JPS63187570A - 電池 - Google Patents

電池

Info

Publication number
JPS63187570A
JPS63187570A JP1767787A JP1767787A JPS63187570A JP S63187570 A JPS63187570 A JP S63187570A JP 1767787 A JP1767787 A JP 1767787A JP 1767787 A JP1767787 A JP 1767787A JP S63187570 A JPS63187570 A JP S63187570A
Authority
JP
Japan
Prior art keywords
metal oxide
positive electrode
carbon material
battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1767787A
Other languages
English (en)
Other versions
JPH0736332B2 (ja
Inventor
Yoshiaki Nitta
芳明 新田
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1767787A priority Critical patent/JPH0736332B2/ja
Publication of JPS63187570A publication Critical patent/JPS63187570A/ja
Publication of JPH0736332B2 publication Critical patent/JPH0736332B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極活物質として金属酸化物を、電解液とし
て水溶液あるいは、非水溶液を用いた電池の特に正極合
剤の改良に関するものである。
従来の技術 従来より、正極活物質として種々の金属酸化物が用いら
れているが、その多くは比導電率が10  ’S/cI
rLのオーダよりも低いため導電剤が必要とされている
。導電剤を添加することにより、個々の金属酸化物粒子
間に電子電導性を与えて充分な還元反応を促進させるこ
とが可能となる。一般に電池の高負荷特性を良好にする
ためには、正極合剤の比導電率は少なくとも10°S/
c!nのオーダでなければならず、このために導電剤と
してしばしば炭素材微粉末が用いられている。
ところで電池の放電性能に影響を与える原因の一つとし
て、金属酸化物と導電剤との混合状態が問題となる。即
ち、金属酸化物粉末と炭素材微粉末とが如何に均一に、
頻度よく接触しているかということである。これらの接
触頻度が低下すると、電子が充分に正極活物質に伝達供
給されない部分が生じ、結果的に未反応のまま残存する
活物質が生じる。このために正極活物質の利用率が低下
するという問題が起きてきた。
そこで従来よシ、金属酸化物に炭素材を一定量混合して
電池用正極合剤と1−て用いられていた。
又、金属酸化物の一つである二酸化マ/ガ/の粒子表面
に導電剤である黒鉛微粉末を層として形成し、電池用正
極合剤とする方法(例えば特開昭81−214362号
公報)で提案されていた。
発明が解決しようとする問題点 しかし、このように異なる二種類の粉体を単に混合した
としても両者を均一に分散させることは困難であり、異
種粉末間で互いの接触が充分に得られない。これは、前
記金属酸化物粒子と炭素材微粉末とが、比重、多孔度、
硬度などの物性面で性質が異なるからであり、これらを
単に混合しても金属酸化物同志あるいは炭素材同志が一
種の凝集現象を起こす。従ってこの場合、見かけ上、均
一に混合されたとしても微視的にみると完全な混合状態
は達成されていない。
また、粒子表面に黒鉛層を形成した二酸化マンガンを正
極合剤とすると、確かに良好な混合状態が生まれ導電剤
が電子電導のチェーンを形成して正極合剤の比導電率は
向上する。しかし、粒子表面に黒鉛層を形成すると、金
属酸化物が示す本来の電気化学的な電位が得られず、む
しろ炭素材との混成電位が観測されるため、結果的には
電池としての開路電位が低下してしまう。また、このよ
うな正極合剤を用いて高負荷放電を行うと、金属酸化物
と電解液との界面で物質移動が遅れることにより、濃度
分極が増大し、結果的に良好な放電特性が得られない。
これらの問題は、金属酸化物の粒子表面に黒鉛層を形成
したために、金属酸化物と電解液との直接的な接触が得
にくいこと、金属酸化物粒子表面に対する炭素材微粉末
の占有率が過大になり過ぎたことなどから発生したこと
による。
従って、このような正極合剤を用いると、本質的に活物
質の利用率を向上させることは困難であった。
問題点を解決するだめの手段 この発明は、上述した問題点を解決するもので、正極活
物質である金属酸化物粉末に対し、導電剤である炭素材
微粉末の平均粒径比が10 〜10であり、かつ上記金
属酸化物粉末表面上を覆う炭素材微粉末の被覆率を0.
6〜15チとして、炭素材粉末を上記金属酸化物粒子表
面上に粒子状でしかも各々の粒子を独立させて固定した
電池用正極合剤を用いるものである。
作  用 このような粒子構成により、金属酸化物粒子と炭素材微
粉末とは良好に固定化され、正極合剤の比導電率は10
0〜10’S/cmのオーダとなる。
また、金属酸化物粒子表面上の炭素材微粉末の被覆率を
過大にせず、0.5〜16%とすることで、電子電導の
チェーンは充分に形成されており、かつ電池としての開
路電位も炭素材による混成電位の影響を受けない領域で
あることが確認された。
また、高負荷放電においても優れた特性を示し、物質移
動に伴う濃度分極を抑えることが可能となった。
このような効果が得られるのは、金属酸化物の粒子表面
上に、炭素材微粉末が粒子状でしかも各々が独立して島
状に固定化されているためであり、各々の炭素材微粉末
が表面に固定化された金属酸化物粒子は、互いに接触し
ても有効な電子電導のチェーンを形成することができ、
良好な電子電導性を生みだすことができる。また、炭素
材層を金属酸化物粒子上に形成させるのとは異なって、
炭素材微粉末を金属酸化物粒子上に各々を独立させて島
状に固定化し、しかも炭素材微粉末による被覆率を0.
5〜16%とすることで金属酸化物の表面と電解液とは
直接的に接触することができ、電池としての開路電位も
炭素材過剰時に生じる炭素材との混成電位は示さない。
即ち、開路電位の低下現象は示さない。また更に、この
構成をとることで高負荷放電を行なっても過剰の炭素材
が障壁となる物質移動の遅れは発生せず、その結果濃度
分極はそれだけ抑えることが可能となる。
以上のように本発明の構成をとれば、電池の活物質利用
率を改善することが可能となる。
本発明は、このような事実に基づいて発明したものであ
り、以下その実施例について説明する。
実施例 〈実施例1〉 本発明における正極合剤は、乾燥した金属酸化物粉末と
炭素材微粉末に各々、相反する静電荷を与えて静電的な
吸着過程を施し、次いで高速で公転・自転の併合運転が
可能な混合機を用いて炭素材微粉末を金属酸化物粉末表
面に固定化して得られる。この場合、金属酸化物粒子に
対する炭素材粒子の平均粒径比を10 以下としなけれ
ば、実験的に吸着過程は成立しなかった。また、金属酸
化物粉末に対する平均粒径比が10 よりも小さい炭素
材を用いると、炭素材微粉末相互が凝集して粒子群を形
成するために、事実上、平均粒径比が大きくなったもの
とほとんど大差がなくなってしまう。従って金属酸化物
粉末に対する炭素材の平均粒径比は、10〜1o の範
囲とすることが適正である。
金属酸化物粒子表面に炭素材微粉末を粒子状で各々独立
して固定化させることは、静電的な吸着過程だけでは得
られず、後工程である公転・自転の併合運転を行う機械
的なエネルギーを利用することから得られ、炭素材によ
る被覆率は、この機械的な操作と、加える炭素材種の比
重によりコントロールされる。即ち、予め炭素材微粉末
を静電的に吸着させた金属酸化物粉末を、高速で公転運
動させ、遠心力を与えながら、更に加えて自転運動させ
、金属酸化物粒子表面に存在する炭素材微粉末を均質な
密度でしかも粒子状に各々独立させて固定化させるもの
である。炭素材の被覆率のコントロールは用いる炭素材
種の比重に大きく依存するが、上記の公転・自転の条件
を任意に選ぶことで可能となる。
以上のような条件で得られる電池用正極合剤のうち、金
属酸化物を二酸化マンガンとし、炭素材として人造黒鉛
を用いたアルカリマンガン電池用正極合剤の例を次に示
す。
平均粒径36μmの二酸化マンガン100,9と、平均
粒径0.5μmの人造黒鉛3.7gを用い、まず静電的
に両者を吸着させて仮付着を行い、次いでこれらに6倍
の重力加速度に相当する遠心力を与え、同時に100 
rpmで自転運動させて第2図の写真に示す粒子構造を
もった正極合剤を得た。第2図は、倍率1000倍に相
当する電子顕微鏡写真である。第2図かられかるように
、二酸化マンガン粒子上に存在する人造黒鉛は粒子状で
、しかも各々が独立した島状で固定化されている。この
時の黒鉛による二酸化マンガン表面の被覆率は、第2図
の写真、X線マイクロアナライザーおよび面分析法の結
果から8係であることがわかった。
なお参考のために、従来例として実施例と同種の二酸化
マンガンと同種の人造黒鉛を前記の比率で混合した場合
の正極合剤の粒子構造を第3図の写真に示す。
次に、得られた正極合剤を用いて第1図に示すアルカリ
マンガン電池を構成して開路電位の測定。
定電流放電試験を行い、黒鉛の被覆率が電池性能に及ぼ
す影響を検討した。
第1図において1は本発明による正極合剤、即ち二酸化
マンガン粒子表面に黒鉛微粉末を各々独立させて島状に
固定したものからなる。2はゲル状亜鉛負極、3はセパ
レータ、4はゲル状負極に挿入された負極集電子である
。5は正極キャップ、6は金属ケース、7は電池の外装
缶、8は樹脂封口体、9は底板である。
黒鉛による二酸化マンガン粒子表面の被覆率を0.1〜
90%と変化させて得られた正極合剤を用いた電池の開
路電位の測定結果を表1に示す。
表1゜ (測定は20’C) なお、被覆率の算出にあたっては、前述したとおり、電
子顕微鏡写真、X線マイクロアナライザー、面分析法か
ら求めた。表1から明らかなように被覆率が0.1〜1
5%では開路電位は1.582V以上であり、アルカリ
溶液中で示す本来の二酸化マンガンの電位に近い値であ
る。しかもこの範囲内で非常に安定していることを示し
ている。
なお、従来の混合法による正極合剤を用いた場合、開路
電位は1.580Vであった。
次に、20℃の環境下で前記の正極合剤を用いて1Aの
定電流放電試験を行い、正極容量に対する活物質利用率
を測定した結果を表2に示す。
表2 (終止電位は0.75V) 表2から明らかなように被覆率が0.5〜16%のもの
は利用率が30%以上となり、良好な値を示す。なお、
従来の混合法による正極合剤を用いた場合の利用率は2
5〜26%であることから、高負荷特性における本発明
の正極合剤は、従来の混合法のそれに比べて20〜26
チ利用率を改善し得る。
また、黒鉛層の形状に近似の被覆率90チのものは利用
率が17チとかなり低い値を示している。
このように黒鉛の被覆率に依存した形で活物質の利用率
に差異が生じるのは、被覆率の増加に伴う物質移動の遅
れが濃度分極をひき起こし、それ故利用率が低下するか
らである。即ち、還元反応に関与する反応・生成系の物
質移動は、その表面に存在する黒鉛層が障壁となり、反
応速度が遅れてくることに起因する。このことは、同時
に複素インピーダンス回折等でも物質移動律速の存在す
ることを見出している。
このように高負荷放電で優れた活物質利用率を示すのは
、二酸化マンガン粒子上に固定する黒鉛粉末を粒子状で
各々独立させ、しかも被覆率を特定範囲に選定したこと
によるが、この効果は軽負荷放電や間欠放電でも得られ
ることは言うまでもない。また、正極合剤に占める黒鉛
の重量比率も、被覆率に関連するが、広い被覆率の範囲
内において良好な放電特性を示すことから電池に応じた
種々の黒鉛を用いることが可能であり、例えば人造黒鉛
を使用する場合、重量百分率で2.8チまで下げること
も可能である。こうしたことから正極合剤においては活
物質の充填量を増大させることも可能であるという点で
優れた体積利得を得ることができる。
〈実施例2〉 炭素材として平均粒径0.01μmのアセチレンブラッ
クを用い、同様の手法で塩化亜鉛電解液を用いたマンガ
ン乾電池の正極合剤を炸裂し、SUM−1型のマンガン
乾電池で開路電位ならびに定電流放電試験を行った。
アセチレンブラックによる二酸化マンガン粒子表面の被
覆率を0.1〜90%と変化させて得られた正極合剤の
開路電位の測定結果を表3に示す。
表3 (測定は20℃) 表3から明らかなように、被覆率が0.1〜10%では
開路電位は1.687V以上であυ、塩化亜鉛電解液中
で示す本来の二酸化マンガンの電位に近い値である。
しかし、被覆率が40チ以上【てなると、開路電位は急
激に低下している。これは、先のアルカリ電解液中での
挙動とも類似しているが、炭素材の被覆率がある一定値
を越えると炭素材と金属酸化物との混成電位は、金属酸
化物が示す本来の電位からはずれて、それよりも低下す
るためである。
従って、二酸化マンガン粒子表面に黒鉛層を形成したも
のと近似の被覆率が90チのものは、開路電位が大幅に
低下し、結果的には利用率やエネルギー密度の低下原因
となる。
なお、従来の混合法による正極合剤を用いた場合、開路
電位は1.680Vであった。
次に、20℃の環境下で0,5 Aの定電流放電試験を
行い、正極容量に対する活物質の利用率測定結果を表4
に示す。
表4 (終止電位は0.9V ) 表4から明らかなように、被覆率が0.5〜10%のも
のは利用率が45チ以上となり良好な値を示す。なお、
従来の混合法による正極合剤を用いた場合、利用率は3
8〜39係であることから、高負荷特性における本発明
の正極合剤は、混合法による正極合剤に比べて最高で約
25チも利用率を改善した結果となる。このように高負
荷放電で優れた利用率を示すのは、実施例1で説明した
理由からであるが、同様の効果が軽負荷放電や間欠放電
でも得られることは言うまでもない。
以上、実施例1,2で説明したように本発明の二酸化マ
ンガンを活物質として用いた合剤はアルカリマンガン電
池やマンガン乾電池において、優れた電池性能を示す。
同様に他の二酸化マンガンIJチウム電池、酸化銀電池
など、金属酸化物を正画活物質とし、炭素材を導電剤と
する電池の正極合剤においても同等の効果を発揮するこ
とは、いうまでもない。ただし、金属酸化物粒子表面の
炭素材及びその被覆率−は電池によって使用する炭素材
質が異なるため、一定値に定めることはできないが、開
路電位や高負荷放電に伴う物質移動あるいは炭素材の正
極合剤に対する重量百分率などから考慮してO,S〜1
5チとすることが適正である。
発明の詳細 な説明したように、本発明による正極合剤を用いれば、
活物質利用率の高い電池を提供し得る。
また、合剤に占める炭素材の重量比率を低減させ得るこ
とから、電池の高容量化も図れるという効果が得られる
【図面の簡単な説明】
第1図は本発明の実施例におけるアルカリマンガン電池
の半断面図、第2図は本発明により得られたアルカリマ
ンガン電池用正極合剤の粒子構造を示す電子顕微鏡写真
、第3図は従来の混合法から得たアルカリマンガン電池
用正極合剤の粒子構造を示す電子顕微鏡写真である。 1・・・・・・正極合剤、2・・・・・・ゲル状負極、
3・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
  正電合剤 第3図

Claims (1)

    【特許請求の範囲】
  1. 正極活物質である金属酸化物粉末に対し、導電剤である
    炭素材微粉末の平均粒径比が10^−^1〜10^−^
    5であり、かつ金属酸化物粉末表面上を覆う炭素材微粉
    末の被覆率を0、5〜15%として、炭素材微粉末を上
    記金属酸化物粉末表面上に粒子状でしかも各々の粒子を
    独立させて固定した電池用正極合剤を用いることを特徴
    とした電池。
JP1767787A 1987-01-28 1987-01-28 電 池 Expired - Lifetime JPH0736332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1767787A JPH0736332B2 (ja) 1987-01-28 1987-01-28 電 池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1767787A JPH0736332B2 (ja) 1987-01-28 1987-01-28 電 池

Publications (2)

Publication Number Publication Date
JPS63187570A true JPS63187570A (ja) 1988-08-03
JPH0736332B2 JPH0736332B2 (ja) 1995-04-19

Family

ID=11950482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1767787A Expired - Lifetime JPH0736332B2 (ja) 1987-01-28 1987-01-28 電 池

Country Status (1)

Country Link
JP (1) JPH0736332B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
CN100370648C (zh) * 2001-01-17 2008-02-20 日清纺织株式会社 碳质材料粉末混合物,可极化电极组合物,可极化电极和双电层电容器
JP2010251221A (ja) * 2009-04-20 2010-11-04 Tosoh Corp 優れたハイレート特性を有する電解二酸化マンガン組成物
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
JP2019169405A (ja) * 2018-03-26 2019-10-03 株式会社東芝 電極、二次電池、電池パック及び車両

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517313B2 (ja) * 1998-05-14 2010-08-04 東芝電池株式会社 アルカリ電池用正極合剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
CN100370648C (zh) * 2001-01-17 2008-02-20 日清纺织株式会社 碳质材料粉末混合物,可极化电极组合物,可极化电极和双电层电容器
JP2010251221A (ja) * 2009-04-20 2010-11-04 Tosoh Corp 優れたハイレート特性を有する電解二酸化マンガン組成物
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
JP2019169405A (ja) * 2018-03-26 2019-10-03 株式会社東芝 電極、二次電池、電池パック及び車両

Also Published As

Publication number Publication date
JPH0736332B2 (ja) 1995-04-19

Similar Documents

Publication Publication Date Title
CN100428540C (zh) 一种固态复合阴极以及使用这种阴极的二次电池
JP2001527276A5 (ja)
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
US5958623A (en) Electrochemical cell employing a fine carbon additive
JPH11345607A (ja) リチウム二次電池用正極
JPS63187570A (ja) 電池
JP3541090B2 (ja) アルカリ蓄電池用正極活物質及びその製造方法
JPS6269463A (ja) アルカリ電池
JPH08167413A (ja) 非水電解液電池
JPH02262243A (ja) リチウム二次電池用正極及びその製造法
Meenakorn et al. Effects of carbon structure and mixing sequence in an expander on the capacity of negative electrodes in a traction battery
JPS63195962A (ja) 電池
JPH0256857A (ja) アルカリマンガン電池
JPH02201872A (ja) 鉛蓄電池用極板
JPH01143146A (ja) 二酸化マンガンを活物質とする電池
JPH10270017A (ja) 非水電解質電池用正極板およびそれを備えた非水電解質電池
JPH0512824B2 (ja)
JPH07235303A (ja) アルカリ蓄電池用ニッケル極およびその製造方法
JPH09320583A (ja) ニッケル極
JP3354247B2 (ja) 正極活物質層の形成方法及び二次電池用正極板
JPH0256858A (ja) 鉛蓄電池
JPH04262367A (ja) 水素吸蔵電極
JP2000149938A (ja) ニッケル正極活物質
JP2734149B2 (ja) ペースト式カドミウム負極の製造法
JPS5935360A (ja) 亜鉛極

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term