JPH0226054A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0226054A
JPH0226054A JP17597488A JP17597488A JPH0226054A JP H0226054 A JPH0226054 A JP H0226054A JP 17597488 A JP17597488 A JP 17597488A JP 17597488 A JP17597488 A JP 17597488A JP H0226054 A JPH0226054 A JP H0226054A
Authority
JP
Japan
Prior art keywords
insulating film
insulation film
heat treatment
film
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17597488A
Other languages
Japanese (ja)
Inventor
Hideto Ozaki
尾崎 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP17597488A priority Critical patent/JPH0226054A/en
Publication of JPH0226054A publication Critical patent/JPH0226054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent disconnection of an upper-layer wiring by coating a first coating insulation film on an insulation film of a semiconductor substrate, performing a first heat treatment to this coating insulation film, coating a second coating insulation film, and then performing a second heat treatment. CONSTITUTION:An insulation film 4 is formed on a semiconductor substrate 1 and a conductor film pattern 3 and then a first coating insulation film 5 is coated on this insulation film 4. Then, solvent of the coating insulation film 5 coated is eliminated, a first heat treatment is performed to the first coating insulation film 5, and then a second coating insulation film 6 is applied to the first coating insulation film 5. The solvent of the second coating insulation film 6 is removed, and the second heat treatment is performed to the second coating insulation film 6 to flatten the surface of the substrate 1. The temperature of heat treatment of the first coating insulation film 5 is set to a value exceeding the one of the heat treatment of the second coating insulation film 6. It suppresses stress generated in the coating insulation film 6 and forms the thick coating insulation film 5 without cracks.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多層配線構造を得るに好適な半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device suitable for obtaining a multilayer wiring structure.

従来の技術 デバイスの高集積化、高速化を図るため、多層配線構造
を備えたものが増えている。多層配線構造を実現するに
は、上層配線と下層配線の間に、電気的絶縁と、下層配
線の凹凸を抑制するための平坦化とが可能な眉間絶縁膜
を設けることが必要である。
In order to achieve higher integration and higher speed of conventional technology devices, an increasing number of devices are equipped with multilayer wiring structures. In order to realize a multilayer wiring structure, it is necessary to provide a glabella insulating film that can provide electrical insulation and flattening to suppress unevenness of the lower layer wiring between the upper layer wiring and the lower layer wiring.

従来の多層配線構造を実現するにあたり、層間絶縁膜と
して塗布方式により形成する絶縁膜を採用した従来の半
導体装置の製造方法を第2図(a)〜(c)の工程図を
参照して説明する。なお、第2図はアルミニウム(AM
)の二層配線の製造工程を示しており、簡明化のため半
導体素子領域と平坦化領域は示していない。
In realizing a conventional multilayer wiring structure, a conventional method for manufacturing a semiconductor device using an insulating film formed by a coating method as an interlayer insulating film will be explained with reference to the process diagrams in FIGS. 2(a) to (c). do. In addition, Figure 2 shows aluminum (AM
) shows the manufacturing process of the two-layer wiring, and the semiconductor element region and planarization region are not shown for the sake of simplicity.

この製造方法では、まず、半導体基板1の中に作り込ま
れた半導体素子(図中には示されていない)を相互接続
するために、A1合金膜などからなる膜厚0.8μmの
導体膜をスパッタリングなどで形成し、さらに5所定の
レジストパターン2を形成したのち、ドライエツチング
をほどこして下層配線3を形成する〔第2図(a)〕。
In this manufacturing method, first, in order to interconnect semiconductor elements (not shown in the figure) fabricated in the semiconductor substrate 1, a conductive film of 0.8 μm thick made of an A1 alloy film or the like is prepared. is formed by sputtering or the like, five predetermined resist patterns 2 are formed, and then dry etching is performed to form the lower layer wiring 3 [FIG. 2(a)].

この後、レジストパターン2を除去し、450℃程度の
熱処理を30分間はどこすことによって、半導体素子の
特性を安定化させる。そののち、ヒロックと称される下
層配線3の突起などにより生じる層間絶縁膜の電気的耐
圧の劣化を防止するため、プラズマCVD法による酸化
シリコン膜などを、CVD層間絶縁膜4として0.5μ
mの厚さに堆積する。
Thereafter, the resist pattern 2 is removed and heat treatment is performed at about 450° C. for 30 minutes to stabilize the characteristics of the semiconductor element. After that, in order to prevent deterioration of the electrical withstand voltage of the interlayer insulating film caused by protrusions of the lower wiring 3 called hillocks, a silicon oxide film or the like formed by plasma CVD is used as the CVD interlayer insulating film 4 with a thickness of 0.5 μm.
Deposited to a thickness of m.

次に、下層配線3によって生じた半導体基板1の表面の
凹凸を平坦にするため、(下層配線上の膜厚が0.1μ
mの)第一の塗布絶縁膜5を回転塗布し、塗布絶縁膜中
の溶剤を除くため200℃の熱乾燥処理を30分間はど
ほどこす。さらに、半導体基板1の平坦度を向上するた
め、第二の塗布絶縁膜6(第一と同じ程度の膜厚)を回
転塗布し、第一の塗布絶縁膜と同様な200℃程度の熱
乾燥処理を行う。そして、第1と第2の塗布絶縁膜5,
6の重縮合を生じさせるため、引き続き、450℃の熱
処理を30分間はどこす〔第2図(b)〕。
Next, in order to flatten the unevenness on the surface of the semiconductor substrate 1 caused by the lower layer wiring 3, (the film thickness on the lower layer wiring is 0.1μ
The first coated insulating film 5 (m) is spin-coated and subjected to heat drying treatment at 200° C. for 30 minutes to remove the solvent in the coated insulating film. Furthermore, in order to improve the flatness of the semiconductor substrate 1, a second coated insulating film 6 (approximately the same thickness as the first coated insulating film) is spin-coated, and then heat-dried at about 200°C similar to the first coated insulating film. Perform processing. Then, the first and second coated insulating films 5,
In order to cause polycondensation of No. 6, heat treatment at 450° C. is subsequently performed for 30 minutes [Figure 2 (b)].

最後に、下層配線3の上に形成されたCVD層間絶縁膜
4と第一、二の塗布絶縁膜5,6にスルーホール7を開
孔し、上層配線8を第2図(a)と同様な工程を経て形
成する〔第2図(C)〕。
Finally, a through hole 7 is opened in the CVD interlayer insulating film 4 formed on the lower layer wiring 3 and the first and second coated insulating films 5 and 6, and the upper layer wiring 8 is formed in the same manner as in FIG. 2(a). It is formed through several steps [Figure 2 (C)].

以上の工程を経て半導体基板1上に二層配線が形成され
る。
A two-layer wiring is formed on the semiconductor substrate 1 through the above steps.

発明が解決しようとする課題 しかしながら、配線の微細化にともない隣り合う下層配
線3間のスペースが狭くなると、配線の段差形状をなだ
らかにする塗布絶縁膜5,6の形成とステップカバレー
ジが比較的良好なスパッタ蒸着法とを用いても1段差部
に均一な厚さの導体膜を形成することが困難となり、上
層配線8の信頼性の低下を招く。なお、下層配線3の段
差形状は、下層配線3の膜厚を薄くすること、あるいは
、塗布絶縁膜5,6を厚くすることによって緩和される
。しかし、前者の対策をほどこすと配線抵抗の増加なら
びにストレス、エレクトロマイグレーションなどによる
信頼性の低下を招く。一方、後者の対策をほどこすと、
第二の塗布絶縁膜6の熱処理で第一や第二の塗布絶縁膜
5,6にクラックが発生する。このような問題を含む従
来の製造方法では、配線パターンの微細化に限界がある
Problems to be Solved by the Invention However, as wiring becomes finer, the space between adjacent lower layer wirings 3 becomes narrower, and the formation of coated insulating films 5 and 6 that smooth out the step shape of the wiring and the step coverage become relatively good. Even if a conventional sputter deposition method is used, it is difficult to form a conductor film with a uniform thickness in a single step portion, leading to a decrease in the reliability of the upper layer wiring 8. Note that the step shape of the lower layer wiring 3 can be alleviated by reducing the thickness of the lower layer wiring 3 or by increasing the thickness of the coated insulating films 5 and 6. However, taking the former measure increases wiring resistance and reduces reliability due to stress, electromigration, etc. On the other hand, if we apply the latter measure,
The heat treatment of the second coated insulating film 6 causes cracks to occur in the first and second coated insulating films 5 and 6. Conventional manufacturing methods that involve such problems have a limit to miniaturization of wiring patterns.

そこで本発明は、塗布絶縁膜にクラックを発生させるこ
となしに、半導体基板表面の導体配線の凹凸を抑制でき
るようにして上記の問題点を解決することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems by suppressing the unevenness of conductor wiring on the surface of a semiconductor substrate without causing cracks in the coated insulating film.

課題を解決するための手段 上記目的を達成するため本発明の半導体装置の製造方法
は、半導体素子が作り込まれた半導体基板上に導体膜を
形成したのちに同導体膜上に所定のレジストパターンを
形成する工程と、同レジストパターンをマスクにして前
記導体膜にドライエツチングをほどこし導体膜パターン
を形成する工程と、前記半導体基板および前記導体膜パ
ターン上に絶縁膜を形成する工程と、同絶縁膜上に第一
の塗布絶縁膜を塗布する工程と、同工程で塗布した塗布
絶縁膜の溶剤を除去する工程と、前記第一の塗布絶縁膜
に第一の熱処理をほどこす工程と、同第一の塗布絶縁膜
上に第二の塗布絶縁膜を塗布する工程と、同第二の塗布
絶縁膜の溶剤を除去する工程と、同第二の塗布絶縁膜に
第二の熱処理をほどこす工程とを経て前記半導体基板の
表面の凹凸を平坦にするものである。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes forming a conductor film on a semiconductor substrate in which a semiconductor element is built, and then forming a predetermined resist pattern on the conductor film. a step of dry etching the conductor film using the resist pattern as a mask to form a conductor film pattern; a step of forming an insulating film on the semiconductor substrate and the conductor film pattern; A step of applying a first applied insulating film on the film, a step of removing the solvent of the applied insulating film applied in the same step, and a step of applying a first heat treatment to the first applied insulating film, A step of applying a second coated insulating film on the first coated insulating film, a step of removing the solvent of the second coated insulating film, and a second heat treatment on the second coated insulating film. The unevenness on the surface of the semiconductor substrate is made flat through the steps.

また、本発明の半導体装置の製造方法は、第一の塗布絶
縁膜の熱処理の温度を、第二の塗布絶縁膜の熱処理の温
度以上とするものである。
Further, in the method for manufacturing a semiconductor device of the present invention, the temperature of the heat treatment of the first coated insulating film is set to be higher than the temperature of the heat treatment of the second coated insulating film.

作用 このような第一の熱処理の工程の導入により、第二の熱
処理で塗布絶縁膜に生じる応力が抑えられ、クラックの
発生がなく、しかも厚い塗布絶縁膜が形成される。
Effect: By introducing the first heat treatment step, the stress generated in the coated insulating film during the second heat treatment is suppressed, and a thick coated insulating film is formed without cracking.

この第一の熱処理の工程を第二の熱処理の工程よりも低
い温度でほどこすと効果が低下し、クラツクが発生しや
すくなるため、この第一の熱処理の工程は、第二の熱処
理の工程の温度以上の温度で行うのが適当である。
If this first heat treatment step is performed at a lower temperature than the second heat treatment step, the effect will be reduced and cracks will be more likely to occur. It is appropriate to carry out the process at a temperature higher than .

実施例 本発明にかかる半導体装置の製造方法の一実施例を第1
図(a)〜(C)の工程順図を参照して説明する。なお
、簡明化のために図中にはA9J二層配1w!部分のみ
を示し、半導体素子領域や平坦化領域は示していない。
Embodiment A first embodiment of the method for manufacturing a semiconductor device according to the present invention is described below.
The process will be explained with reference to process diagrams shown in FIGS. (a) to (C). For the sake of clarity, A9J double-layer 1w! Only a portion is shown, and a semiconductor element region and a planarization region are not shown.

本発明の製造方法でも、まず半導体基板1の中に作り込
まれた半導体素子領域(図示されていない)を相互接続
するために、AIQ、合金膜からなる膜厚0.8μmの
導体膜をスパッタ蒸着で形成し。
In the manufacturing method of the present invention, first, in order to interconnect the semiconductor element regions (not shown) formed in the semiconductor substrate 1, a 0.8 μm thick conductive film made of AIQ and alloy film is sputtered. Formed by vapor deposition.

さらに、所定のレジストパターン2を形成したのち、ド
ライエツチングをほどこして下層配線3を形成する〔第
1図(a)〕。
Furthermore, after forming a predetermined resist pattern 2, dry etching is performed to form a lower layer wiring 3 [FIG. 1(a)].

この後、レジストパターン2を除去し、450℃程度の
熱処理を30分間はどこして、半導体素子の特性を安定
させたのち、プラズマCVD法による酸化シリコン膜な
どをCVD層間絶縁膜4として0.5μmの厚さに堆積
する。
Thereafter, the resist pattern 2 is removed, heat treatment is performed at about 450° C. for 30 minutes to stabilize the characteristics of the semiconductor element, and then a silicon oxide film or the like formed by plasma CVD method is used as a CVD interlayer insulating film 4 with a temperature of 0.95°C. Deposit to a thickness of 5 μm.

次に、下層配線3によって生じた半導体基板1の表面の
凹凸を平坦にするため、(下層配線上の膜厚が0.2μ
mの)第一の塗布絶縁膜5を回転塗布し、塗布絶縁膜5
中の溶剤を除くため200℃の熱乾燥処理を30分間は
ど行う。そして、第一の塗布絶縁膜5の重縮合を生じさ
せるため第一の熱処理を450℃で30分間はどこす。
Next, in order to flatten the unevenness on the surface of the semiconductor substrate 1 caused by the lower layer wiring 3, (the film thickness on the lower layer wiring is 0.2μ
The first applied insulating film 5 (m) is spin-coated, and the applied insulating film 5 is
In order to remove the solvent inside, heat drying treatment at 200° C. is performed for 30 minutes. Then, a first heat treatment is performed at 450° C. for 30 minutes to cause polycondensation of the first coated insulating film 5.

さらに、半導体基板1の平坦度を向上するため、第二の
塗布絶縁膜6(第一と同じ程度の膜厚)を回転塗布し、
第一の塗布絶縁膜と同様に200℃の熱乾燥処理を30
分間はど行ったのちに、第二の熱処理を450℃で30
分間はどこす。
Furthermore, in order to improve the flatness of the semiconductor substrate 1, a second coated insulating film 6 (approximately the same thickness as the first coated film) is spin coated.
Heat drying at 200℃ for 30 minutes in the same way as the first coated insulating film.
After that, a second heat treatment was performed at 450℃ for 30 minutes.
Where are the minutes?

この第一の熱処理を導入することにより、第二の熱処理
のときに生じる塗布絶縁膜の応力を抑えることができる
。したがってクラックが発生することなく厚い塗布絶縁
膜を形成することができる。
By introducing this first heat treatment, stress in the coated insulating film that occurs during the second heat treatment can be suppressed. Therefore, a thick coated insulating film can be formed without cracking.

この第一の熱処理を第二の熱処理より低い温度(たとえ
ば350℃)でほどこすと効果がなくなり、クラックが
発生するため、第二の熱処理温度以上の温度で行うのが
適当である。
If this first heat treatment is performed at a lower temperature than the second heat treatment (for example, 350° C.), the effect will be lost and cracks will occur, so it is appropriate to perform the first heat treatment at a temperature higher than the second heat treatment temperature.

次に、従来の技術に関連して記載したように。Next, as described in relation to the prior art.

周知の方法でAM二層配線構造を形成する。すなわち、
下層配線3の上に形成されたCVD層間絶縁膜4と第一
、この塗布絶縁膜5,6とにスルーホール7を開孔し、
上層配線8を第1図(a)と同様な工程を経て形成する
〔第1図(C)〕。
An AM two-layer wiring structure is formed by a well-known method. That is,
A through hole 7 is opened in the CVD interlayer insulating film 4 formed on the lower wiring 3 and the first coated insulating film 5, 6.
The upper layer wiring 8 is formed through the same steps as in FIG. 1(a) [FIG. 1(C)].

以上の工程を経て本発明の製造方法による二層配線構造
が形成される。
Through the above steps, a two-layer wiring structure is formed by the manufacturing method of the present invention.

以上の実施例による多層配線構造では、塗布絶縁膜5,
6の厚膜化により上層配線のステップカバレージは大幅
に改善され配線の不良を防止することができる。
In the multilayer wiring structure according to the above embodiment, the applied insulating film 5,
The step coverage of the upper layer wiring is greatly improved by thickening the film of No. 6, and it is possible to prevent wiring defects.

なお、本実施例では二層構造の塗布絶縁膜について説明
したが同様に三層以上の構造を有する塗布絶縁膜にも実
施すれば、さらに上層配線のステップカバレージを向上
させることができる。塗布絶縁膜5,6は、シラノール
化合物を含む有機溶剤の塗布と、その後の熱処理によっ
て形成されるものである。
Although this embodiment describes a coated insulating film having a two-layer structure, the step coverage of the upper layer wiring can be further improved by applying the same method to a coated insulating film having a three-layer structure or more. The coated insulating films 5 and 6 are formed by coating an organic solvent containing a silanol compound and subsequent heat treatment.

また、配線についても、アルミニウム合金膜に限られる
ものではなく、たとえば、アルミニウム膜、多結晶シリ
コン膜、シリサイド膜もしくは高融点金属膜などであれ
ばよい。
Further, the wiring is not limited to an aluminum alloy film, and may be any material such as an aluminum film, a polycrystalline silicon film, a silicide film, or a high melting point metal film.

発明の詳細 な説明したように、本発明の半導体装置の製造方法によ
れば、第二の塗布配線膜の熱処理時に塗布絶縁膜にクラ
ックが生じるのを防止できるため、塗布絶縁膜を厚くす
ることが可能になって上層配線の断線を防止することが
でき、半導体装置の信頼性を向上させる効果が奏される
As described in detail of the invention, according to the method for manufacturing a semiconductor device of the present invention, it is possible to prevent cracks from occurring in the coated insulating film during heat treatment of the second coated wiring film. This makes it possible to prevent disconnection of the upper layer interconnection, and has the effect of improving the reliability of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明にかかる半導体装置の製
造方法の一実施例を示す工程図、第2図(a)〜(Q)
は従来の半導体装置の製造方法の工程図である。 1・・・半導体基板、2・・・レジストパターン、3・
・下層配線、4・・・CVD層間絶縁膜、5・・・第一
の塗布絶縁膜、6・・・第二の塗布絶縁膜。 代理人   森  本  義  弘 t、vvQ間絶揉榎
FIGS. 1(a) to (C) are process diagrams showing one embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIGS. 2(a) to (Q)
1 is a process diagram of a conventional method for manufacturing a semiconductor device. 1... Semiconductor substrate, 2... Resist pattern, 3...
- Lower layer wiring, 4... CVD interlayer insulating film, 5... first coated insulating film, 6... second coated insulating film. Agent Yoshihiro Morimoto, vvQ intercourse

Claims (1)

【特許請求の範囲】 1、半導体素子が作り込まれた半導体基板上に導体膜を
形成したのちに同導体膜上に所定のレジストパターンを
形成する工程と、同レジストパターンをマスクにして前
記導体膜にドライエッチングをほどこし導体膜パターン
を形成する工程と、前記半導体基板および前記導体膜パ
ターン上に絶縁膜を形成する工程と、同絶縁膜上に第一
の塗布絶縁膜を塗布する工程と、同工程で塗布した塗布
絶縁膜の溶剤を除去する工程と、前記第一の塗布絶縁膜
に第一の熱処理をほどこす工程と、同第一の塗布絶縁膜
上に第二の塗布絶縁膜を塗布する工程と、同第二の塗布
絶縁膜の溶剤を除去する工程と、同第二の塗布絶縁膜に
第二の熱処理をほどこす工程とを経て前記半導体基板の
表面の凹凸を平坦にする半導体装置の製造方法。 2、第一の塗布絶縁膜の熱処理の温度が第二塗布絶縁膜
の熱処理の温度以上である請求項1記載の半導体装置の
製造方法。
[Claims] 1. After forming a conductor film on a semiconductor substrate on which a semiconductor element is built, forming a predetermined resist pattern on the conductor film, and using the resist pattern as a mask to conduct the conductor film. a step of forming a conductor film pattern by dry etching the film; a step of forming an insulating film on the semiconductor substrate and the conductor film pattern; and a step of applying a first coated insulating film on the insulating film; a step of removing the solvent from the coated insulating film applied in the same process; a step of subjecting the first coated insulating film to a first heat treatment; and a step of applying a second coated insulating film on the same first coated insulating film. The unevenness on the surface of the semiconductor substrate is flattened through a step of coating, a step of removing the solvent of the second applied insulating film, and a step of subjecting the second applied insulating film to a second heat treatment. A method for manufacturing a semiconductor device. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the temperature of the heat treatment of the first coated insulating film is higher than the temperature of the heat treatment of the second coated insulating film.
JP17597488A 1988-07-14 1988-07-14 Manufacture of semiconductor device Pending JPH0226054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17597488A JPH0226054A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17597488A JPH0226054A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0226054A true JPH0226054A (en) 1990-01-29

Family

ID=16005502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17597488A Pending JPH0226054A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0226054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110763A (en) * 1990-01-29 1992-05-05 Yamaha Corporation Process of fabricating multi-level wiring structure, incorporated in semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245540A (en) * 1985-04-23 1986-10-31 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245540A (en) * 1985-04-23 1986-10-31 Seiko Epson Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110763A (en) * 1990-01-29 1992-05-05 Yamaha Corporation Process of fabricating multi-level wiring structure, incorporated in semiconductor device

Similar Documents

Publication Publication Date Title
JP2518435B2 (en) Multilayer wiring formation method
JPH07114236B2 (en) Wiring structure manufacturing method
JPH0226055A (en) Manufacture of semiconductor device
JPH0226054A (en) Manufacture of semiconductor device
JPH1116914A (en) Mutual connection method for semiconductor device and constitution body
JPH0226053A (en) Manufacture of semiconductor device
JPH0435047A (en) Forming method for multilayer wiring of semiconductor device
JP2783898B2 (en) Method for manufacturing semiconductor device
JPS60113444A (en) Multilayer interconnection structure
JPH0878518A (en) Fabrication of semiconductor device
KR0126777B1 (en) Multi-layer connecting method of semiconductor device
JPH0319222A (en) Manufacture of semiconductor device
JPH06349828A (en) Manufacture of integrated circuit device
JPH09199495A (en) Sog film forming method of semiconductor device
JPH0684901A (en) Method of manufacturing semiconductor device
JPH05243226A (en) Manufacture of semiconductor device
JPH0653189A (en) Method for flattening of film formation layer
JPH05259296A (en) Semiconductor device and manufacture thereof
JPH01135044A (en) Semiconductor device
JPH05160126A (en) Formation of multilayer wiring
JPH09115906A (en) Manufacture of semiconductor device
JPH09167761A (en) Deposition of sog film
JPH0319226A (en) Manufacture of semiconductor device
JPH09330976A (en) Manufacture of semiconductor device
JPS63111644A (en) Manufacture of semiconductor device