JPS63212838A - シリコン中酸素測定方法 - Google Patents
シリコン中酸素測定方法Info
- Publication number
- JPS63212838A JPS63212838A JP62047086A JP4708687A JPS63212838A JP S63212838 A JPS63212838 A JP S63212838A JP 62047086 A JP62047086 A JP 62047086A JP 4708687 A JP4708687 A JP 4708687A JP S63212838 A JPS63212838 A JP S63212838A
- Authority
- JP
- Japan
- Prior art keywords
- graphite crucible
- silicon
- gas
- crucible
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 78
- 239000010703 silicon Substances 0.000 title claims abstract description 78
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 38
- 239000001301 oxygen Substances 0.000 title claims abstract description 38
- 238000005259 measurement Methods 0.000 title description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 78
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 74
- 239000010439 graphite Substances 0.000 claims abstract description 74
- 239000007789 gas Substances 0.000 claims abstract description 51
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 230000004907 flux Effects 0.000 claims abstract description 23
- 238000002844 melting Methods 0.000 claims abstract description 21
- 230000008018 melting Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 40
- 238000004458 analytical method Methods 0.000 claims description 16
- 230000005611 electricity Effects 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000007872 degassing Methods 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 40
- 238000000605 extraction Methods 0.000 description 9
- 229910002090 carbon oxide Inorganic materials 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical class O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000000516 activation analysis Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シリコン中に含まれる酸素の量を測定するた
めの方法に関し、特に、例えば半導体シリコンウェハー
の製造過程などにおいて、その構成素材である高純度単
結晶シリコンの管理分析を、簡便にかつ迅速にしかも精
度良く行う上で好適に利用できる、全く新規なシリコン
中酸素測定方法を開発せんとしてなされたものである。
めの方法に関し、特に、例えば半導体シリコンウェハー
の製造過程などにおいて、その構成素材である高純度単
結晶シリコンの管理分析を、簡便にかつ迅速にしかも精
度良く行う上で好適に利用できる、全く新規なシリコン
中酸素測定方法を開発せんとしてなされたものである。
従来のシリコン中酸素測定方法としては、荷電粒子によ
る放射化分析法や真空融解法などの絶対量測定法、およ
び、二次イオン質量分析法や赤外吸収法などの相対量測
定法が知られている。
る放射化分析法や真空融解法などの絶対量測定法、およ
び、二次イオン質量分析法や赤外吸収法などの相対量測
定法が知られている。
これら各種方法のうち前王者の場合には、極めて大掛か
りで高価な設備を要したり、あるいは、多大な測定時間
および手数を必要とするために、工業用の管理分析法と
しては不適で殆ど実用することは困難であり、単に研究
レベルの分析において用いられているのが現状である。
りで高価な設備を要したり、あるいは、多大な測定時間
および手数を必要とするために、工業用の管理分析法と
しては不適で殆ど実用することは困難であり、単に研究
レベルの分析において用いられているのが現状である。
従って、工業用の実用的管理分析法としては、殆どの場
合、比較的簡便な装置および測定操作で済む赤外吸収法
が用いられている。
合、比較的簡便な装置および測定操作で済む赤外吸収法
が用いられている。
(発明が解決しようとする問題点〕
しかしながら、前記赤外吸収法の場合にも、次のような
問題がある。
問題がある。
即ち、その赤外吸収法は相対量測定法であるから、シリ
コン試料の厚み効果により(つまり、シリコン試料を基
準試料と厳密に同一の厚みとしなければ)比較的大きな
測定誤差が生じ易い、という測定精度上の難点があるば
かりでなく、例えば、最近開発されるに至っている燐、
ボロン、アンチモン等をドーピングしたシリコンウェハ
ーのような赤外域不透明なシリコン試料に対しては、当
然のことながら、この赤外吸収法を適用することは全く
不可能である、という致命的な欠点がある。
コン試料の厚み効果により(つまり、シリコン試料を基
準試料と厳密に同一の厚みとしなければ)比較的大きな
測定誤差が生じ易い、という測定精度上の難点があるば
かりでなく、例えば、最近開発されるに至っている燐、
ボロン、アンチモン等をドーピングしたシリコンウェハ
ーのような赤外域不透明なシリコン試料に対しては、当
然のことながら、この赤外吸収法を適用することは全く
不可能である、という致命的な欠点がある。
それ故に、かかる赤外域不透明なシリコン試料を測定対
象とする場合には、やむを得ず前記二次イオン質量分析
法などの経済性、測定能率(通常、 ′1分析71時
間程度)および操作性等の面で非常に不利な研究的手法
にて代用しなければならなかった。
象とする場合には、やむを得ず前記二次イオン質量分析
法などの経済性、測定能率(通常、 ′1分析71時
間程度)および操作性等の面で非常に不利な研究的手法
にて代用しなければならなかった。
そこで、本発明らは、従前の赤外吸収法に代わり得るよ
り簡便な実用的管理分析法として利用でき、かつ、たと
え赤外域不透明なシリコン試料を測定対象とする場合で
も十分に通用可能なシリコン中酸素測定方法を開発せん
として種々の研究を行った結果、本願出願人が既に実用
化しているところの加熱融解方式による金属中ガス抽出
分析方法(例えば鉄中酸素の測定などに用いられている
)を利用したシリコン中酸素測定方法を発案し、その可
能性の検討を試みた。
り簡便な実用的管理分析法として利用でき、かつ、たと
え赤外域不透明なシリコン試料を測定対象とする場合で
も十分に通用可能なシリコン中酸素測定方法を開発せん
として種々の研究を行った結果、本願出願人が既に実用
化しているところの加熱融解方式による金属中ガス抽出
分析方法(例えば鉄中酸素の測定などに用いられている
)を利用したシリコン中酸素測定方法を発案し、その可
能性の検討を試みた。
そのシリコン中酸素測定方法は、第2図に略示している
ように、電極a、b間に圧着挟持され、それに通電して
(電流iを流して)発熱させることにより温度調節可能
とされた黒鉛るつぼCを、先ず、所定の高温度に加熱す
ることにより、その黒鉛るつぼC自体の脱ガス処理を行
った後、その黒鉛るつぼC内へシリコン試料Sをフラン
クス用金属m(例えばニッケル、スズなどの金属浴用の
金属)と共に投入して、そのシリコン試料S中に含まれ
る酸素をカーボンと結合したガス(例えば−酸化炭素ガ
ス)として抽出し、そして、その抽出されたガスを公知
のガス濃度分析系(図示せず)へ導いて、そのガス濃度
を検出することにより、前記シリコン試料3中に含まれ
る酸素の量を測定する、というように例えば鉄を測定対
象とする場合と同様の手順による方法である。
ように、電極a、b間に圧着挟持され、それに通電して
(電流iを流して)発熱させることにより温度調節可能
とされた黒鉛るつぼCを、先ず、所定の高温度に加熱す
ることにより、その黒鉛るつぼC自体の脱ガス処理を行
った後、その黒鉛るつぼC内へシリコン試料Sをフラン
クス用金属m(例えばニッケル、スズなどの金属浴用の
金属)と共に投入して、そのシリコン試料S中に含まれ
る酸素をカーボンと結合したガス(例えば−酸化炭素ガ
ス)として抽出し、そして、その抽出されたガスを公知
のガス濃度分析系(図示せず)へ導いて、そのガス濃度
を検出することにより、前記シリコン試料3中に含まれ
る酸素の量を測定する、というように例えば鉄を測定対
象とする場合と同様の手順による方法である。
かかる加熱融解式ガス抽出分析方法を利用したシリコン
中酸素測定方法によれば、原理的には、赤外域不透明な
シリコン試料に対しても適用できると共に、シリコン試
料中に含まれる酸素の量を非常に簡便に測定可能である
が、 くア〉黒鉛るつぼCとその中へ投入されるシリコン試料
Sとが、 C+S i→SiC なる反応を起こして、黒鉛るつぼCには局部的に変質部
分(電気抵抗の大きいSiC部分)が生じるため、黒鉛
るつぼCを流れる電流iによりその変質部分で非常に大
きなジュール熱が発生して、黒鉛るつぼCが局所的に異
常な高温に加熱されることとなり、そのために、黒鉛る
つぼC自体の含有する酸素(所謂メタルオキサイド)と
前記SiCの一部が、S i C+0−4s i +G
O なる反応を起こして、大きな測定誤差の要因となるブラ
ンクガス(−酸化炭素ガス)が発生したり、また、黒鉛
るつぼCが損傷したりする、という不都合が生じる、 くイ〉シリコン試料Sに対する加熱に伴って、フラック
ス用金属m自体の含有する酸素も同時に抽出されるため
、含有酸素の極めて少ない高純度のフラックス用金属m
を使用しなければ、やはり大きな測定誤差の要因となる
、くつ〉黒鉛るつぼC内におけるシリコン試料Sの急激
な蒸発、および、その蒸発シリコンの抽出ガス(−酸化
炭素ガス)に対するゲッタ効果による測定誤差も生じ易
い、 といった種々の問題があるために、実用上あまり良好な
結果は得られなかった。
中酸素測定方法によれば、原理的には、赤外域不透明な
シリコン試料に対しても適用できると共に、シリコン試
料中に含まれる酸素の量を非常に簡便に測定可能である
が、 くア〉黒鉛るつぼCとその中へ投入されるシリコン試料
Sとが、 C+S i→SiC なる反応を起こして、黒鉛るつぼCには局部的に変質部
分(電気抵抗の大きいSiC部分)が生じるため、黒鉛
るつぼCを流れる電流iによりその変質部分で非常に大
きなジュール熱が発生して、黒鉛るつぼCが局所的に異
常な高温に加熱されることとなり、そのために、黒鉛る
つぼC自体の含有する酸素(所謂メタルオキサイド)と
前記SiCの一部が、S i C+0−4s i +G
O なる反応を起こして、大きな測定誤差の要因となるブラ
ンクガス(−酸化炭素ガス)が発生したり、また、黒鉛
るつぼCが損傷したりする、という不都合が生じる、 くイ〉シリコン試料Sに対する加熱に伴って、フラック
ス用金属m自体の含有する酸素も同時に抽出されるため
、含有酸素の極めて少ない高純度のフラックス用金属m
を使用しなければ、やはり大きな測定誤差の要因となる
、くつ〉黒鉛るつぼC内におけるシリコン試料Sの急激
な蒸発、および、その蒸発シリコンの抽出ガス(−酸化
炭素ガス)に対するゲッタ効果による測定誤差も生じ易
い、 といった種々の問題があるために、実用上あまり良好な
結果は得られなかった。
本発明は、かかる実情に鑑みて、上記した各種の問題点
を解消すべく、更なる研究を進めた結果完成されたもの
であって、その目的は、たとえ赤外域不透明なシリコン
試料を測定対象とする場合でも適用可能であると共に、
シリコン試料中に含まれる酸素の量を簡便かつ迅速にし
かも十分に精度良く測定できて、簡易な工業用の管理分
析法として好適に利用できるシリコン中酸素測定方法を
提供せんとすることにある。
を解消すべく、更なる研究を進めた結果完成されたもの
であって、その目的は、たとえ赤外域不透明なシリコン
試料を測定対象とする場合でも適用可能であると共に、
シリコン試料中に含まれる酸素の量を簡便かつ迅速にし
かも十分に精度良く測定できて、簡易な工業用の管理分
析法として好適に利用できるシリコン中酸素測定方法を
提供せんとすることにある。
上記目的を達成するために、本発明によるシリコン中酸
素測定方法は、 (i)通電して発熱させることにより直接的に温度調節
可能とされた外側黒鉛るつぼと、その外側黒鉛るつぼ内
に収容されて間接的に温度調節可能とされた内側黒鉛る
つぼとから成る二重黒鉛るつぼを、先ず、所定の高温度
に加熱することにより、その二重黒鉛るつぼ自体の脱ガ
ス処理を行い、 (ii)次に、前記二重黒鉛るつぼを所定の温度に調節
すると共に、その内側黒鉛るつぼ内にフラックス用金属
を投入して、そのフラックス用金属の脱ガス処理を行い
、 (iii )続いて、前記二重黒鉛るつぼをシリコンの
融点付近の温度に調節すると共に、その内側黒鉛るつぼ
内にシリコン試料を投入して、そのシリコン試料を前記
フラックス用金属に溶融させ、しかる後、前記二重黒鉛
るつぼをシリコンの融点よりも相対的に高い温度に上昇
させるように調節することによって、前記シリコン試料
中に含まれる酸素をカーボンと結合したガスとして抽出
し、(iv)そして、前記抽出されたガスをガス濃度分
析系へ導いて、そのガス濃度を検出することにより、前
記シリコン試料中に含まれる酸素の量を測定する、 という手順を採用した点に特徴がある。
素測定方法は、 (i)通電して発熱させることにより直接的に温度調節
可能とされた外側黒鉛るつぼと、その外側黒鉛るつぼ内
に収容されて間接的に温度調節可能とされた内側黒鉛る
つぼとから成る二重黒鉛るつぼを、先ず、所定の高温度
に加熱することにより、その二重黒鉛るつぼ自体の脱ガ
ス処理を行い、 (ii)次に、前記二重黒鉛るつぼを所定の温度に調節
すると共に、その内側黒鉛るつぼ内にフラックス用金属
を投入して、そのフラックス用金属の脱ガス処理を行い
、 (iii )続いて、前記二重黒鉛るつぼをシリコンの
融点付近の温度に調節すると共に、その内側黒鉛るつぼ
内にシリコン試料を投入して、そのシリコン試料を前記
フラックス用金属に溶融させ、しかる後、前記二重黒鉛
るつぼをシリコンの融点よりも相対的に高い温度に上昇
させるように調節することによって、前記シリコン試料
中に含まれる酸素をカーボンと結合したガスとして抽出
し、(iv)そして、前記抽出されたガスをガス濃度分
析系へ導いて、そのガス濃度を検出することにより、前
記シリコン試料中に含まれる酸素の量を測定する、 という手順を採用した点に特徴がある。
即ち、上記本発明に係るシリコン中酸素測定方法は、基
本的には、前述したように簡便かつ迅速な測定を行える
従来の加熱融解式ガス抽出分析方法を応用したものであ
るが、シリコン試料を加熱融解して酸素ガスを抽出する
ための手段として、従来の一重型の黒鉛るつぼをそのま
ま使用するのでは無く、通電して発熱させることにより
直接的に温度調節可能とされた(つまり、電流が流れる
)外側黒鉛るつぼと、その外側黒鉛るつぼ内に収容され
て間接的に温度調節可能とされた内側黒鉛るつぼ(これ
には電流は殆ど流れない)とから成る二重黒鉛るつぼを
用い、その内側黒鉛るつぼ内にシリコン試料を投入する
ようにしたから、先に説明した一重黒鉛るつぼを用いた
場合に生じる問題くア〉(ブランクガスの発生やるつぼ
の損傷)は生じない、何故ならば、たとえ内側黒鉛るつ
ぼが、c+5t−stc なる反応を起こして局部的に変質部分(SiC部分)が
生じたとしても、その内側黒鉛るつぼには殆ど電流が流
れないから、前記−重黒鉛るつぼのように局所的に異常
な高温に加熱されることが無いからである。
本的には、前述したように簡便かつ迅速な測定を行える
従来の加熱融解式ガス抽出分析方法を応用したものであ
るが、シリコン試料を加熱融解して酸素ガスを抽出する
ための手段として、従来の一重型の黒鉛るつぼをそのま
ま使用するのでは無く、通電して発熱させることにより
直接的に温度調節可能とされた(つまり、電流が流れる
)外側黒鉛るつぼと、その外側黒鉛るつぼ内に収容され
て間接的に温度調節可能とされた内側黒鉛るつぼ(これ
には電流は殆ど流れない)とから成る二重黒鉛るつぼを
用い、その内側黒鉛るつぼ内にシリコン試料を投入する
ようにしたから、先に説明した一重黒鉛るつぼを用いた
場合に生じる問題くア〉(ブランクガスの発生やるつぼ
の損傷)は生じない、何故ならば、たとえ内側黒鉛るつ
ぼが、c+5t−stc なる反応を起こして局部的に変質部分(SiC部分)が
生じたとしても、その内側黒鉛るつぼには殆ど電流が流
れないから、前記−重黒鉛るつぼのように局所的に異常
な高温に加熱されることが無いからである。
また、シリコン試料を内側黒鉛るつぼ内へ投入するに先
立って、二重黒鉛るつぼ自体の脱ガス処理を行うことは
勿論、フラックス用金属の脱ガス処理をも行うようにし
たので、特に高純度のフラックス用金属を準備しなくて
も、そのフラックス用金属自体の含有する酸素が測定誤
差の要因となることを確実に防止できるため、通常グレ
ードの金属を使用しても前述の問題〈イ〉も解消するこ
とができ、経済的に有利である。
立って、二重黒鉛るつぼ自体の脱ガス処理を行うことは
勿論、フラックス用金属の脱ガス処理をも行うようにし
たので、特に高純度のフラックス用金属を準備しなくて
も、そのフラックス用金属自体の含有する酸素が測定誤
差の要因となることを確実に防止できるため、通常グレ
ードの金属を使用しても前述の問題〈イ〉も解消するこ
とができ、経済的に有利である。
更にまた、前記゛二重黒鉛るつぼをシリコンの融点付近
の温度に311節した状態でシリコン試料を投入して、
そのシリコン試料を前記フラックス用金属に熔融させ、
しかる後、前記二重黒鉛るつぼをシリコンの融点よりも
相対的に高い温度に上昇させるよ、というように、ガス
抽出時における二重黒鉛るつぼの温度を二段階に制御す
るようにしたことにより、シリコン試料の急激な蒸発や
、それに伴うゲッタ効果による測定誤差の発生を殆ど生
じることが無く、これにより、前述の問題くつ〉も解消
することができる。
の温度に311節した状態でシリコン試料を投入して、
そのシリコン試料を前記フラックス用金属に熔融させ、
しかる後、前記二重黒鉛るつぼをシリコンの融点よりも
相対的に高い温度に上昇させるよ、というように、ガス
抽出時における二重黒鉛るつぼの温度を二段階に制御す
るようにしたことにより、シリコン試料の急激な蒸発や
、それに伴うゲッタ効果による測定誤差の発生を殆ど生
じることが無く、これにより、前述の問題くつ〉も解消
することができる。
かくして、以上の各作用の相乗により、極めて精度の良
い測定を、非常に簡便かつ迅速に(前記二次イオン質量
分析法の場合に比べて1710ないし1/20程度の所
要時間で)操作性良く行うことができるようになったの
である。
い測定を、非常に簡便かつ迅速に(前記二次イオン質量
分析法の場合に比べて1710ないし1/20程度の所
要時間で)操作性良く行うことができるようになったの
である。
以下、本発明に係るシリコン中酸素測定方法の具体的な
一実施例について、第1図くイ〉〜くハ〉に示す手順の
流れ図、ならびに、第1図く二〉〜くホ〉に示するつぼ
内温度、−酸化炭素ガス発生量、検出出力のタイムヒス
トリーを表すグラフを参照しながら説明する。
一実施例について、第1図くイ〉〜くハ〉に示す手順の
流れ図、ならびに、第1図く二〉〜くホ〉に示するつぼ
内温度、−酸化炭素ガス発生量、検出出力のタイムヒス
トリーを表すグラフを参照しながら説明する。
なお、第1図くイ〉〜くハ〉は、夫々、本発明方法を適
用して構成されるシリコン中酸素測定システムの要部で
ある加熱融解式ガス抽出装置部分Xを示している。
用して構成されるシリコン中酸素測定システムの要部で
ある加熱融解式ガス抽出装置部分Xを示している。
即ち、lは基台であって、フラックス用金属Mの投入口
2および落下通路3、ならびに、シリコン試料Sの投入
口4および落下通路5を備えていると共に、前記投入口
2と落下通路3との間、および、投入口4および落下通
路5との間には、夫々、保持/落下切換部材6.7(こ
の例では回転方式のものを採用しているが、スライド方
式等種々の構造のわのがある)が設けられている。また
、Aは、前記基台1の下側に装着された電極であって、
前記両落下通路3.5に連通ずる落下通路8を備えてい
ると共に、その落下通路8の下端部には、二重型の黒鉛
るつぼCが、前記電極Aともうひとつの電極Bとで圧着
挟持される状態で設けられている。この二重黒鉛るつぼ
Cは、前記両電極A、B間に通電して発熱させることに
より直接的に温度調節可能とされた外側黒鉛るつぼ9と
、その外側黒鉛るつぼ9内に収容されて間接的に温度調
節可能とされた内側黒鉛るつぼlOとで構成されている
。つまり、外側黒鉛るつぼ9には電流が流れるが、内側
黒鉛るつぼlOには電流は殆ど流れないようになってい
る。
2および落下通路3、ならびに、シリコン試料Sの投入
口4および落下通路5を備えていると共に、前記投入口
2と落下通路3との間、および、投入口4および落下通
路5との間には、夫々、保持/落下切換部材6.7(こ
の例では回転方式のものを採用しているが、スライド方
式等種々の構造のわのがある)が設けられている。また
、Aは、前記基台1の下側に装着された電極であって、
前記両落下通路3.5に連通ずる落下通路8を備えてい
ると共に、その落下通路8の下端部には、二重型の黒鉛
るつぼCが、前記電極Aともうひとつの電極Bとで圧着
挟持される状態で設けられている。この二重黒鉛るつぼ
Cは、前記両電極A、B間に通電して発熱させることに
より直接的に温度調節可能とされた外側黒鉛るつぼ9と
、その外側黒鉛るつぼ9内に収容されて間接的に温度調
節可能とされた内側黒鉛るつぼlOとで構成されている
。つまり、外側黒鉛るつぼ9には電流が流れるが、内側
黒鉛るつぼlOには電流は殆ど流れないようになってい
る。
さて、上記加熱融解式ガス抽出装置部分Xを有するシリ
コン中酸素測定システムにより実行される本発明方法の
手順は下記の通りである。
コン中酸素測定システムにより実行される本発明方法の
手順は下記の通りである。
(i)先ず、第1図くイ〉に示すように、二重黒鉛るつ
ぼCにはフラックス用金属Mもシリコン試料Sも投入し
ない空の状態で、前記両電極A、 B間に通電して、そ
の二重黒鉛るつぼC全体を所定の高温度に加熱すること
により(第1図く二〉に示すように、略2800〜30
00℃程度とするのが適当である)、その二重黒鉛るつ
ぼC自体の脱ガス処理を行う、これにより、第1図くホ
〉に示すように、内側黒鉛るつぼ1a内には、二重黒鉛
るつぼC自体に含まれていた酸素が一酸化炭素ガスとし
て抽出されるが、この−酸化炭素ガスは分析系(ここで
は図示していない)へは導かれること無く系外へ排出さ
れ、るため、第1図くべ〉から明らかなように検出され
ない。
ぼCにはフラックス用金属Mもシリコン試料Sも投入し
ない空の状態で、前記両電極A、 B間に通電して、そ
の二重黒鉛るつぼC全体を所定の高温度に加熱すること
により(第1図く二〉に示すように、略2800〜30
00℃程度とするのが適当である)、その二重黒鉛るつ
ぼC自体の脱ガス処理を行う、これにより、第1図くホ
〉に示すように、内側黒鉛るつぼ1a内には、二重黒鉛
るつぼC自体に含まれていた酸素が一酸化炭素ガスとし
て抽出されるが、この−酸化炭素ガスは分析系(ここで
は図示していない)へは導かれること無く系外へ排出さ
れ、るため、第1図くべ〉から明らかなように検出され
ない。
(11)次に、二重黒鉛るつぼCを所定の温度に低下さ
せるように調節すると共に(第1図く二〉に示すように
、略2500〜2700℃程度とするのが適当である)
、第1図く口〉に示すように、前記フラックス用金属M
用の回転部材6を操作して、その内側黒鉛るつぼ10内
にフラックス用金属M(シリコン試料Sが0.1〜0.
7gに対して、0.3〜1.5gのニッケルと0〜2.
0gのスズ:この例では好適例として、略0.3gのシ
リコン試料Sに対して、0.5gのニッケルと1.0g
のスズを用いた)を投入することにより、そのフラック
ス用金属Mを加熱溶融してその脱ガス処理を行う、これ
により、第1図くホ〉に示すように、内側黒鉛るつぼ1
0内には、フラックス用金属Mに含まれていた酸素が一
酸化炭素ガスとして抽出されるが、この−酸化炭素ガス
も分析系へは導かれること無く系外へ排出されるため、
やはり第1図くへ〉から明らかなように検出されない。
せるように調節すると共に(第1図く二〉に示すように
、略2500〜2700℃程度とするのが適当である)
、第1図く口〉に示すように、前記フラックス用金属M
用の回転部材6を操作して、その内側黒鉛るつぼ10内
にフラックス用金属M(シリコン試料Sが0.1〜0.
7gに対して、0.3〜1.5gのニッケルと0〜2.
0gのスズ:この例では好適例として、略0.3gのシ
リコン試料Sに対して、0.5gのニッケルと1.0g
のスズを用いた)を投入することにより、そのフラック
ス用金属Mを加熱溶融してその脱ガス処理を行う、これ
により、第1図くホ〉に示すように、内側黒鉛るつぼ1
0内には、フラックス用金属Mに含まれていた酸素が一
酸化炭素ガスとして抽出されるが、この−酸化炭素ガス
も分析系へは導かれること無く系外へ排出されるため、
やはり第1図くへ〉から明らかなように検出されない。
(iii )続いて、二重黒鉛るつぼCをシリコンの融
点付近の温度に低下させるように調節すると共に(第1
図く二〉に示すように、略1400〜1600℃程度と
するのが適当である)、第1図〈ハ〉に示すように、前
記シリコン試料用の切換部材7を操作して、その内側黒
鉛るつぼ10内にシリコン試料S(前記したように0.
3g)を投入し、そのシリコン試料Sを前記フランクス
用金KMに溶融させ、しかる後、二重黒鉛るつぼCをシ
リコンの融点よりも相対的に高い温度に上昇させるよう
に調節することにより(第1図く二〉に示すように、略
2300〜2500℃程度とするのが適当である)、前
記シリコン試料S中に含まれる酸素を一酸化炭素ガスと
して抽出する。
点付近の温度に低下させるように調節すると共に(第1
図く二〉に示すように、略1400〜1600℃程度と
するのが適当である)、第1図〈ハ〉に示すように、前
記シリコン試料用の切換部材7を操作して、その内側黒
鉛るつぼ10内にシリコン試料S(前記したように0.
3g)を投入し、そのシリコン試料Sを前記フランクス
用金KMに溶融させ、しかる後、二重黒鉛るつぼCをシ
リコンの融点よりも相対的に高い温度に上昇させるよう
に調節することにより(第1図く二〉に示すように、略
2300〜2500℃程度とするのが適当である)、前
記シリコン試料S中に含まれる酸素を一酸化炭素ガスと
して抽出する。
(1v)これにより、第1図〈ホ〉に示すように、内側
黒鉛るつぼ10内には、シリコン試料S中に含まれてい
た酸素が一酸化炭素ガス(測定対象ガス)として抽出さ
れるので、ガスラインを切り換えることにより、その抽
出された測定対象ガスである一酸化炭素ガスを、例えば
非分散型赤外線分析計などで構成されるガス濃度分析計
や熱伝導度計(公知であるため図示していない)へ導け
ば、第1図〈へ〉に示すようにその一酸化炭素濃度が検
出されて、前記シリコン試料S中に含まれる酸素の量が
測定されるのである。
黒鉛るつぼ10内には、シリコン試料S中に含まれてい
た酸素が一酸化炭素ガス(測定対象ガス)として抽出さ
れるので、ガスラインを切り換えることにより、その抽
出された測定対象ガスである一酸化炭素ガスを、例えば
非分散型赤外線分析計などで構成されるガス濃度分析計
や熱伝導度計(公知であるため図示していない)へ導け
ば、第1図〈へ〉に示すようにその一酸化炭素濃度が検
出されて、前記シリコン試料S中に含まれる酸素の量が
測定されるのである。
なお、前記−酸化炭素ガスを更に酸化させて二酸化炭素
ガスに変換し、その二酸化炭素ガス濃度を測定するよう
にしてもよく、それは分析計との関連で適宜アレンジ可
能である。
ガスに変換し、その二酸化炭素ガス濃度を測定するよう
にしてもよく、それは分析計との関連で適宜アレンジ可
能である。
以上詳述したところから明らかなように、本発明に係る
シリコン中酸素測定方法によれば、基本的には、従来の
金属中ガス分析方法である加熱融解式ガス抽出分析方法
という、非常に簡便かつ迅速な測定を行える方法を応用
する一方、それをシリコン試料に適用した場合に生じる
種々の特殊な問題を克服・解消するために、シリコン試
料を加熱熔融してそれに含有される酸素をカーボンと結
合したガスとして抽出するための手段として、通電して
発熱させることにより直接的に温度調節可能とされた外
側黒鉛るつぼと、その外側黒鉛るつぼ内に収容されて間
接的に温度調節可能とされた内側黒鉛るつぼ(これには
電流は殆ど流れない)とから成る二重黒鉛るつぼを用い
るとか、シリコン試料を内側黒鉛るつぼ内へ投入するに
先立って、二重黒鉛るつぼ自体の脱ガス処理を行うこと
は勿論、フランクス用金属の脱ガス処理をも行うように
するとか、ガス抽出時における二重黒鉛るつぼの温度を
二段階に制御するようにする、といった各種の創意工夫
を加えるようにしたことにより、たとえ赤外域不透明な
シリコン試料を測定対象とする場合でも十分に適用でき
ると共に、シリコン試料中に含まれる酸素の量を極めて
簡便かつ迅速にしかも非常に精度良く測定できるように
なり、以って、簡易な工業用の管理分析法として極めて
好適に利用できる、という優れた効果が発揮されるに至
った。
シリコン中酸素測定方法によれば、基本的には、従来の
金属中ガス分析方法である加熱融解式ガス抽出分析方法
という、非常に簡便かつ迅速な測定を行える方法を応用
する一方、それをシリコン試料に適用した場合に生じる
種々の特殊な問題を克服・解消するために、シリコン試
料を加熱熔融してそれに含有される酸素をカーボンと結
合したガスとして抽出するための手段として、通電して
発熱させることにより直接的に温度調節可能とされた外
側黒鉛るつぼと、その外側黒鉛るつぼ内に収容されて間
接的に温度調節可能とされた内側黒鉛るつぼ(これには
電流は殆ど流れない)とから成る二重黒鉛るつぼを用い
るとか、シリコン試料を内側黒鉛るつぼ内へ投入するに
先立って、二重黒鉛るつぼ自体の脱ガス処理を行うこと
は勿論、フランクス用金属の脱ガス処理をも行うように
するとか、ガス抽出時における二重黒鉛るつぼの温度を
二段階に制御するようにする、といった各種の創意工夫
を加えるようにしたことにより、たとえ赤外域不透明な
シリコン試料を測定対象とする場合でも十分に適用でき
ると共に、シリコン試料中に含まれる酸素の量を極めて
簡便かつ迅速にしかも非常に精度良く測定できるように
なり、以って、簡易な工業用の管理分析法として極めて
好適に利用できる、という優れた効果が発揮されるに至
った。
第1図は本発明に係るシリコン中酸素測定方法の具体的
な一実施例を説明するためのものであって、第1図くイ
〉〜〈ハ〉は手順の流れ図を、そして、第1図〈二〉〜
<八〉は夫々るつぼ内温度。 −酸化炭素ガス発生量、検出出力のタイムヒストリーを
表すグラフを示している。 また、第2図は従来技術の問題点ならびに本発明の技術
的背景を説明するためのものであって、従来一般の加熱
融解方式による金属中ガス抽出分析方法の説明図を示し
ている。 A・・・・・・・・・電極、 B・・・・・・・・・電極、 C・・・・・・・・・二重黒鉛るつぼ、M・・・・・・
・・・フランクス用金属、S・・・・・・・・・シリコ
ン試料、 X・・・・・・・・・加熱融解式ガス抽出装置部分、1
・・・・・・・・・基台、 2・・・・・・・・・フラックス用金属の投入口、3・
・・・・・・・・フラックス用金属の落下通路3.4・
・・・・・・・・シリコン試料の投入口1.5・・・・
・・・・・シリコン試料の落下通路5.6・・・・・・
・・・フラックス用金属の保持/落下切換部材、 7・・・・・・・・・シリコン試料の保持/落下切換部
材、 8・・・・・・・・・落下通路、 9・・・・・・・・・外側黒鉛るつぼ、lO・・・・・
・内側黒鉛るつぼ。
な一実施例を説明するためのものであって、第1図くイ
〉〜〈ハ〉は手順の流れ図を、そして、第1図〈二〉〜
<八〉は夫々るつぼ内温度。 −酸化炭素ガス発生量、検出出力のタイムヒストリーを
表すグラフを示している。 また、第2図は従来技術の問題点ならびに本発明の技術
的背景を説明するためのものであって、従来一般の加熱
融解方式による金属中ガス抽出分析方法の説明図を示し
ている。 A・・・・・・・・・電極、 B・・・・・・・・・電極、 C・・・・・・・・・二重黒鉛るつぼ、M・・・・・・
・・・フランクス用金属、S・・・・・・・・・シリコ
ン試料、 X・・・・・・・・・加熱融解式ガス抽出装置部分、1
・・・・・・・・・基台、 2・・・・・・・・・フラックス用金属の投入口、3・
・・・・・・・・フラックス用金属の落下通路3.4・
・・・・・・・・シリコン試料の投入口1.5・・・・
・・・・・シリコン試料の落下通路5.6・・・・・・
・・・フラックス用金属の保持/落下切換部材、 7・・・・・・・・・シリコン試料の保持/落下切換部
材、 8・・・・・・・・・落下通路、 9・・・・・・・・・外側黒鉛るつぼ、lO・・・・・
・内側黒鉛るつぼ。
Claims (1)
- 【特許請求の範囲】 シリコン試料中に含まれる酸素の量を測定するための方
法であって、 (i)通電して発熱させることにより直接的に温度調節
可能とされた外側黒鉛るつぼと、 その外側黒鉛るつぼ内に収容されて間接的 に温度調節可能とされた内側黒鉛るつぼと から成る二重黒鉛るつぼを、先ず、所定の 高温度に加熱することにより、その二重黒 鉛るつぼ自体の脱ガス処理を行い、 (ii)次に、前記二重黒鉛るつぼを所定の温度に調節
すると共に、その内側黒鉛るつぼ内 にフラックス用金属を投入して、そのフラ ックス用金属の脱ガス処理を行い、 (iii)続いて、前記二重黒鉛るつぼをシリコンの融
点付近の温度に調節すると共に、その 内側黒鉛るつぼ内にシリコン試料を投入し て、そのシリコン試料を前記フラックス用 金属に溶融させ、しかる後、前記二重黒鉛 るつぼをシリコンの融点よりも相対的に高 い温度に上昇させるように調節することに よって、前記シリコン試料中に含まれる酸 素をカーボンと結合したガスとして抽出し、(iv)そ
して、前記抽出されたガスをガス濃度分析系へ導いて、
そのガス濃度を検出する ことにより、前記シリコン試料中に含まれ る酸素の量を測定する、 という手順によることを特徴とするシリコン中酸素測定
方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047086A JPS63212838A (ja) | 1987-02-28 | 1987-02-28 | シリコン中酸素測定方法 |
US07/157,852 US4800747A (en) | 1987-02-28 | 1988-02-18 | Method of measuring oxygen in silicon |
EP88102928A EP0281037B1 (en) | 1987-02-28 | 1988-02-26 | Method of measuring oxygen in silicon |
DE88102928T DE3881233T2 (de) | 1987-02-28 | 1988-02-26 | Verfahren zur Messung des Sauerstoffsgehaltes in Silizium. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047086A JPS63212838A (ja) | 1987-02-28 | 1987-02-28 | シリコン中酸素測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63212838A true JPS63212838A (ja) | 1988-09-05 |
JPH0513569B2 JPH0513569B2 (ja) | 1993-02-22 |
Family
ID=12765366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62047086A Granted JPS63212838A (ja) | 1987-02-28 | 1987-02-28 | シリコン中酸素測定方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US4800747A (ja) |
EP (1) | EP0281037B1 (ja) |
JP (1) | JPS63212838A (ja) |
DE (1) | DE3881233T2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013190403A (ja) * | 2012-03-15 | 2013-09-26 | Toshiba Corp | 不純物分析装置及び方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139958A (en) * | 1991-09-24 | 1992-08-18 | The United States Of America As Represented By The United States Department Of Energy | Method and device for the determination of low concentrations of oxygen in carbonaceous materials |
FR2683044A1 (fr) * | 1991-10-29 | 1993-04-30 | Unirec | Procede et dispositif pour analyser par decomposition thermique fractionnee au moins un compose inclusionnaire d'un corps. |
US5288645A (en) * | 1992-09-04 | 1994-02-22 | Mtm Engineering, Inc. | Hydrogen evolution analyzer |
DE19906732A1 (de) * | 1999-02-18 | 2000-08-24 | Forschungszentrum Juelich Gmbh | Verfahren und Vorrichtung zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen |
KR20010061277A (ko) * | 1999-12-28 | 2001-07-07 | 이 창 세 | 기체투과막을 이용한 전도도 측정법에 의한 실리콘웨이퍼의 산소 농도 측정 장치 및 그 장치에 의한 측정방법 |
CN111965129A (zh) * | 2020-08-05 | 2020-11-20 | 西安奕斯伟硅片技术有限公司 | 测量单晶硅间隙氧含量的方法及装置 |
CN111912811B (zh) * | 2020-08-05 | 2023-07-25 | 西安奕斯伟材料科技有限公司 | 测量单晶硅中元素含量的方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59193997U (ja) * | 1983-06-11 | 1984-12-22 | 株式会社 堀場製作所 | 黒鉛るつぼ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2964389A (en) * | 1958-08-15 | 1960-12-13 | Titanium Metals Corp | Apparatus for determination of oxygen in metals |
US3293902A (en) * | 1963-10-25 | 1966-12-27 | Bendix Balzers Vacuum Inc | Apparatus for determining the gas content of metal samples |
CH530003A (de) * | 1970-07-15 | 1972-10-31 | Balzers Patent Beteilig Ag | Zwischen zwei Stromzuführungselektroden einspannbare, durch direkten Stromdurchgang beheizbare, aus Unterteil und Deckel bestehende Probenkapsel aus Graphit zur Untersuchung von Proben nach dem Heissextraktionsverfahren |
BE787397A (fr) * | 1971-08-12 | 1973-02-12 | Siderurgie Fse Inst Rech | Chambre de degazage |
DE2326596A1 (de) * | 1973-05-24 | 1974-12-05 | Siemens Ag | Verfahren und vorrichtung zur bestimmung von gasgehalten |
US3899627A (en) * | 1974-06-28 | 1975-08-12 | Leco Corp | Crucible |
US4098576A (en) * | 1976-06-29 | 1978-07-04 | National Steel Corporation | Method for analyzing the latent gas content of metal samples |
JPH068813B2 (ja) * | 1985-12-05 | 1994-02-02 | 動力炉・核燃料開発事業団 | 核燃料酸化物の酸素対金属原子数比の測定方法 |
-
1987
- 1987-02-28 JP JP62047086A patent/JPS63212838A/ja active Granted
-
1988
- 1988-02-18 US US07/157,852 patent/US4800747A/en not_active Expired - Fee Related
- 1988-02-26 EP EP88102928A patent/EP0281037B1/en not_active Expired - Lifetime
- 1988-02-26 DE DE88102928T patent/DE3881233T2/de not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59193997U (ja) * | 1983-06-11 | 1984-12-22 | 株式会社 堀場製作所 | 黒鉛るつぼ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013190403A (ja) * | 2012-03-15 | 2013-09-26 | Toshiba Corp | 不純物分析装置及び方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH0513569B2 (ja) | 1993-02-22 |
US4800747A (en) | 1989-01-31 |
EP0281037A3 (en) | 1990-03-21 |
EP0281037A2 (en) | 1988-09-07 |
DE3881233D1 (de) | 1993-07-01 |
EP0281037B1 (en) | 1993-05-26 |
DE3881233T2 (de) | 1993-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63212838A (ja) | シリコン中酸素測定方法 | |
CN103604823A (zh) | 铁矿石中钾钠铅锌含量的测定方法 | |
CN110196275A (zh) | 一种用于激光剥蚀系统的高温实时样品池及其检测方法 | |
CN108414558A (zh) | 一种用于x射线荧光谱分析法测定铬铁化学成分的熔融制样方法 | |
JP3663774B2 (ja) | 金属中微量酸素の分析方法および装置 | |
JPH0321867A (ja) | 金属中のガス成分を分析する方法および装置 | |
Li et al. | Determination of the platinum group elements in geological samples by ICP-MS after NiS fire assay and Te coprecipitation: ultrasound-assisted extraction of PGEs from Te precipitate | |
Kratzer et al. | Stibine and bismuthine trapping in quartz tube atomizers for atomic absorption spectrometry. Part 2: a radiotracer study | |
CN111239172A (zh) | 一种测定煤中磷含量的方法 | |
JP2000193657A (ja) | 試料中の酸素分析方法および装置 | |
Petibon et al. | Neon inductively coupled plasma for laser ablation-inductively coupled plasma-mass spectrometry | |
Cai et al. | Quantification of lithium in molten chlorides by optical emission spectrometry using a novel molten-salt-electrode microplasma source | |
Nakamura et al. | Temperature of a W ribbon furnace in electrothermal atomic absorption spectrometry | |
Straub | Ferrous analysis | |
CN117269232A (zh) | 一种二氧化钚粉末中氮含量测定的分析方法 | |
Umezawa | Impurities analysis of high purity niobium in industrial production | |
Pargeter et al. | Direct oxygen determination in commercial steelmaking practice | |
CN114674856A (zh) | 一种镍铁中镍的检测方法 | |
Fricioni et al. | Inert gas fusion | |
JPH11237350A (ja) | スラグ分析方法および装置 | |
JPH05346427A (ja) | 金属中の成分分析方法およびその装置 | |
Fortier et al. | 0. ES QUALITY CONTROL OF ALUMINUM ALLOYS COMPOSITION | |
KR0143495B1 (ko) | 스텐레스 슬래그중의 질소분석방법 | |
CN118837429A (en) | Method for measuring helium content in metal material | |
CN116148309A (zh) | 一种基于热导-红外法多组合的氧氮氢联测装置及方法 |