With narrow ring shaped P silicon gate common to both devices
US4788158A (en) Method of making vertical inverter
JPS6272144A (en) Semiconductor device
US6383859B2 (en) Method of forming semiconductor device including patterning lower electrode of capacitor and gate electrode of transistor with same resist
US4564583A (en) Method for manufacturing a semiconductor device
KR940002952A (en) Semiconductor device and manufacturing method thereof
US4378565A (en) Integrated circuit and method of making same
JPS5650535A (en) Manufacture of semiconductor device
JPS63237569A (en) Manufacture of mis type semiconductor device
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS63237574A (en) Manufacture of mis semiconductor device
JPH05145073A (en) Complementary thin film transistor
JPH0321030A (en) Manufacture of semiconductor device
JP3521921B2 (en) Method for manufacturing semiconductor device
KR960000963B1 (en) Semiconductor integrated circuit device fabrication process
JP2817226B2 (en) Method for manufacturing semiconductor device
JPH04101433A (en) Manufacture of semiconductor device
JPH01214057A (en) Manufacture of transistor
KR960013507B1 (en) Method for manufacturing sram
JPS61214557A (en) Manufacture of semiconductor integrated circuit device
JPS5918875B2 (en) Method for manufacturing semiconductor integrated circuit device
KR0135718B1 (en) Manufacturing method of semiconductor device
KR100192474B1 (en) Method of manufacturing mosfet