JPH0684901A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JPH0684901A
JPH0684901A JP23222292A JP23222292A JPH0684901A JP H0684901 A JPH0684901 A JP H0684901A JP 23222292 A JP23222292 A JP 23222292A JP 23222292 A JP23222292 A JP 23222292A JP H0684901 A JPH0684901 A JP H0684901A
Authority
JP
Japan
Prior art keywords
film
wiring
lower layer
layer wiring
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23222292A
Other languages
Japanese (ja)
Inventor
Makoto Motoyoshi
真 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23222292A priority Critical patent/JPH0684901A/en
Publication of JPH0684901A publication Critical patent/JPH0684901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form an interlayer insulation film having an uniform film thickness to flat and reduce capacitance between wirings by a method wherein a SOG film is selectively formed on the insulation film formed on a lower layer wiring to use this SOG film as a mask for heat-treating. CONSTITUTION:Lower layer wirings 4 to 7 are formed on a semiconductor substrate 1, and on the entire surface of the semiconductor substrate 1 formed with the lower layer wirings 4 to 7, a BPSG film 9 is formed as an insulation film having reflow characteristics through a CVD oxide film 8. On a desired part on the BPSG film 9, a film 10 composed of a glass solution dissolved selectively in an organic solvent is formed. A heat treatment is performed by using the film 10 as a mask and an upper layer wiring 12 connecting to the lower layers 4 to 7 is formed. Thus, it is possible to prevent a reduction in a film thickness of an insulation film formed on the lower layer wiring. Accordingly, irrespective of density of lower layer wiring patterns, an interlayer insulation film can uniformly be flatted and capacitance between the wirings can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関わり、特に、隣接する配線間の距離が狭い配線パタ
ーンと、隣接する配線間の距離が比較的広い配線パター
ンとを有する半導体装置の層間絶縁膜の平坦化を向上し
た半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a semiconductor device having a wiring pattern in which a distance between adjacent wirings is narrow and a wiring pattern in which a distance between adjacent wirings is relatively wide. The present invention relates to a method for manufacturing a semiconductor device having improved planarization of an interlayer insulating film.

【0002】[0002]

【従来の技術】従来から、LSI(Large Scale Integr
ated Circuit)の高集積化、高速化に伴い、デバイスの
微細化(スケールダウン)が急速に進んでいる。そし
て、従来のLSIでは、二次元的な高集積化、即ち、平
面寸法の縮小を積極的に進めることで、デバイスの微細
化を達成している。
2. Description of the Related Art Conventionally, LSI (Large Scale Integration)
With the higher integration and higher speed of ated circuits), device miniaturization (scale down) is rapidly progressing. In the conventional LSI, device miniaturization is achieved by positively advancing two-dimensional integration, that is, reducing the planar dimension.

【0003】しかしながら、前記従来のLSIでは、配
線自身の寄生抵抗や、下層配線と上層配線と層間の寄生
容量を増大させない目的から、高性能化の阻害になるよ
うな縦方向の寸法は、積極的に縮小しない傾向にあっ
た。このため、配線のアスペクト比が大きくなり、層間
絶縁膜を介して形成された上層配線のステップカバレッ
ジが低下するという問題があった。
However, in the conventional LSI described above, in order to prevent the parasitic resistance of the wiring itself and the parasitic capacitance between the lower layer wiring, the upper layer wiring, and the interlayer from increasing, the vertical dimension that hinders high performance is positive. Tended not to shrink. Therefore, there is a problem that the aspect ratio of the wiring is increased and the step coverage of the upper wiring formed via the interlayer insulating film is reduced.

【0004】そこで、前記層間絶縁膜の平坦化を達成す
るために、例えば、有機溶剤に溶解したガラス溶液(Sp
in on Glass ;以下、『SOG』という)を回転塗布し
て加熱処理する平坦化方法や、A.C.Adams らが『J.Elec
trochem.Soc.,128, p171 (1981) 』で紹介しているよう
に、比較的高濃度のリンを含有したPSG(Phosho-Sil
icate Glass )を高温熱処理してリフローさせる平坦化
方法、W.Kernらが『Solid State Tech.,28, p171 (198
5) 』で紹介しているように、BPSG(Boron-Phospha
rus-Silicate Glass )を高温熱処理してリフローさせ
る平坦化方法等が知られている。
Therefore, in order to achieve the flattening of the interlayer insulating film, for example, a glass solution (Sp
in on Glass; hereinafter referred to as “SOG”) is applied by spin coating and heat treatment, and AC Adams et al.
trochem.Soc., 128, p171 (1981) ”, PSG (Phosho-Sil) containing a relatively high concentration of phosphorus.
A flattening method in which icate Glass) is subjected to high temperature heat treatment and reflowed, W. Kern et al., “Solid State Tech., 28, p171 (198
5) ”, BPSG (Boron-Phospha
A flattening method in which rus-Silicate Glass) is heat-treated at high temperature and reflowed is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ような平坦化方法では、層間絶縁膜の下地に形成された
下層配線のパターンにかかわらずウエハーの全面が均一
に平坦化作用を受ける。従って、例えば、パターンが粗
(隣接する配線間の距離が広い配線パターン)である配
線であって、配線長が比較的長い配線の上に形成された
層間絶縁膜は、パターンが密(隣接する配線間の距離が
狭い配線パターン)である配線上に形成された層間絶縁
膜に比べ、膜厚が薄くなるという問題があった。即ち、
下層配線のパターンが密な部分と粗の部分では、平坦化
率が異なるという問題があった。このため、前記層間絶
縁膜の膜厚が薄い部分では、配線間容量が大きくなると
いう問題があった。
However, in the above-described flattening method, the entire surface of the wafer is uniformly flattened regardless of the pattern of the lower layer wiring formed under the interlayer insulating film. Therefore, for example, an interlayer insulating film formed on a wiring whose pattern is rough (a wiring pattern in which the distance between adjacent wirings is wide) and whose wiring length is relatively long has a dense pattern (adjacent wiring). There is a problem that the film thickness is smaller than that of the interlayer insulating film formed on the wiring which is a wiring pattern having a small distance between the wirings. That is,
There is a problem that the flattening rate is different between the dense and rough portions of the lower layer wiring pattern. Therefore, there is a problem that the inter-wiring capacitance becomes large in the portion where the film thickness of the interlayer insulating film is small.

【0006】本発明は、このような問題を解決すること
を課題とするものであり、下層配線パターンの粗密にか
かわらず、均一な膜厚の層間絶縁膜を形成し、平坦化を
向上すると共に、配線間容量を低下させる半導体装置の
製造方法を提供することを目的とする。
An object of the present invention is to solve such a problem. An interlayer insulating film having a uniform film thickness is formed regardless of the density of the lower layer wiring pattern to improve the flatness. An object of the present invention is to provide a method for manufacturing a semiconductor device that reduces the capacitance between wirings.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明は、半導体基板上に下層配線を形成する第1
工程と、前記下層配線が形成された半導体基板の全面
に、リフロー性を有する絶縁膜を形成する第2工程と、
前記リフロー性を有する絶縁膜上の所望部分に、選択的
に有機溶剤に溶解したガラス溶液からなる膜を形成する
第3工程と、前記有機溶剤に溶解したガラス溶液からな
る膜をマスクとして熱処理を行う第4工程と、前記下層
配線及び/又は半導体基板と接続する上層配線を形成す
る第5工程と、を含むことを特徴とする半導体装置の製
造方法を提供するものである。
To achieve this object, the present invention provides a first method for forming a lower layer wiring on a semiconductor substrate.
A second step of forming an insulating film having a reflow property on the entire surface of the semiconductor substrate on which the lower layer wiring is formed,
A third step of forming a film made of a glass solution selectively dissolved in an organic solvent on a desired portion on the reflowable insulating film, and a heat treatment using the film made of the glass solution dissolved in the organic solvent as a mask. The present invention provides a method for manufacturing a semiconductor device, which includes a fourth step to be performed and a fifth step to form an upper layer wiring connected to the lower layer wiring and / or the semiconductor substrate.

【0008】[0008]

【作用】本発明に係る半導体装置の製造方法によれば、
下層配線上に形成されたリフロー性を有する絶縁膜上の
所望部分、即ち、当該絶縁膜がリフローした際に膜厚が
減少し、寄生容量の増加が問題となる下層配線上に形成
された前記絶縁膜上に、選択的にSOG膜を形成した
後、このSOG膜をマスクとして熱処理を行うことで、
当該SOG膜が形成された以外の部分に対応する絶縁膜
のみをリフローさせることができる。即ち、前記SOG
膜にマスクされた部分に対応する絶縁膜は、前記熱処理
を行ってもリフローは起こらず、前記絶縁膜形成時の膜
厚をそのまま残すことができる。従って、例えば、パタ
ーンが粗である配線であって、配線長が比較的長い配線
の上に形成された絶縁膜の膜厚が減少することを防止す
ることができる。また、パターンが密である配線上に形
成された前記絶縁膜は、リフローされるため、平坦化を
達成することもできる。このため、特に配線容量の影響
が大きい下層配線上に形成される層間絶縁膜の膜厚を厚
くすることを優先し、上層配線のステップカバレッジを
向上したい部分に形成された層間絶縁膜は、平坦化を優
先することができる。
According to the method of manufacturing the semiconductor device of the present invention,
A desired portion on the reflowable insulating film formed on the lower layer wiring, that is, when the insulating film is reflowed, the film thickness is reduced and an increase in parasitic capacitance becomes a problem. By selectively forming an SOG film on the insulating film and then performing heat treatment using this SOG film as a mask,
Only the insulating film corresponding to the portion other than the portion where the SOG film is formed can be reflowed. That is, the SOG
Reflow does not occur in the insulating film corresponding to the portion masked by the film even when the heat treatment is performed, and the film thickness at the time of forming the insulating film can be left as it is. Therefore, for example, it is possible to prevent the film thickness of the insulating film formed on a wiring having a rough pattern and a relatively long wiring length from decreasing. Further, since the insulating film formed on the wiring having a dense pattern is reflowed, it is possible to achieve flatness. Therefore, priority is given to increasing the film thickness of the interlayer insulating film formed on the lower layer wiring, which is particularly affected by the wiring capacitance, and the interlayer insulating film formed on the portion where the step coverage of the upper layer wiring is desired to be flat. Can be prioritized.

【0009】なお、前記配線パターンの隣接する配線間
の距離が、5μm以上ある場合は、パターンが粗である
配線とし、前記絶縁膜上にSOG膜を形成することが望
ましい。
When the distance between adjacent wirings of the wiring pattern is 5 μm or more, it is desirable that the wiring has a rough pattern and an SOG film is formed on the insulating film.

【0010】[0010]

【実施例】次に、本発明に係る一実施例について、図面
を参照して説明する。図1ないし図4は、本発明の実施
例に係る半導体装置の製造工程の一部を示す部分断面図
である。図1に示す工程では、公知の方法で半導体基板
1上に酸化膜2を形成した後、当該酸化膜2上に、膜厚
が500nm程度の多結晶シリコン膜を形成する。次い
で、前記多結晶シリコン膜にパターニングを行い、下層
配線4〜7を形成する。ここで、前記パターニングは、
配線幅が0.5〜1μm程度の時は、下層配線4と下層
配線5との間の距離、下層配線5と下層配線6との間の
距離が、1〜3μm程度、下層配線6と下層配線7との
間の距離が、6〜10μm程度となるように行い、下層
配線4〜6をパターンが密である配線群、下層配線7を
パターンが粗である配線(孤立パターン)とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment according to the present invention will be described with reference to the drawings. 1 to 4 are partial cross-sectional views showing a part of the manufacturing process of the semiconductor device according to the embodiment of the invention. In the step shown in FIG. 1, after the oxide film 2 is formed on the semiconductor substrate 1 by a known method, a polycrystalline silicon film having a film thickness of about 500 nm is formed on the oxide film 2. Next, the polycrystalline silicon film is patterned to form lower layer wirings 4 to 7. Here, the patterning is
When the wiring width is about 0.5 to 1 μm, the distance between the lower layer wiring 4 and the lower layer wiring 5 and the distance between the lower layer wiring 5 and the lower layer wiring 6 are about 1 to 3 μm. The distance to the wiring 7 is set to about 6 to 10 μm, the lower wirings 4 to 6 are wiring groups having a dense pattern, and the lower wiring 7 is a wiring having a rough pattern (isolated pattern).

【0011】次に、図2に示す工程では、図1に示す工
程で得た半導体基板1に、CVD(Chemical Vapor Dep
osition )法を行い、酸化膜2上及び下層配線4〜7の
表面に、膜厚が100nm程度のCVD酸化膜8を43
0℃で堆積する。次いで、前記CVD酸化膜8上に、リ
フロー性を有する絶縁膜として、膜厚が800nm程度
のBPSG膜9を430℃で堆積する。
Next, in the step shown in FIG. 2, a CVD (Chemical Vapor Depth) is applied to the semiconductor substrate 1 obtained in the step shown in FIG.
of the CVD oxide film 8 having a film thickness of about 100 nm on the oxide film 2 and on the surfaces of the lower layer wirings 4 to 7.
Deposit at 0 ° C. Then, a BPSG film 9 having a thickness of about 800 nm is deposited at 430 ° C. on the CVD oxide film 8 as an insulating film having a reflow property.

【0012】次いで、図3に示す工程では、図2に示す
工程で得たBPSG膜9上に、SOGを回転塗布し、平
坦面で換算した膜厚が80nm程度のSOG膜を形成す
る。次に、前記SOG膜に、窒素雰囲気中で、80℃で
10分間、200℃で10分間及び750℃で30分間
のベーキングを行った後、当該SOG膜を選択的にエッ
チングし、パターンが粗である配線(下層配線7)の近
傍のみに、SOG膜10を形成する。次に、前記SOG
膜10をマスクとして、前記BPSG膜9に、窒素雰囲
気で、950℃で20分間熱処理を行い、BPSG膜9
をリフローさせる。この時、前記SOG膜10にマスク
された部分に対応するBPSG膜9は、前記熱処理を行
ってもリフローは起こらず、当該BPSG膜9形成時の
膜厚をそのまま残すことができる。このため、この部分
には、厚い膜厚のBPSG膜が形成され、寄生容量を低
減することができる。一方、前記SOG膜10が形成さ
れていな(パターンが密である配線群(下層配線4〜
6)上に形成されている)BPSG膜は、リフローされ
るため、平坦化の達成される。
Next, in the step shown in FIG. 3, SOG is spin-coated on the BPSG film 9 obtained in the step shown in FIG. 2 to form an SOG film having a flat surface converted thickness of about 80 nm. Next, the SOG film was baked in a nitrogen atmosphere at 80 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 750 ° C. for 30 minutes, and then the SOG film was selectively etched to roughen the pattern. The SOG film 10 is formed only in the vicinity of the wiring (lower wiring 7). Next, the SOG
Using the film 10 as a mask, the BPSG film 9 is heat-treated at 950 ° C. for 20 minutes in a nitrogen atmosphere to obtain the BPSG film 9
To reflow. At this time, the BPSG film 9 corresponding to the portion masked by the SOG film 10 does not undergo reflow even if the heat treatment is performed, and the film thickness at the time of forming the BPSG film 9 can be left as it is. Therefore, a thick BPSG film is formed in this portion, and the parasitic capacitance can be reduced. On the other hand, the SOG film 10 is not formed (a wiring group having a dense pattern (lower wiring 4 to
6) The BPSG film (formed above) is reflowed so that planarization is achieved.

【0013】次に、図4に示す工程では、前記BPSG
膜9及びCVD酸化膜8を選択的に除去し、下層配線4
〜7と接続するコンタクト孔11、BPSG膜9、CV
D酸化膜8及び酸化膜2を選択的に除去し、半導体基板
1と接続するコンタクト孔11を開口する。次いで、ス
パッタ法により、前記コンタクト孔11内面、BPSG
膜9上及びSOG膜8上に、アルミニウム膜を堆積した
後、このアルミニウム膜にパターニングを行い、上層配
線12を形成する。
Next, in the step shown in FIG. 4, the BPSG is
The film 9 and the CVD oxide film 8 are selectively removed, and the lower wiring 4
To 7, the contact hole 11, the BPSG film 9, and the CV
The D oxide film 8 and the oxide film 2 are selectively removed, and a contact hole 11 connected to the semiconductor substrate 1 is opened. Then, the inner surface of the contact hole 11 and BPSG are formed by a sputtering method.
After depositing an aluminum film on the film 9 and the SOG film 8, the aluminum film is patterned to form the upper wiring 12.

【0014】また、前記図2に示す工程以降を繰り返す
ことで、3層配線以上の多層配線構造にも対応すること
ができる。その後、所望の工程を行い、半導体装置を完
成する。なお、本実施例では、隣接する配線膜の距離
が、1〜3μm程度のものをパターンが密な配線群、隣
接する配線膜の距離が、6〜10μm程度のものをパタ
ーンが粗な配線としたが、これに限らず、隣接する配線
膜の距離が、5μm未満の配線群をパターンが密な配線
群、隣接する配線膜の距離が、5μm以上の配線群をパ
ターンが粗な配線群、とすることが好ましい。
Further, by repeating the steps shown in FIG. 2 and subsequent steps, it is possible to deal with a multi-layer wiring structure having three or more wiring layers. Then, desired steps are performed to complete the semiconductor device. In this embodiment, a wiring group with a dense pattern has a distance between adjacent wiring films of about 1 to 3 μm, and a wiring having a rough pattern with a distance of 6 to 10 μm between adjacent wiring films. However, the present invention is not limited to this, and a wiring group in which the distance between adjacent wiring films is less than 5 μm is a dense wiring group, a wiring group in which the distance between adjacent wiring films is 5 μm or more is a rough wiring group, It is preferable that

【0015】また、本実施例では、前記BPSG膜9上
のうち、パターンが粗である配線の近傍に対応する部分
に、SOG膜10を形成したが、これに限らず、パター
ンが密である配線であっても、その上に形成される上層
配線のステップカバレッジが問題にならない場合は、こ
の部分に対応するBPSG膜9上にもSOG膜10を形
成してよい。
In this embodiment, the SOG film 10 is formed on the BPSG film 9 at a portion corresponding to the vicinity of the wiring having a rough pattern. However, the SOG film 10 is not limited to this, and the pattern is dense. Even in the case of wiring, if the step coverage of the upper layer wiring formed thereon does not matter, the SOG film 10 may be formed also on the BPSG film 9 corresponding to this portion.

【0016】そして、本実施例では、SOG膜10をマ
スクとして、BPSG膜9をリフローした後、当該SO
G膜10を除去せずに、上層配線12を形成したが、こ
れに限らず、所望により前記SOG膜10を除去した
後、上層配線12を形成してもよい。また、本実施例で
は、リフロー性を有する絶縁膜として、BPSG膜9を
使用したが、これに限らず、PSG膜等、他のリフロー
性を有する絶縁膜を使用しても同様の効果を得ることが
できる。
Then, in this embodiment, after the BPSG film 9 is reflowed using the SOG film 10 as a mask, the SO
Although the upper layer wiring 12 is formed without removing the G film 10, the present invention is not limited to this, and the upper layer wiring 12 may be formed after removing the SOG film 10 if desired. Further, in this embodiment, the BPSG film 9 is used as the insulating film having the reflow property, but the present invention is not limited to this, and the same effect can be obtained by using another insulating film having the reflow property such as the PSG film. be able to.

【0017】そしてまた、前記SOG膜の塗布前、また
は、前記BPSG膜9をリフローした後に、SOG膜1
0を除去する場合は、SOG膜10除去後、あるいは、
コンタクト孔11開口後に、比較的軽い熱処理を行い、
前記BPSG膜9を軽くリフローさせてもよい。
Further, before the SOG film is applied or after the BPSG film 9 is reflowed, the SOG film 1 is formed.
To remove 0, after removing the SOG film 10, or
After opening the contact hole 11, perform a relatively light heat treatment,
The BPSG film 9 may be lightly reflowed.

【0018】[0018]

【発明の効果】以上説明したように、本発明に係る半導
体装置の製造方法によれば、下層配線上に形成されたリ
フロー性を有する絶縁膜上の所望部分、即ち、前記絶縁
膜のリフローによる膜厚減少による寄生容量の増加が問
題となる下層配線上に形成された前記絶縁膜上に、選択
的にSOG膜を形成した後、このSOG膜をマスクとし
て熱処理を行うことで、当該SOG膜が形成された以外
の部分に対応する絶縁膜のみをリフローさせることがで
きる。従って、前記絶縁膜のリフローによる膜厚減少に
よる寄生容量の増加が問題となる下層配線上に形成され
た絶縁膜の膜厚が減少することを防止することができ、
その他の部分は、リフローされるため、平坦化を達成す
ることもできる。このため、特に配線容量の影響が大き
い下層配線上に形成される層間絶縁膜の膜厚を厚くする
ことを優先し、上層配線のステップカバレッジを向上し
たい部分に形成された層間絶縁膜は、平坦化を優先する
ことができる。この結果、下層配線パターンの粗密にか
かわらず、均一な膜厚の層間絶縁膜を形成し、平坦化を
向上すると共に、配線間容量を低下させることができ、
高集積化が達成され、且つ、高性能な半導体装置を提供
することができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a desired portion on the reflowable insulating film formed on the lower wiring, that is, the reflow of the insulating film is caused. By selectively forming an SOG film on the insulating film formed on the lower layer wiring in which an increase in parasitic capacitance due to a decrease in film thickness is caused, and then performing heat treatment using this SOG film as a mask, the SOG film is formed. It is possible to reflow only the insulating film corresponding to the portion other than the portion where the is formed. Therefore, it is possible to prevent the film thickness of the insulating film formed on the lower layer wiring from being reduced, which causes a problem of increasing the parasitic capacitance due to the film thickness reduction due to the reflow of the insulating film,
Since the other part is reflowed, the planarization can be achieved. Therefore, priority is given to increasing the film thickness of the interlayer insulating film formed on the lower layer wiring, which is particularly affected by the wiring capacitance, and the interlayer insulating film formed on the portion where the step coverage of the upper layer wiring is desired to be flat. Can be prioritized. As a result, regardless of the density of the lower layer wiring pattern, an interlayer insulating film having a uniform film thickness can be formed, planarization can be improved, and wiring capacitance can be reduced.
A highly integrated semiconductor device with high integration can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる半導体装置の製造工
程の一部を示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing a part of a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例にかかる半導体装置の製造工
程の一部を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment of the present invention.

【図3】本発明の一実施例にかかる半導体装置の製造工
程の一部を示す部分断面図である。
FIG. 3 is a partial sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment of the present invention.

【図4】本発明の一実施例にかかる半導体装置の製造工
程の一部を示す部分断面図である。
FIG. 4 is a partial sectional view showing a part of the manufacturing process of the semiconductor device according to the embodiment of the present invention.

【符号の説明】 1 半導体基板 2 酸化膜 4 下層配線 5 下層配線 6 下層配線 7 下層配線 8 CVD酸化膜 9 BPSG膜 10 SOG膜 11 コンタクト孔 12 上層配線[Symbols] 1 semiconductor substrate 2 oxide film 4 lower layer wiring 5 lower layer wiring 6 lower layer wiring 7 lower layer wiring 8 CVD oxide film 9 BPSG film 10 SOG film 11 contact hole 12 upper layer wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に下層配線を形成する第1
工程と、前記下層配線が形成された半導体基板の全面
に、リフロー性を有する絶縁膜を形成する第2工程と、
前記リフロー性を有する絶縁膜上の所望部分に、選択的
に有機溶剤に溶解したガラス溶液からなる膜を形成する
第3工程と、前記有機溶剤に溶解したガラス溶液からな
る膜をマスクとして熱処理を行う第4工程と、前記下層
配線及び/又は半導体基板と接続する上層配線を形成す
る第5工程と、を含むことを特徴とする半導体装置の製
造方法。
1. A first wiring for forming a lower layer wiring on a semiconductor substrate
A second step of forming an insulating film having a reflow property on the entire surface of the semiconductor substrate on which the lower layer wiring is formed,
A third step of forming a film made of a glass solution selectively dissolved in an organic solvent on a desired portion on the reflowable insulating film, and a heat treatment using the film made of the glass solution dissolved in the organic solvent as a mask. A method of manufacturing a semiconductor device, comprising: a fourth step to be performed; and a fifth step of forming an upper layer wiring connected to the lower layer wiring and / or the semiconductor substrate.
JP23222292A 1992-08-31 1992-08-31 Method of manufacturing semiconductor device Pending JPH0684901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23222292A JPH0684901A (en) 1992-08-31 1992-08-31 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23222292A JPH0684901A (en) 1992-08-31 1992-08-31 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH0684901A true JPH0684901A (en) 1994-03-25

Family

ID=16935901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23222292A Pending JPH0684901A (en) 1992-08-31 1992-08-31 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0684901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122301C (en) * 1997-03-31 2003-09-24 日本电气株式会社 Method for manufacturing semiconductor device using planarization technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122301C (en) * 1997-03-31 2003-09-24 日本电气株式会社 Method for manufacturing semiconductor device using planarization technique

Similar Documents

Publication Publication Date Title
JP3193335B2 (en) Method for manufacturing semiconductor device
JPH09172068A (en) Method for manufacturing semiconductor device
JPH03244126A (en) Manufacture of semiconductor device
JPH10163198A (en) Semiconductor device and its manufacture
JPH0684901A (en) Method of manufacturing semiconductor device
JPH10214892A (en) Manufacture of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JP2000260864A (en) Semiconductor device and manufacture thereof
KR0126777B1 (en) Multi-layer connecting method of semiconductor device
JPH0878518A (en) Fabrication of semiconductor device
JPH05152444A (en) Manufacture of semiconductor device
KR0167602B1 (en) Method of forming multilayered metal wire for ic and semiconductor devices therewith
KR0127689B1 (en) Forming method for multi layered metal line
CN117976614A (en) Method for forming semiconductor device
JPH07161720A (en) Semiconductor device and its manufacture
KR100588899B1 (en) Method for forming the mim cap of semiconductor device
KR100260356B1 (en) Method for forming multi metal interconnection
JPH05243226A (en) Manufacture of semiconductor device
JPH0590425A (en) Formation of multilayer wiring
JPH06349828A (en) Manufacture of integrated circuit device
KR920000629B1 (en) Manufacturing method of semiconductor device using etch-back process
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH05299517A (en) Manufacture of semiconductor device
JPH0226054A (en) Manufacture of semiconductor device
JPH09129726A (en) Semiconductor device and manufacture thereof