JPS63131546A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63131546A
JPS63131546A JP27774686A JP27774686A JPS63131546A JP S63131546 A JPS63131546 A JP S63131546A JP 27774686 A JP27774686 A JP 27774686A JP 27774686 A JP27774686 A JP 27774686A JP S63131546 A JPS63131546 A JP S63131546A
Authority
JP
Japan
Prior art keywords
insulating film
film
wiring
bias
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27774686A
Other languages
Japanese (ja)
Inventor
Toshimichi Iwamori
岩森 俊道
Hitoshi Kojima
均 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP27774686A priority Critical patent/JPS63131546A/en
Publication of JPS63131546A publication Critical patent/JPS63131546A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flatten an inter-layer insulating film easily and positively by using an insulating film formed through a bias-sputtering method as the inter-layer insulating film as a foundation and shaping an applied baked insulating film onto the insulating film. CONSTITUTION:First wiring layer patterns 2 consisting of aluminum are formed onto a semiconductor substrate 1, and an oxide film 3 is applied through a bias-sputtering method. The film through the bias-sputtering method is applied at that time because the shape of a depositing insulating film is easy to be flattened. S.O.G films 4 through an application baking method are cured after spin coating, and an inter-layer insulating film having the excellent flatness of the surface is acquired. Accordingly, the insulating film is shaped effectively onto the fine and complicate wiring patterns without uselessly narrowing the spaces of the wiring layers, and the films are also applied and baked into recessed sections formed by the wiring patterns of the S.O.G films positively, thus acquiring the inter-layer insulating film having a flat surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路等における多層配線間の層間絶縁膜に
係り、特に層間絶縁膜の表面の平坦化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an interlayer insulating film between multilayer interconnections in an integrated circuit or the like, and particularly to flattening the surface of an interlayer insulating film.

〔従来の技術〕[Conventional technology]

半導体集積回路の高密度化に伴ない、回路素子間の配線
パターンは微細になるとともに多層化の一途にある。そ
して微細な配線パターンを多層に配線する場合、各配線
層間の絶縁を完全にするために層間絶縁膜を介在させる
が、下履の配線層上に形成される層間絶縁膜の表面はそ
の上層に形成される配線層を確実に被着させるために平
坦にす−る必要がある。従来、平坦化された層間絶縁膜
の形成方法がいくつか提案されている。
BACKGROUND OF THE INVENTION As semiconductor integrated circuits become more densely packed, wiring patterns between circuit elements become finer and more multilayered. When wiring fine wiring patterns in multiple layers, an interlayer insulating film is interposed to ensure complete insulation between each wiring layer, but the surface of the interlayer insulating film formed on the wiring layer of the underwear is It is necessary to flatten the formed wiring layer in order to ensure reliable adhesion. Conventionally, several methods for forming a planarized interlayer insulating film have been proposed.

塗布焼成絶縁膜による方法(Spin On Glas
s法、以下SOG法)もその一つであり、第2図(a)
に示す如く配線パターン22を形成した基板21の全面
にプラズマCVD法によって形成した酸化膜23を着膜
後、溶剤に溶かしたガラス成分を回転塗布しプラズマC
VD法による酸化膜23の凹部にガラス膜を被着してか
ら焼し、S、0.G、M’A24を形成し、配線パター
ンによる凹凸をなくして平坦な絶縁膜とするものである
Method using coated and fired insulating film (Spin On Glass)
The s method (hereinafter referred to as the SOG method) is one of them, as shown in Figure 2 (a).
As shown in FIG. 2, after depositing an oxide film 23 formed by plasma CVD on the entire surface of the substrate 21 on which the wiring pattern 22 is formed, a glass component dissolved in a solvent is spin-coated and plasma C.
A glass film is deposited on the concave portion of the oxide film 23 by the VD method, and then baked, followed by S, 0. G and M'A24 are formed to eliminate unevenness caused by the wiring pattern and to form a flat insulating film.

また、バ・イアス・スパッタ法はターゲットと基板の間
にバイアスをかけてスパッタリングを行い  ゛ターゲ
ットから励起された絶縁膜イオンを基板上に直接被着す
るもので、第3図(alに示す如く堆積する絶縁膜33
は配線パターン32の周りに均一に准禎せずに基板や配
線層上に堆積し特に配線層上ではテーパ角θを持つ山型
に堆積する。そのため配線層間の溝が狭められにくく、
またスパッタリングの条件により表面の平坦化が容易に
行える(例えばV L S I 5ynp’83.Te
chnical Digest。
In addition, the bias sputtering method performs sputtering by applying a bias between the target and the substrate, and the insulating film ions excited from the target are directly deposited on the substrate, as shown in Figure 3 (al). Insulating film 33 to be deposited
It is not uniformly distributed around the wiring pattern 32 and is deposited on the substrate and the wiring layer, and especially on the wiring layer, it is deposited in the shape of a mountain with a taper angle θ. Therefore, the groove between wiring layers is difficult to narrow,
In addition, the surface can be easily flattened depending on the sputtering conditions (for example, VLSI 5ynp'83.Te
Chnical Digest.

P100〜101参照)。(See pages 100-101).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこれらの従来の方法では配線パターンが微細化
しその形状も複雑になるにつれて次のような不都合が存
在する。
However, these conventional methods have the following disadvantages as wiring patterns become finer and their shapes become more complex.

即ち、塗布焼成酸化膜による方法は、非常に容易に短時
間で層間絶縁膜の平坦化が行われるが、第2図(blに
示す如く、配線パターンの間隔dがサブミクロンオーダ
のように微細化すると、プラズマ酸化膜23の間の溝2
3′の間隔d′もさらに微細化され狭くかつ急峻になる
ためS、O,G。
In other words, the method using a coated and fired oxide film can planarize the interlayer insulating film very easily and in a short time. When the groove 2 between the plasma oxide films 23
The interval d' between 3' and 3' is further refined and becomes narrower and steeper, so S, O, G.

JI924が微細な溝に付着せずその部分の平坦化が行
われなくなるという問題点が生じる。
A problem arises in that the JI924 does not adhere to the fine grooves and that part cannot be flattened.

またバイアス・スパッタ法による方法は配線パターンが
微細化してもスパッタ膜は角度を持って配線パターン上
に主に被膜され時間をかければその表面も十分に平坦化
することができるが、完全に平坦化するのに時間がかか
りすぎ処理能力が小さい上、第3図(blに示す如く、
配線パターン32.32′の幅が異なる場合平坦化され
る膜厚H1、H2が異なり電源部分算バクーン幅の広い
配線部分を有するものに対しては平坦化が完了するまで
の時間が長くなるとともに膜厚Hも厚(なる。また途中
で着膜をやめると第3図(C)の如くエツジ33′のあ
る表面が残り、次に形成する上層の配線パターンの信頼
性がそこなわれる。さらに着膜速度を早くするために電
界を強くすると基板31を直接スパックする励起された
イオンのエネルギーが高(なり基板31中に予め形成さ
れているトランジスタ等の素子の特性にも影響し、トラ
ンジスタのしきい値電圧(vth)がシフトしたりリー
ク電流が増加する等の問題が生じる。
In addition, with the method using bias sputtering, even if the wiring pattern becomes finer, the sputtered film is mainly coated on the wiring pattern at an angle, and the surface can be sufficiently flattened over time, but it is not completely flat. It takes too much time to convert into
When the wiring patterns 32 and 32' have different widths, the film thicknesses H1 and H2 to be flattened will differ, and if the power supply part has a wiring part with a wide back width, it will take a longer time to complete the flattening. The film thickness H also becomes thicker. Also, if the film deposition is stopped midway, a surface with an edge 33' will remain as shown in FIG. If the electric field is strengthened to increase the deposition rate, the energy of the excited ions that directly spackle the substrate 31 will be high (this will also affect the characteristics of elements such as transistors that are pre-formed in the substrate 31, causing Problems such as a shift in threshold voltage (vth) and an increase in leakage current arise.

従って本発明の目的は前記問題点を解決するために微細
かつ複雑な配線パターンをもつ多層配線構造の層間絶縁
膜の表面を短時間で確実に平坦化することの出来る層間
絶縁膜を持つ半導体装置を提供するものである。
Therefore, an object of the present invention is to provide a semiconductor device having an interlayer insulating film that can reliably flatten the surface of the interlayer insulating film in a multilayer wiring structure having a fine and complicated wiring pattern in a short time in order to solve the above-mentioned problems. It provides:

C問題点を解決するための手段及び作用〕本発明は第1
の配線層を形成した基板上にバイアス・スパック法によ
って形成した絶縁膜を着膜してから塗布焼成法によるS
、O,G、膜を回転塗布後キユアリングを行い表面の平
坦度の良好な層間絶縁膜を得るものである。
Means and operation for solving problem C] The present invention is directed to the first
An insulating film is formed by a bias spacing method on a substrate on which a wiring layer has been formed, and then S is deposited by a coating and baking method.
, O, G, and films are spin-coated and then cured to obtain an interlayer insulating film with good surface flatness.

第1の配線層上にまずバイアス・スパッタ法による絶縁
膜を着膜することにより微細かつ複雑な配線バクーン上
にその配線層の間隔をいたずらに狭めることなく有効に
絶縁膜が形成されるので次に形成されるS、O,G、 
膜が配線パターンによって出来る凹部にも確実に塗布焼
成され、表面の平坦な層間絶縁膜を得ることができる。
By first depositing an insulating film on the first wiring layer using a bias sputtering method, the insulating film is effectively formed on the fine and complicated wiring layer without unnecessarily narrowing the spacing between the wiring layers. S, O, G formed in
The film is reliably coated and baked even in the recesses formed by the wiring pattern, and an interlayer insulating film with a flat surface can be obtained.

〔実施例〕〔Example〕

本発明の実施例を第1図について説明する。 An embodiment of the invention will be described with reference to FIG.

第1図は本発明の層間絶縁膜の形成工程を示す説明図で
あって、まず予めトランジスタ等の回路素子を形成する
半導体基板1上に設計に従ってアルミニウムから成る第
1の配線層パターン2を形成する。この基板1上にバイ
アス・スパッタ法により酸化膜3を着膜する。例えばR
Fパワー2゜5KW、アルゴンガス圧力10X10=I
−ル、バイアス−80Vの条件で着膜すると配線パター
ン上に推稍する酸化膜のテーパー角θは約55°となる
(第1図(a))。ここでバイアス・スパッタ法による
膜を被着するのは堆積する絶縁膜の形状が平坦化し易い
ためで、バイアスを印加しないスパッタリング等の方法
で酸化膜を形成すると配線層の周りに均一に酸化膜が形
成され、酸化膜の溝の底部の幅d′は配線間隔dよりか
なり小さくなり後の工程の3.0.G、膜の塗布の嵌溝
の中に該S、O,G、MJが付着しにくくなり層間絶縁
膜の平坦度が悪くなる。またバイアスの印加を大きくす
ると堆積した酸化膜のエツジのチルパー角θが小さくな
りS、O,G、膜形成工程後の平坦度は良くなるが、基
板1へのイオンのスパッタリングによって、予め基板1
に形成されている回路素子への影響が大きくなるためテ
ーパー角は60’位になるようにスパッタリングの条件
を設定する。
FIG. 1 is an explanatory diagram showing the process of forming an interlayer insulating film according to the present invention. First, a first wiring layer pattern 2 made of aluminum is formed according to a design on a semiconductor substrate 1 on which circuit elements such as transistors are to be formed. do. An oxide film 3 is deposited on this substrate 1 by bias sputtering. For example, R
F power 2゜5KW, argon gas pressure 10X10=I
When the film is deposited under the conditions of -80 V and -80 V bias, the taper angle θ of the oxide film formed on the wiring pattern is about 55° (FIG. 1(a)). The reason why the film is deposited using the bias sputtering method is that the shape of the deposited insulating film tends to be flattened.If the oxide film is formed using a method such as sputtering that does not apply a bias, the oxide film will be uniformly formed around the wiring layer. is formed, and the width d' at the bottom of the oxide film trench is much smaller than the interconnect spacing d, which is the 3.0. This makes it difficult for S, O, G, and MJ to adhere to the grooves in which the G and film are applied, resulting in poor flatness of the interlayer insulating film. In addition, when the bias is increased, the tilter angle θ of the edge of the deposited oxide film becomes smaller and the flatness after the S, O, G film formation process becomes better.
The sputtering conditions are set so that the taper angle is about 60' because the effect on the circuit elements formed in the sputtering is large.

次にS、O,G、膜の付着力を向上させるため酸素プラ
ズマ中で約10分間処理した後、通常の方法でS、O,
G、膜を約400 Or、p、m、で塗布し溶剤をとば
すためにプリベータ後、約300℃で15分間加熱して
S、O,G、 膜4を形成する(第1図(b))。
Next, in order to improve the adhesion of the S, O, G film, it was treated in oxygen plasma for about 10 minutes, and then the S, O,
The S, O, G film is coated with approximately 400 Or, p, m, and heated at approximately 300° C. for 15 minutes after pre-beta to evaporate the solvent, forming the S, O, G film 4 (Figure 1 (b)). ).

さらに常圧CVD法によりリンガラス膜5  (Pho
sphosi’1icate glass膜以下P膜板
膜)を基板全体に約430℃にて約5000人着膜する
(第1図(C))。この膜は常圧CVD法によるPS(
J!のみならずプラズマCVD法、光CVD法、スパッ
タ法により形成される絶縁膜でもよい。
Furthermore, a phosphorus glass film 5 (Pho
A sphosi'licate glass film (hereinafter referred to as P film) is deposited over the entire substrate at about 430° C. by about 5,000 coats (FIG. 1(C)). This film is produced by PS (
J! Alternatively, an insulating film formed by a plasma CVD method, a photo CVD method, or a sputtering method may be used.

このように平坦化した層間絶縁膜上に第2の配線パター
ンに従って配線層6を形成して多層配線を完成する(第
1図(d))。
A wiring layer 6 is formed on the interlayer insulating film planarized in this manner according to the second wiring pattern to complete a multilayer wiring (FIG. 1(d)).

〔発明の効果〕〔Effect of the invention〕

本発明の構成の層間絶縁膜とすることにより、微細なパ
ターンの配線層を持つ場合にも層間絶縁膜の平坦化を容
易に確実に行うことが出来、多層配線間の絶縁を完全な
ものとしかつ上層配線層の断線等の不都合を生じない信
頼性の高い半導体装置を得ることができる。
By using an interlayer insulating film having the structure of the present invention, it is possible to easily and reliably flatten the interlayer insulating film even when the wiring layer has a fine pattern, and the insulation between multilayer wiring can be made perfect. Moreover, a highly reliable semiconductor device that does not cause problems such as disconnection of the upper wiring layer can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、 第2図、第3図は従来例の説明図である。 1.21,31一基板  2−配線層 3−バイアス・スパッタ法による絶縁膜4・・・S、O
,G、膜 5−・−リンガラス膜    6−・−上層配線層22
.32−・・配線層 23・・−プラズマCVD法による酸化膜24−5.O
,G、膜 33−バイアス・スパッタ法による酸化膜第1図 第2図 第3図
FIG. 1 is a detailed explanatory diagram of the present invention, and FIGS. 2 and 3 are explanatory diagrams of a conventional example. 1.21, 31 - Substrate 2 - Wiring layer 3 - Insulating film 4 by bias sputtering method...S, O
, G, film 5--phosphorus glass film 6-- upper wiring layer 22
.. 32--Wiring layer 23--Oxide film 24-5 by plasma CVD method. O
, G, Film 33 - Oxide film by bias sputtering Fig. 1 Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 多層配線を有する半導体装置において、層間絶縁膜とし
て少くともバイアス・スパッタ法によって形成した絶縁
膜を下地としてその上に形成した塗布焼成絶縁膜を含む
絶縁膜を有する半導体装置。
A semiconductor device having multilayer wiring, which has an insulating film including at least a coated and fired insulating film formed on an insulating film formed by a bias sputtering method as a base and an insulating film formed by a bias sputtering method as an interlayer insulating film.
JP27774686A 1986-11-20 1986-11-20 Semiconductor device Pending JPS63131546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27774686A JPS63131546A (en) 1986-11-20 1986-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27774686A JPS63131546A (en) 1986-11-20 1986-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63131546A true JPS63131546A (en) 1988-06-03

Family

ID=17587751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27774686A Pending JPS63131546A (en) 1986-11-20 1986-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63131546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212114A (en) * 1989-09-08 1993-05-18 Siemens Aktiengesellschaft Process for global planarizing of surfaces for integrated semiconductor circuits
US5245213A (en) * 1991-10-10 1993-09-14 Sgs-Thomson Microelectronics, Inc. Planarized semiconductor product
US5270264A (en) * 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
US5872401A (en) * 1996-02-29 1999-02-16 Intel Corporation Deposition of an inter layer dielectric formed on semiconductor wafer by sub atmospheric CVD
JP2004304068A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212114A (en) * 1989-09-08 1993-05-18 Siemens Aktiengesellschaft Process for global planarizing of surfaces for integrated semiconductor circuits
US5245213A (en) * 1991-10-10 1993-09-14 Sgs-Thomson Microelectronics, Inc. Planarized semiconductor product
US5270264A (en) * 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
US5872401A (en) * 1996-02-29 1999-02-16 Intel Corporation Deposition of an inter layer dielectric formed on semiconductor wafer by sub atmospheric CVD
US5872064A (en) * 1996-02-29 1999-02-16 Intel Corporation DSAD process for deposition of inter layer dielectric
JP2004304068A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH01185947A (en) Manufacture of semiconductor device
JP3077990B2 (en) Method for manufacturing semiconductor device
JPS63131546A (en) Semiconductor device
JPS62277750A (en) Formation of multilayer interconnection
JPH03246937A (en) Manufacture of semiconductor device
JPS61289635A (en) Surface flatterning
JPH0330992B2 (en)
JPS5969950A (en) Forming method for multilayer wiring
JPH0265256A (en) Manufacture of semiconductor device
JP3328430B2 (en) Method for forming multilayer wiring of semiconductor device
JPH02180052A (en) Manufacture of semiconductor device
JPS5932153A (en) Manufacture of semiconductor device
JPS6298643A (en) Semiconductor device
JPH0432232A (en) Manufacture of semiconductor device
JPS59195845A (en) Fabrication of multilayer interconnection
JPH0555225A (en) Manufacture of semiconductor device
JPH01135044A (en) Semiconductor device
JPS6381833A (en) Manufacture of semiconductor device
JPH0330453A (en) Formation of flattened insulating film
JPS6227745B2 (en)
JPH0362554A (en) Semiconductor device and manufacture thereof
JPS61260638A (en) Manufacture of semiconductor device
JPH0226054A (en) Manufacture of semiconductor device
JPH03293728A (en) Semiconductor device
JPH04155927A (en) Production of semiconductor device