JPS6320386B2 - - Google Patents

Info

Publication number
JPS6320386B2
JPS6320386B2 JP56122003A JP12200381A JPS6320386B2 JP S6320386 B2 JPS6320386 B2 JP S6320386B2 JP 56122003 A JP56122003 A JP 56122003A JP 12200381 A JP12200381 A JP 12200381A JP S6320386 B2 JPS6320386 B2 JP S6320386B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
manufacturing
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56122003A
Other languages
Japanese (ja)
Other versions
JPS5823482A (en
Inventor
Masahiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12200381A priority Critical patent/JPS5823482A/en
Publication of JPS5823482A publication Critical patent/JPS5823482A/en
Publication of JPS6320386B2 publication Critical patent/JPS6320386B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明はMNOS不揮発メモリの製造方法に関
する。従来MNOS素子の製造に関しては、シリ
コン酸化膜を50〜100Å形成し、その上にシリコ
ン窒化膜を500Å程度形成し、このシリコン酸化
膜とシリコン窒化膜の界面捕獲準位に、電荷をト
ラツプし、これによりしきい値電圧をシフトさせ
データを記録する不揮発メモリーとしている。と
ころが、実際のシリコン窒化膜には、多くの準位
が、膜内に広く分布するため、シリコン酸化膜を
トンネル効果で通過した、電荷(主に電子)は、
シリコン酸化膜−シリコン窒化膜界面だけでなく
このシリコン窒化膜内の準位に多くトラツプされ
る。このことは、消去時、つまり、、ゲート電極
とシリコン基板層間に、電圧を印加しても、ゲー
ト電極近傍にトラツプされている電子は、基板へ
逃げにくくなり、結果的に、消去特性の悪い不揮
発メモリーとなり、問題となつている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing MNOS nonvolatile memory. Conventionally, in the production of MNOS devices, a silicon oxide film is formed with a thickness of 50 to 100 Å, a silicon nitride film is formed with a thickness of about 500 Å on top of the silicon oxide film, and charges are trapped in the interface trap level between the silicon oxide film and the silicon nitride film. This creates a nonvolatile memory that records data by shifting the threshold voltage. However, in an actual silicon nitride film, many levels are widely distributed within the film, so the charges (mainly electrons) that pass through the silicon oxide film due to the tunnel effect are
Many traps occur not only at the silicon oxide film-silicon nitride film interface but also at levels within the silicon nitride film. This means that during erasing, even if a voltage is applied between the gate electrode and the silicon substrate layer, the electrons trapped near the gate electrode will have difficulty escaping to the substrate, resulting in poor erasing characteristics. It has become a non-volatile memory and has become a problem.

従来これらの欠点を、除く方法として、シリコ
ン酸化膜一シリコン窒化膜界面に、金属層とか、
金属酸化物層を非常に薄くコーテイングすること
が試みられているが、可動イオン等の混入がさけ
られず、ゲート電極へのリークが生じ易くなり、
信頼性に欠けるものであつた。
Conventionally, as a method to eliminate these drawbacks, a metal layer or
Attempts have been made to coat the metal oxide layer very thinly, but the incorporation of mobile ions is unavoidable and leakage to the gate electrode is likely to occur.
It lacked reliability.

そこで、本発明は、トンネル効果により、侵入
してきた電荷を、効率よくシリコン酸化膜一シリ
コン窒化膜界面に、捕獲し、しかも、従来の方法
にみられる。ゲート電極へのリークなどのない
MNOS不揮発メモリの製造方法を提供するもの
である。
Therefore, the present invention efficiently traps the invading charges at the silicon oxide film-silicon nitride film interface by the tunnel effect, which is different from the conventional method. No leakage to gate electrode
A method for manufacturing MNOS nonvolatile memory is provided.

第1図に、本発明の製造方法の一例としてNチ
ヤンネルシリコンゲートMNOSの工程断面図を
示す。P基板101に、N型不純物としてリンを
ドープしてソース、ドレイン102を形成する。
次に、シリコン酸化膜を形成後ゲート部のみエツ
チング除去し、もう一度ゲート酸化をして50Åな
いし100Åのシリコン酸化膜103を形成する。
(第1図a)次に、シリコン窒化膜104を100〜
300Å程度形成する。このシリコン窒化膜104
は、準位が膜内に多く存在させるため、割と欠陥
の多い形成方法をもつて形成する。本実施例では
気相成長法で、通常の形成方法より、低温でかつ
反応ガス圧を高く形成した。(第1図b)次に、
欠陥が逆に少ないシリコン窒化膜105を200Å
〜400Å形成する。本発明では、このシリコン窒
化膜105を、プラズマにより形成し、つまりプ
ラズマのアシストを利用したプラズマ気相成長法
によりシリコン窒化膜104よりも準位が少ない
状態、すなわち欠陥の少ない状態で形成し、さら
に欠陥を押さえるため形成後、熱処理として水素
シンタを行なつた。さらに、ゲート電極として多
結晶シリコン106を形成した。(第1図c)こ
のように、本発明では、形成方法の異なるシリコ
ン窒化膜を二層形成し、しかも、下層のシリコン
窒化膜に、多くの準位をもたせ、上層のシリコン
窒化膜は、逆に準位の少ない緻密な膜を形成する
ことにより、従来みられた、消去特性の悪さや低
信頼性を、簡単な工程の追加により、完全に取り
除けるというすぐれた方法である。
FIG. 1 shows a process cross-sectional view of an N-channel silicon gate MNOS as an example of the manufacturing method of the present invention. A source and a drain 102 are formed by doping a P substrate 101 with phosphorus as an N-type impurity.
Next, after forming a silicon oxide film, only the gate portion is removed by etching, and gate oxidation is performed again to form a silicon oxide film 103 with a thickness of 50 Å to 100 Å.
(Figure 1a) Next, the silicon nitride film 104 is
Forms about 300Å. This silicon nitride film 104
Because many levels exist in the film, they are formed using a method that involves relatively many defects. In this example, the vapor phase growth method was used to form the film at a lower temperature and at a higher reaction gas pressure than in a normal formation method. (Figure 1b) Next,
On the contrary, the silicon nitride film 105 with fewer defects is 200 Å thick.
Forms ~400 Å. In the present invention, this silicon nitride film 105 is formed by plasma, that is, by plasma vapor phase epitaxy using plasma assistance, in a state with fewer levels than the silicon nitride film 104, that is, in a state with fewer defects, Furthermore, in order to suppress defects, hydrogen sintering was performed as a heat treatment after formation. Furthermore, polycrystalline silicon 106 was formed as a gate electrode. (Fig. 1c) In this way, in the present invention, two layers of silicon nitride films are formed using different formation methods, and the lower silicon nitride film has many levels, and the upper silicon nitride film has On the contrary, by forming a dense film with few levels, this is an excellent method that completely eliminates the conventional problems of poor erasing characteristics and low reliability with the addition of a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図が、本発明の製造方法の実施例である。 FIG. 1 shows an embodiment of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 第一層シリコン窒化膜と第二層シリコン窒化
膜との二層のシリコン窒化膜を有するMNOS素
子をその構成要素とする半導体装置の製造方法に
おいて、前記第一層シリコン窒化膜を気相成長法
により形成する工程、前記第一層シリコン窒化膜
上にプラズマ気相成長法により前記第二層シリコ
ン窒化膜を形成する工程、前記第二層シリコン窒
化膜を形成する工程の後に熱処理をする工程を有
することを特徴とする半導体装置の製造方法。
1. In a method for manufacturing a semiconductor device whose component is an MNOS element having two silicon nitride films, a first silicon nitride film and a second silicon nitride film, the first silicon nitride film is grown by vapor phase growth. a step of forming the second layer silicon nitride film on the first layer silicon nitride film by a plasma vapor deposition method; a step of performing heat treatment after the step of forming the second layer silicon nitride film. A method of manufacturing a semiconductor device, comprising:
JP12200381A 1981-08-04 1981-08-04 Manufacture of semiconductor device Granted JPS5823482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12200381A JPS5823482A (en) 1981-08-04 1981-08-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12200381A JPS5823482A (en) 1981-08-04 1981-08-04 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5823482A JPS5823482A (en) 1983-02-12
JPS6320386B2 true JPS6320386B2 (en) 1988-04-27

Family

ID=14825148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12200381A Granted JPS5823482A (en) 1981-08-04 1981-08-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5823482A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506726B2 (en) * 1987-02-23 1996-06-12 松下電子工業株式会社 Method of manufacturing nonvolatile memory device
JP2718931B2 (en) * 1987-09-29 1998-02-25 松下電子工業株式会社 Method for manufacturing semiconductor memory device
US5194701A (en) * 1991-09-11 1993-03-16 N.P.L. Ltd. Speaker structure
JP2004095889A (en) 2002-08-30 2004-03-25 Fasl Japan Ltd Semiconductor storage device and its manufacturing method
JP2009182211A (en) * 2008-01-31 2009-08-13 Toshiba Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913118A (en) * 1972-06-06 1974-02-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913118A (en) * 1972-06-06 1974-02-05

Also Published As

Publication number Publication date
JPS5823482A (en) 1983-02-12

Similar Documents

Publication Publication Date Title
US6069041A (en) Process for manufacturing non-volatile semiconductor memory device by introducing nitrogen atoms
US6653683B2 (en) Method and structure for an oxide layer overlying an oxidation-resistant layer
US6309927B1 (en) Method of forming high K tantalum pentoxide Ta2O5 instead of ONO stacked films to increase coupling ratio and improve reliability for flash memory devices
JPS6231116A (en) Manufacture of semiconductor device
TWI255013B (en) Method of manufacturing a flash memory cell
JPS6320386B2 (en)
US5031010A (en) Semiconductor memory device and method of manufacturing the same
US5149666A (en) Method of manufacturing a semiconductor memory device having a floating gate electrode composed of 2-10 silicon grains
JPH05129630A (en) Production of nonvolatile semiconductor storage device
JP2002016152A (en) Manufacturing method of semiconductor device
JPH02277269A (en) Manufacture of nonvolatile memory
JPS6262070B2 (en)
JPH07297182A (en) Method of forming sin-based insulating film
JPH0227773A (en) Manufacture of nonvolatile semiconductor memory
JPH0888286A (en) Manufacture of semiconductor memory device
JPS603159A (en) Manufacture of nonvolatile memory device
JP3397804B2 (en) Manufacturing method of nonvolatile memory
JPH05129632A (en) Charge trap film
JPH02114568A (en) Manufacture of nonvolatile storage device
KR0172272B1 (en) Method of manufacturing floating gate at semiconductor
JPS624375A (en) Semiconductor device
JPH0590602A (en) Semiconductor memory cell and manufacture thereof
JPS58212180A (en) Nonvolatile memory device and manufacture thereof
JPH0817210B2 (en) Method for manufacturing semiconductor memory device
JPH03218075A (en) Manufacture of semiconductor storage device