JPH04101433A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04101433A
JPH04101433A JP2218812A JP21881290A JPH04101433A JP H04101433 A JPH04101433 A JP H04101433A JP 2218812 A JP2218812 A JP 2218812A JP 21881290 A JP21881290 A JP 21881290A JP H04101433 A JPH04101433 A JP H04101433A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
film
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2218812A
Other languages
Japanese (ja)
Inventor
Hideji Miyake
秀治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2218812A priority Critical patent/JPH04101433A/en
Publication of JPH04101433A publication Critical patent/JPH04101433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To simplify the manufacturing process by making the device in such a structure that a side-wall silicon oxide film is protruded from the gate electrode. CONSTITUTION:After formation of an oxide film 2 on a P-type silicon substrate 1, the substrate is subjected to thermal oxidation to form an oxide film on a part of the surface of the substrate on which an element is formed. Next, a non-doped polycrystal silicon layer 4, silicon oxide film 5 and silicon nitride film 6 are deposited in this order and are etched to form a gate electrode. Using the silicon nitride film 6 and oxide film 2 as a mask, phosphorus is injected by ion implantation to form a diffusion layer 7. After that, a side-wall silicon oxide film 8 is formed and then a silicon oxide film 9 is formed. After removal of the silicon nitride film 6, arsenic is injected by ion implantation to form a diffusion layer 10. Next, a silicon oxide film 11 is deposited and photo resist is applied. And, an opening is made on the photo resist film 12. After that, the silicon oxide film 11 is etched to form a contact hole and a polycrystal silicon film 13 is deposited and etched to form an interconnection layer. Then, an aluminum interconnection layer is formed. Consequently, a MOS integrated circuit in which self-alignment contact is employed can be manufactured by an easy and simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

従来の半導体装置の製造方法は、第3図(a)に示すよ
うに、P型シリコン基板1の表面に選択酸化法を用いて
フィールド酸化膜2を形成して素子形成領域を区画し、
シリコン基板1を900℃程度で熱酸化して素子形成領
域の表面に約20nmの厚さのゲート酸化M3を形成す
る。次にゲート酸化膜3を含む表面に300nm程度の
厚さの多結晶シリコン層4を堆積し、リンを添加するこ
とによって層抵抗が15〜20Ω/口になるようにする
。次に、全面に300nm程度の厚さの酸化シリコン膜
15を堆積し、酸化シリコン膜15及び多結晶シリコン
層4を選択的に順次エツチングしてゲート電極を形成す
る。次に、ゲート電極及びフィールド酸化膜2をマスク
として素子形成領域の表面に1.013c m−”程度
のリンをイオン注入してN−型拡散層7を形成する。
As shown in FIG. 3(a), the conventional method for manufacturing a semiconductor device is to form a field oxide film 2 on the surface of a P-type silicon substrate 1 using a selective oxidation method to define an element formation region.
The silicon substrate 1 is thermally oxidized at about 900° C. to form a gate oxide M3 with a thickness of about 20 nm on the surface of the element formation region. Next, a polycrystalline silicon layer 4 with a thickness of about 300 nm is deposited on the surface including the gate oxide film 3, and phosphorus is added so that the layer resistance becomes 15 to 20 Ω/hole. Next, a silicon oxide film 15 with a thickness of about 300 nm is deposited on the entire surface, and the silicon oxide film 15 and the polycrystalline silicon layer 4 are selectively etched in sequence to form a gate electrode. Next, using the gate electrode and field oxide film 2 as a mask, phosphorus ions of about 1.013 cm-'' are implanted into the surface of the element formation region to form an N- type diffusion layer 7.

次に、第3図(b)示すように、公知の手段を用いて約
200nmの幅の側壁酸化シリコン膜8を形成し、側壁
酸化シリコン膜8をマスクとして約5X1015cm−
2のヒ素をイオン注入してN+型型数散層10形成する
。次に、減圧CVD法により全面に酸化シリコン膜16
を約300nmの厚さに堆積する。
Next, as shown in FIG. 3(b), a sidewall silicon oxide film 8 with a width of about 200 nm is formed using a known method, and a width of about 5×1015 cm- is formed using the sidewall silicon oxide film 8 as a mask.
Arsenic ions of No. 2 are ion-implanted to form an N+ type scattering layer 10. Next, a silicon oxide film 16 is formed over the entire surface by low pressure CVD.
is deposited to a thickness of approximately 300 nm.

次に、第3図(C)に示すように、全面にフォトレジス
ト膜12を塗布し選択的に露光・現像することによりN
+型型数散層10上コンタクト孔を形成するためのパタ
ーンを形成し、フォトレジスト膜12をマスクとして酸
化シリコン膜16をエツチングしてコンタクト孔を形成
する。この時、ゲート電極の多結晶シリコン層4は厚い
酸化シリコン15.1.6で覆われているのでコンタク
ト孔とゲート電極との間にマージンをとる必要がない。
Next, as shown in FIG. 3(C), a photoresist film 12 is coated on the entire surface and selectively exposed and developed.
A pattern for forming a contact hole is formed on the + type scattering layer 10, and the silicon oxide film 16 is etched using the photoresist film 12 as a mask to form a contact hole. At this time, since the polycrystalline silicon layer 4 of the gate electrode is covered with the thick silicon oxide 15.1.6, there is no need to provide a margin between the contact hole and the gate electrode.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

近年、デバイスの微細化に伴ってトランジスタのチャネ
ル長はサブミクロンからハーフミクロンに縮小されよう
としている。それに伴って従来埋込チャネル型の動作を
していたPチャネルMOSトランジスタを表面チャネル
型の動作に変更して短チヤネル化の行うことが検討され
ている。表面チャネル型のPチャネルMO3)ランジス
タを含む相補型MO3半導体装置の製造方法としては、
ノンドープの多結晶シリコンをケート電極としてパター
ニングした後でソース、ドレイン領域に高濃度の不純物
を注入する時に同時にゲート電極にも不純物を注入して
NチャネルMO3)ランジスタのゲート電極をN+型に
PチャネルMOSトランジスタのゲート電極をP+型に
ドーピングする方法がとられるが、上述した従来の製造
方法ではゲート電極上に厚い酸化膜が存在するなめにゲ
ート電極に不純物イオンを導入することができないとい
う問題点がある。
In recent years, with the miniaturization of devices, the channel length of transistors is being reduced from submicrons to half microns. Accordingly, it is being considered to shorten the channel by changing the P-channel MOS transistor, which has conventionally operated as a buried channel type, to a surface channel type operation. As a method for manufacturing a complementary MO3 semiconductor device including a surface channel type P-channel MO3) transistor,
After patterning non-doped polycrystalline silicon as a gate electrode, when high concentration impurities are implanted into the source and drain regions, impurities are also implanted into the gate electrode at the same time to change the gate electrode of the N-channel MO3) transistor from an N+ type to a P-channel transistor. A method is used to dope the gate electrode of a MOS transistor to P+ type, but the conventional manufacturing method described above has the problem that impurity ions cannot be introduced into the gate electrode due to the presence of a thick oxide film on the gate electrode. There is.

また、ソース・ドレイン領域へのイオン注入でゲート電
極に不純物イオンが注入されるようにゲート上の酸化シ
リコン膜の膜厚を薄くすると、コンタクト孔とゲート電
極とのマージンがない場合には配線層とゲート電極がシ
ョートしてしまうので、従来技術ではセルファラインコ
ンタクトを用いてPチャネルMO3)ランジスタを表面
チャネル型の動作をさせるためにはPチャネルMO3)
ランジスタのゲート電極のみにあらかじめホウ素を拡散
してP+型にドーピングする等の複雑なプロセスを必要
とするという問題点がある。
In addition, if the thickness of the silicon oxide film on the gate is made thin so that impurity ions are implanted into the gate electrode by ion implantation into the source/drain region, if there is no margin between the contact hole and the gate electrode, the wiring layer Therefore, in the conventional technology, self-line contact is used to make the P-channel MO3) transistor perform surface channel type operation.
There is a problem in that a complicated process is required, such as pre-diffusing boron only into the gate electrode of the transistor to dope it to P+ type.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型の半導体基
板の主表面に設けた素子形成領域の表面にゲート酸化膜
を形成する工程と、前記ゲート酸化股上に多結晶シリコ
ン層及び少くとも一種類の絶縁膜を順次堆積する工程と
、前記絶縁膜及び多結晶シリコン層を選択的に順次エツ
チングして積層構造のゲート電極を形成する工程と、前
記ケート電極をマスクとして素子形成領域に逆導電型の
不純物をイオン注入して低濃度拡散層を形成する工程と
、前記積層構造のゲート電極の側面にゲート電極の最上
層の絶縁膜と材質の異なる側壁絶縁膜を形成する工程と
、前記最上層の絶縁膜を除去する工程と、前記ゲート電
極及び側壁絶縁膜をマスクとして素子形成領域に逆導電
型の不純物をイオン注入して高濃度拡散領域を形成する
と同時に前記多結晶シリコン層内に逆導電型不純物をド
ープする工程と、全面に絶縁膜を堆積して選択的にエツ
チングし高濃度拡散領域上にコンタクト孔を形成する工
程を含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a gate oxide film on the surface of an element formation region provided on the main surface of a semiconductor substrate of a -conductivity type, and forming a polycrystalline silicon layer on the gate oxide layer. a step of sequentially depositing different kinds of insulating films; a step of selectively and sequentially etching the insulating film and the polycrystalline silicon layer to form a gate electrode with a laminated structure; a step of forming a low concentration diffusion layer by ion-implanting a type of impurity; a step of forming a sidewall insulating film made of a different material from the insulating film of the uppermost layer of the gate electrode on the side surface of the gate electrode of the stacked structure; The step of removing the upper layer insulating film, and the step of ion-implanting impurities of opposite conductivity type into the element formation region using the gate electrode and sidewall insulating film as a mask to form a high concentration diffusion region, and at the same time, injecting impurities into the polycrystalline silicon layer. The method includes a step of doping conductive impurities, and a step of depositing an insulating film over the entire surface and selectively etching it to form a contact hole on the high concentration diffusion region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
の一主面に選択酸化法を用いてフィールド酸化膜2を形
成し、素子形成領域を区画する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
A field oxide film 2 is formed on one main surface using a selective oxidation method to define an element formation region.

次に、シリコン基板1を900°C程度て熱酸化し素子
形成領域の表面に約20nm厚さのゲート酸化膜3を形
成する。次に、ゲート酸化膜3を含む表面に約300n
mの厚さのノンドープ多結晶シリコン層4及び約30n
m厚さの酸化シリコン膜5及び約500nmの厚さの窒
化シリコン膜6を順次堆積し、窒化シリコン膜6.酸化
シリコン膜5、多結晶シリコン層4を選択的に順次エツ
チングしてケート電極を形成する。次に、窒化シリコン
膜6及びフィールド酸化膜2をマスクとして1013c
 m−”程度のリンをイオン注入してN−型拡散層7を
形成する。
Next, the silicon substrate 1 is thermally oxidized at about 900° C. to form a gate oxide film 3 with a thickness of about 20 nm on the surface of the element formation region. Next, about 300nm is applied to the surface including the gate oxide film 3.
undoped polycrystalline silicon layer 4 with a thickness of m and about 30n
A silicon oxide film 5 with a thickness of m and a silicon nitride film 6 with a thickness of about 500 nm are sequentially deposited to form a silicon nitride film 6. The silicon oxide film 5 and the polycrystalline silicon layer 4 are selectively and sequentially etched to form a gate electrode. Next, using the silicon nitride film 6 and field oxide film 2 as a mask, 1013c
An N- type diffusion layer 7 is formed by ion-implanting phosphorus in an amount of about m-''.

次に、第1図(b)に示すように、多結晶シリコン層4
.酸化シリコン膜5.窒化シリコン膜6の側面に側壁形
成法により幅約200nmの側壁酸化シリコン膜8を形
成する。次に、900℃程度の乾燥酸素中で酸化を行う
ことによってシリコン基板上に約20nmの酸化シリコ
ン膜9を形成する。次に、熱リン酸を用いて窒化シリコ
ン膜6を除去し、約5X1015cm−2のヒ素をイオ
ン注入しN−型拡散層7と接続するN+型型数散層10
形成する。こと時、ゲート電極である多結晶シリコン層
4上の酸化シリコン膜5は、膜厚か約30nmと薄いの
で多結晶シリコン層4中にも十分な量のヒ素が注入され
て多結晶シリコン層4はN+型にドーピングされる。ま
た、ゲートの多結晶シリコン層4よりも側壁酸化シリコ
ン膜8が突出した構造となる。
Next, as shown in FIG. 1(b), a polycrystalline silicon layer 4
.. Silicon oxide film 5. A sidewall silicon oxide film 8 having a width of about 200 nm is formed on the side surface of the silicon nitride film 6 by a sidewall forming method. Next, a silicon oxide film 9 of about 20 nm thick is formed on the silicon substrate by performing oxidation in dry oxygen at about 900°C. Next, the silicon nitride film 6 is removed using hot phosphoric acid, and about 5×10 15 cm −2 of arsenic is ion-implanted to form an N+ type scattering layer 10 connected to the N− type diffusion layer 7.
Form. At this time, since the silicon oxide film 5 on the polycrystalline silicon layer 4, which is the gate electrode, is as thin as about 30 nm, a sufficient amount of arsenic is implanted into the polycrystalline silicon layer 4. is doped to N+ type. Further, the structure is such that the sidewall silicon oxide film 8 protrudes beyond the polycrystalline silicon layer 4 of the gate.

次に、第1図(C)に示すように、全面に約300nm
の厚さの酸化シリコンM11−を減圧CVD法で堆積し
た後、フォトレジスト膜1.2を塗布し、フォトリソグ
ラフィ技術を用いてコンタクト孔形成領域のフォトレジ
スト膜12を開孔する。ここで、通常のセルファライン
コンタクトの場合と同様にゲート電極のコーナーの部分
は拡散層上よりも厚い酸化膜で覆われているからコンタ
クト孔とゲート電極との間には十分なマージンをとる必
要はない。次に、フォトレジストM12をマスクとして
酸化シリコン膜11をエツチングしてコンタクト孔を形
成した後、全面に約300nmの厚さの多結晶シリコン
層13を堆積し、選択的にエツチングしてN+型型数散
層10接続する配線層を形成する。
Next, as shown in FIG. 1(C), about 300 nm is applied to the entire surface.
After silicon oxide M11- is deposited to a thickness of 1.0 by low pressure CVD, a photoresist film 1.2 is applied, and a hole is opened in the photoresist film 12 in a contact hole formation region using photolithography. Here, as in the case of normal self-line contacts, the corners of the gate electrode are covered with a thicker oxide film than the top of the diffusion layer, so it is necessary to provide a sufficient margin between the contact hole and the gate electrode. There isn't. Next, the silicon oxide film 11 is etched using the photoresist M12 as a mask to form a contact hole, and then a polycrystalline silicon layer 13 with a thickness of about 300 nm is deposited on the entire surface and selectively etched to form an N+ type film. A wiring layer connecting the distributed layer 10 is formed.

その後、公知の手段によって層間絶縁膜を堆積し、コン
タクト孔を開孔し、アルミ配線層を形成することにより
、半導体装置を構成することができる。
Thereafter, a semiconductor device can be constructed by depositing an interlayer insulating film by known means, forming contact holes, and forming an aluminum wiring layer.

第2図(a)は本発明の第2の実施例を説明するための
工程順に示した半導体チップの断面図である。
FIG. 2(a) is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

第2図(a)に示すように、第1の実施例と同様の工程
によりゲート酸化膜3までを形成した後、ゲート酸化膜
3を含む表面に多結晶シリコン層4及び窒化シリコン膜
6を順次堆積して選択的にエツチングし、ゲート電極を
形成する。次に、窒化シリコン膜6及びフィールド酸化
膜2をマスクとしてリンをイオン注入し、N−型拡散層
7を形成する。
As shown in FIG. 2(a), after forming up to the gate oxide film 3 through the same steps as in the first embodiment, a polycrystalline silicon layer 4 and a silicon nitride film 6 are formed on the surface including the gate oxide film 3. A gate electrode is formed by sequentially depositing and selectively etching. Next, phosphorus ions are implanted using the silicon nitride film 6 and the field oxide film 2 as masks to form an N- type diffusion layer 7.

次に、第2図(b)に示すように、多結晶シリコン層4
及び窒化シリコン膜6の側面に側壁酸化シリコン膜8を
形成し、窒化シリコン膜6を除去し、多結晶シリコン層
及び側壁酸化シリコンWX8をマスクとしてヒ素をイオ
ン注入し、N+型型数散層10形成する。次に全面にチ
タン層を堆積して熱処理し、シリコン層と接する多結晶
シリコン層6及びN+型型数散層10表面に硅化チタン
層14を形成し未反応のチタン層を除去する。
Next, as shown in FIG. 2(b), a polycrystalline silicon layer 4
Then, a sidewall silicon oxide film 8 is formed on the side surface of the silicon nitride film 6, the silicon nitride film 6 is removed, and arsenic is ion-implanted using the polycrystalline silicon layer and the sidewall silicon oxide WX8 as a mask to form an N+ type scattering layer 10. Form. Next, a titanium layer is deposited on the entire surface and heat treated to form a titanium silicide layer 14 on the surfaces of the polycrystalline silicon layer 6 and the N+ type scattering layer 10 in contact with the silicon layer, and the unreacted titanium layer is removed.

次に、第2図(c)に示すように、全面に酸化シリコン
膜11をH!積した後、フォトレジスト膜12を塗布し
てパターニングし、フォトレジスト膜12をマスクとし
て酸化シリコン膜11をエツチングしてコンタクト孔を
形成する。以後、第1の実施例と同様の工程により半導
体装置を構成する。
Next, as shown in FIG. 2(c), a silicon oxide film 11 is coated on the entire surface with H! After stacking, a photoresist film 12 is applied and patterned, and the silicon oxide film 11 is etched using the photoresist film 12 as a mask to form a contact hole. Thereafter, a semiconductor device is constructed through the same steps as in the first embodiment.

ここで、硅化チタン層14を設けることにより低抵抗化
か実現できる利点かある。
Here, providing the titanium silicide layer 14 has the advantage of lowering the resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はゲート電極となる多結晶シ
リコン層上に窒化シリコン膜を堆積し、ゲート電極のパ
ターニング後にゲート電極の側壁に側壁酸化シリコン膜
を形成した後、ゲート電極上の窒化シリコン膜を除去す
ることにより側壁酸化シリコン膜をゲート電極よりも突
出した構造にすることによってセルファラインコンタク
トを形成した時の酸化層とゲート電極の間の絶縁性を確
保しながらゲート電極に不純物イオンか注入できるのて
簡便なプロセスでセルファラインコンタク1〜を用いた
Nチャネル、Pチャネルとも表面チャネル型のCMO3
集積回路を製造できるという効果を有する。
As explained above, the present invention deposits a silicon nitride film on a polycrystalline silicon layer that will become a gate electrode, forms a sidewall silicon oxide film on the sidewalls of the gate electrode after patterning the gate electrode, and then deposits a silicon nitride film on the gate electrode. By removing the film, the sidewall silicon oxide film is made to protrude beyond the gate electrode, thereby ensuring insulation between the oxide layer and the gate electrode when forming a self-line contact, and preventing impurity ions from forming on the gate electrode. Surface channel type CMO3 for both N-channel and P-channel using Selfaline Contactor 1~ with easy injection process.
This has the effect that integrated circuits can be manufactured.

]・・P型シリコン基板、2・・・フィールド酸化膜、
3・・・ゲート酸化膜、4・・多結晶シリコン層、5・
・酸化シリコン膜、6・・・窒化シリコン膜、7・・・
N−型拡散層、8・・・側壁酸化シリコン膜、9・・・
酸化シリコン膜、]0・N+型型数散層11・・・酸化
シリコン膜、]2・・フォトレジスト膜、13・・多結
晶シリコン層、14・・・硅化チタン層、1516・・
・酸化シリコン膜。
]...P-type silicon substrate, 2...field oxide film,
3... Gate oxide film, 4... Polycrystalline silicon layer, 5...
・Silicon oxide film, 6... Silicon nitride film, 7...
N-type diffusion layer, 8... sidewall silicon oxide film, 9...
silicon oxide film, ]0.N+ type scattering layer 11... silicon oxide film, ]2... photoresist film, 13... polycrystalline silicon layer, 14... titanium silicide layer, 1516...
・Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の主表面に設けた素子形成領域の
表面にゲート酸化膜を形成する工程と、前記ゲート酸化
膜上に多結晶シリコン層及び少くとも一種類の絶縁膜を
順次堆積する工程と、前記絶縁膜及び多結晶シリコン層
を選択的に順次エッチングして積層構造のゲート電極を
形成する工程と、前記ゲート電極をマスクとして素子形
成領域に逆導電型の不純物をイオン注入して低濃度拡散
層を形成する工程と、前記積層構造のゲート電極の側面
にゲート電極の最上層の絶縁膜と材質の異なる側壁絶縁
膜を形成する工程と、前記最上層の絶縁膜を除去する工
程と、前記ゲート電極及び側壁絶縁膜をマスクとして素
子形成領域に逆導電型の不純物をイオン注入して高濃度
拡散領域を形成すると同時に前記多結晶シリコン層内に
逆導電型不純物をドープする工程と、全面に絶縁膜を堆
積して選択的にエッチングし高濃度拡散領域上にコンタ
クト孔を形成する工程とを含むことを特徴とする半導体
装置の製造方法。
A step of forming a gate oxide film on the surface of an element formation region provided on the main surface of a semiconductor substrate of one conductivity type, and a step of sequentially depositing a polycrystalline silicon layer and at least one type of insulating film on the gate oxide film. a step of selectively and sequentially etching the insulating film and the polycrystalline silicon layer to form a gate electrode with a stacked structure; and a step of ion-implanting impurities of opposite conductivity type into the element formation region using the gate electrode as a mask. a step of forming a concentration diffusion layer; a step of forming a sidewall insulating film of a different material from the uppermost layer insulating film of the gate electrode on the side surface of the gate electrode of the stacked structure; and a step of removing the uppermost layer insulating film. , ion-implanting impurities of opposite conductivity type into the element formation region using the gate electrode and sidewall insulating film as a mask to form a high concentration diffusion region, and simultaneously doping the polycrystalline silicon layer with impurities of opposite conductivity type; 1. A method of manufacturing a semiconductor device, comprising the steps of: depositing an insulating film over the entire surface and selectively etching it to form a contact hole on a high concentration diffusion region.
JP2218812A 1990-08-20 1990-08-20 Manufacture of semiconductor device Pending JPH04101433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218812A JPH04101433A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218812A JPH04101433A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04101433A true JPH04101433A (en) 1992-04-02

Family

ID=16725731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218812A Pending JPH04101433A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04101433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870053A (en) * 1994-06-21 1996-03-12 Nec Corp Manufacture of semiconductor device
JPH08222644A (en) * 1995-02-14 1996-08-30 Nec Corp Manufacture of semiconductor device
JP2010045344A (en) * 2008-07-18 2010-02-25 Nec Electronics Corp Manufacturing method of semiconductor device, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870053A (en) * 1994-06-21 1996-03-12 Nec Corp Manufacture of semiconductor device
JPH08222644A (en) * 1995-02-14 1996-08-30 Nec Corp Manufacture of semiconductor device
JP2010045344A (en) * 2008-07-18 2010-02-25 Nec Electronics Corp Manufacturing method of semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
JPH1050858A (en) Cmos transistor and its manufacture
KR920007787B1 (en) Manufacturing method of semiconductor and its device
JP4712207B2 (en) Manufacturing method of semiconductor device
JPH08330511A (en) Semiconductor device and its manufacture
JP3746907B2 (en) Manufacturing method of semiconductor device
KR19980018188A (en) Method for Manufacturing Self Aligned POCl₃ for Submicron Microelectronics Applications Using Amorphized Polysilicon
KR920010316B1 (en) Manufacturing method of semiconductor device
JPH07120705B2 (en) Method for manufacturing semiconductor device having element isolation region
JP3123453B2 (en) Method for manufacturing semiconductor device
JPH04101433A (en) Manufacture of semiconductor device
US6171897B1 (en) Method for manufacturing CMOS semiconductor device
JP2002016158A (en) Manufacturing method of semiconductor device
JPS61183967A (en) Manufacture of semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH08162523A (en) Semiconductor device, and its manufacture
KR960000963B1 (en) Semiconductor integrated circuit device fabrication process
JP3259439B2 (en) Method for manufacturing semiconductor device
KR100250688B1 (en) Manufacturing method of a self-aligned connection pad
JP3521921B2 (en) Method for manufacturing semiconductor device
KR100480577B1 (en) Semiconductor device having butted contact and manufacturing method therefor
JP3918696B2 (en) Manufacturing method of semiconductor device
JPH05343419A (en) Semiconductor device
JPH0974143A (en) Semiconductor device and manufacture
JPH11274486A (en) Semiconductor device and its manufacturing method
JPH0521455A (en) Manufacture of semiconductor integrated circuit device