JPS59195845A - Fabrication of multilayer interconnection - Google Patents

Fabrication of multilayer interconnection

Info

Publication number
JPS59195845A
JPS59195845A JP7042983A JP7042983A JPS59195845A JP S59195845 A JPS59195845 A JP S59195845A JP 7042983 A JP7042983 A JP 7042983A JP 7042983 A JP7042983 A JP 7042983A JP S59195845 A JPS59195845 A JP S59195845A
Authority
JP
Japan
Prior art keywords
wiring layer
insulating film
wiring
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7042983A
Other languages
Japanese (ja)
Inventor
Yoshiaki Komatsubara
小松原 吉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7042983A priority Critical patent/JPS59195845A/en
Publication of JPS59195845A publication Critical patent/JPS59195845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent breakage of the wiring layer and to improve the manufacturing yield and the reliability by laying a first wiring layer on the projecting part previously arranged on the substrate as well as by subjecting the inter-layer insulating film to levelling treatment. CONSTITUTION:A projecting part 12 is arranged on the predetermined position of the semiconductor substrate 11. Next, as a wiring of first layer, Al is coated and this film is patterned to form a first wiring layer 13. Next, for levelling of the surface, an organic insulator e.g. polyimide resin is spin-coated to form an insulating film 14. Next, the insulating film 14 is subjected to the overall etching so far as a first wiring layer 13a on the projecting part 12 is exposed. Lastly, a metal layer to become a second wiring, e.g. Al film coated over the whole surface is patterned to form a second wiring layer 15. At this time, a part of the second wiring layer 15 is so arranged that it is in contact with the exposed first wiring layer 13a.

Description

【発明の詳細な説明】 〔発明の技術分野) 本発明は、多層配線の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for manufacturing multilayer wiring.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、多層配線を製造するには次に述べるような方法が
用いられる。まず、第1図(ajに示す如く基板1上に
蒸着法やスノ々ツタ法等により金属層を被着したのち、
写真蝕刻法を用い金属層を/fターニングして第1層目
の配線層2を形成する。次いで、無機絶縁物であればC
VD法若しくはスA?ツタ法、有機絶縁物であればスピ
ンコ−ト法を用い、第1図(b)に示す如く全面に絶縁
膜3を被着形成する。その後、写真蝕刻法を用い第1図
(e)に示す如く所定の場所にスルーホール4を形成す
る。次いで、蒸着法やスパッタ法等によシ全面に金属層
を被着し、続いて写真蝕刻法を用い金属層をパターニン
グして第1図(d)に示す如く@2層目の配線層5を形
成する。これによシ多層配線が完成することになる。
Conventionally, the following method is used to manufacture multilayer wiring. First, as shown in FIG.
A first wiring layer 2 is formed by /f turning the metal layer using photolithography. Next, if it is an inorganic insulator, C
VD method or SuA? An insulating film 3 is deposited on the entire surface as shown in FIG. 1(b) using the ivy method or the spin coating method if an organic insulator is used. Thereafter, through holes 4 are formed at predetermined locations using photolithography as shown in FIG. 1(e). Next, a metal layer is deposited on the entire surface by a vapor deposition method, a sputtering method, etc., and then the metal layer is patterned using a photolithography method to form the second wiring layer 5 as shown in FIG. 1(d). form. This completes the multilayer wiring.

ところで、近年パターンが微細になるに従って高い加工
精度が要求されるようになp1配線層、スルーホールと
も側面が垂直に切られるようになっている。これに伴い
、上述した方法では次のような問題が生じている。すな
わち、前記絶縁膜3として無機絶縁物を用いた場合、第
2図(a)に示す如く第1配線層2のエツジ部6及びス
ルーホール部7で第2配線層5に段切れが生じる。また
、絶縁膜3として有機絶縁物を用いた場合は、第2図(
b)に示す如く絶縁膜3の表面が比較的平坦になること
からエツジ部での段切れはなくなるが、スルーホール部
7では同じように段切れを生ずる。この結果、製造歩留
り及び信頼性が低下するという問題があった。
Incidentally, in recent years, as patterns have become finer, higher processing precision has been required, and the sides of both the p1 wiring layer and through holes are now cut vertically. Along with this, the following problems have arisen in the above-mentioned method. That is, when an inorganic insulator is used as the insulating film 3, breaks occur in the second wiring layer 5 at the edge portions 6 and through-hole portions 7 of the first wiring layer 2, as shown in FIG. 2(a). Furthermore, when an organic insulator is used as the insulating film 3, as shown in FIG.
As shown in b), since the surface of the insulating film 3 becomes relatively flat, there is no step break at the edge portion, but a step break occurs in the through hole portion 7 as well. As a result, there has been a problem in that manufacturing yield and reliability are reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、配線層の段切れを防止することができ
、製造歩留り及び信頼性の向上をはかり得る多層配線の
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing multilayer wiring that can prevent disconnection of wiring layers and improve manufacturing yield and reliability.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、基板上に予め凸部を設けこの凸部上に
第一配線層を通すと共に、層間絶縁膜を平坦化処理する
ことにより、配線層のクロスオーバ部での段差及びスル
ーホール部をなくすことにある。
The gist of the present invention is to provide a convex portion on the substrate in advance, pass the first wiring layer over the convex portion, and flatten the interlayer insulating film to eliminate steps and through holes at the crossover portion of the wiring layer. The aim is to eliminate the department.

すなわち本発明は、多層配線の製造方法において、基板
上の所定の位R(配線層間のコンタクトをとるべき位置
)に凸部を形成したのち、基板上IF−第一の配線層を
形成しかつ該配線層の一部を凸部上に形成し、次いで全
面に絶縁膜を被着しかつその表面を平坦化し、次いで全
面エツチングを施し上記凸部上の第1配線層が露出する
まで上記絶縁膜をエツチング1.4、しかるのち上記絶
縁膜上に第2配線層を形成しかつ該配線層の一部を上記
露出した第1配線層に接触せしめるようにした方法であ
る。
That is, in the method of manufacturing multilayer wiring, the present invention forms a convex portion at a predetermined position R on a substrate (a position where contact between wiring layers is to be made), and then forms an IF-first wiring layer on the substrate. A part of the wiring layer is formed on the convex portion, and then an insulating film is deposited on the entire surface and the surface is planarized, and then the entire surface is etched until the first wiring layer on the convex portion is exposed. In this method, the film is etched 1.4 times, and then a second wiring layer is formed on the insulating film, and a part of the wiring layer is brought into contact with the exposed first wiring layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1配線層のエツジ部における段差及
びスルーホールがなくなり、表面が略平坦になった絶縁
膜上に第2の配線層を形成することができるので、第2
配線層の段切れ等を未然に防止することができる。この
ため、製造歩留りが高く、かつ信頼性の高い多層配線を
容易に製造することができる。
According to the present invention, steps and through holes at the edge portion of the first wiring layer are eliminated, and the second wiring layer can be formed on the insulating film with a substantially flat surface.
It is possible to prevent disconnections in the wiring layer. Therefore, multilayer wiring with high manufacturing yield and high reliability can be easily manufactured.

また、第1及び第2配線層のコンタクトのために光蝕刻
法を用いてスノーホールを形成する必要もなく、単に絶
縁膜の全面エツチングでコンタクトを実現できるので、
その製造工程が著しく簡単となり、生産性の向上をはか
り得る等の利点がちる。
Furthermore, there is no need to form snow holes using photoetching for contact between the first and second wiring layers, and the contact can be realized simply by etching the entire surface of the insulating film.
It has the advantage that the manufacturing process is significantly simplified and productivity can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第3図(a)〜(e)は本発明の一実施例に係わる多層
配線製造工程を示す断面図である。
FIGS. 3(a) to 3(e) are cross-sectional views showing a multilayer wiring manufacturing process according to an embodiment of the present invention.

なお、この実施例では基板に半導体基板を用いた場合に
ついて説明する。また、半導体基板にはトランジスタ、
ダイオード及び抵抗等が゛集積されているが図では省略
する。まず、第3図(a)に示す如く半導体基板1ノ上
の所定の位置に凸部12を設ける。この凸部12の作シ
方としては種々考えられるが、本実施例では次のように
した。すなわち、第4図(a)に示す如く基板1ノ上の
所定の位置にポリシリコンの島31を選択形成したのち
、同図(b)に示す如く全面にリンを含んだ酸化膜32
例えばPSG膜をCVD法等により被着する。その後、
これを熱処理することによってメルトさせ、第4図(C
)に示す如く基板11上に比較的なだらかな凸部33を
形成する。
In this embodiment, a case will be explained in which a semiconductor substrate is used as the substrate. In addition, the semiconductor substrate includes transistors,
Diodes, resistors, etc. are integrated, but are omitted from the diagram. First, as shown in FIG. 3(a), a convex portion 12 is provided at a predetermined position on a semiconductor substrate 1. As shown in FIG. There are various ways to create the convex portion 12, but in this embodiment, the method was as follows. That is, after selectively forming polysilicon islands 31 at predetermined positions on the substrate 1 as shown in FIG. 4(a), an oxide film 32 containing phosphorus is formed over the entire surface as shown in FIG. 4(b).
For example, a PSG film is deposited by CVD or the like. after that,
This is melted by heat treatment, as shown in Figure 4 (C
), a relatively gentle protrusion 33 is formed on the substrate 11.

そして、この凸部33を前記凸部12として用いた。な
お、ここで島3ノにはポリシリコンを用いたがこれに限
るものではなく、酸化膜、窒化膜或いはメタル等であっ
てもよい。また、島31の上に被着する絶縁膜32はリ
ンを含んだ酸化膜に限るものではなく、ポリイミド等の
有機絶縁物であってもよい。
Then, this convex portion 33 was used as the convex portion 12. Although polysilicon is used here for the island 3, it is not limited to this, and may be an oxide film, a nitride film, a metal, or the like. Further, the insulating film 32 deposited on the island 31 is not limited to an oxide film containing phosphorus, but may be an organic insulating material such as polyimide.

次に、第1層目の配線として、例えばアルミニウムを蒸
着法やスパッタ法等で全面に約1〔μm〕被着し、写真
蝕刻法によりこのアルミニウム膜をパターニングして第
3図(b)に示す如く第1配線層13を形成する。この
とき配線層13のすぐなくとも一部が凸部12の頂上に
かかるように配置することにより、凸部120頂上部の
配線層13aと他の部分の配線層13bとの間に高さの
差を作ることができる。次いで、表面を平坦にするため
、有機絶縁物として例えばポリイミド樹脂をスピンコー
ドシ、第3図(c)に示す如く絶縁膜14を形成する。
Next, as the first layer of wiring, for example, aluminum is deposited to a thickness of approximately 1 μm over the entire surface by vapor deposition or sputtering, and this aluminum film is patterned by photolithography as shown in Figure 3(b). A first wiring layer 13 is formed as shown. At this time, by arranging the wiring layer 13 so that at least a part thereof immediately covers the top of the convex part 12, there is a height difference between the wiring layer 13a at the top of the convex part 120 and the wiring layer 13b in other parts. You can make a difference. Next, in order to flatten the surface, an insulating film 14 is formed using an organic insulator such as polyimide resin by spin coating, as shown in FIG. 3(c).

ここで、ポリイミド樹脂をスピンコードする方法は、低
い所には厚く付き、高い所には薄く付くという特性を有
するため、他の方法、例えばCVD法による8i02膜
の被着より平坦化に向いている。また、より平坦にする
には、厚い膜厚で一度塗布するよシ、薄い膜厚のものを
多数回塗布した方がよい。この方法で表面の凹凸を20
00(X )以下にすることができる。
Here, the method of spin-coding polyimide resin has the characteristic that it adheres thickly to low places and thinly to high places, so it is more suitable for flattening than other methods such as CVD method of depositing 8i02 film. There is. Furthermore, in order to make the surface more flat, it is better to apply a thin film multiple times rather than applying a thick film once. This method reduces surface irregularities by 20
00(X) or less.

次いで、第3図(d)に示す如く前記凸部12上の第1
配線層13aが露出するまで絶縁膜14を全面エツチン
グする。このエツチングには、ウェットエツチングと、
ガスを用いるドライエツチングとがちるが、均−性及び
再現性においてドライエツチングの方が優っており、中
でも平行平板形のプラズマエツチング装置を用いたドラ
イエツチングが非常にすぐれている。また、エツチング
ガスとしては酸素或いは酸素を主にした混合ガスを用い
ればよい。代表的なエツチング条件としては、酸素ガス
圧0.02 (Torr )、高周波電力密度0.15
 (W/cffl ”lのときおよそ1200CX /
min )のエツチングレートが得られる。最後に、第
2層目の配線となる金属層、例えばアルミニウムを蒸着
法やスパッタ法等によシ全面に約1〔μm〕被着し、写
真蝕刻法を用いこのアルミニウム膜パターンエングして
第3図(e)に示す如く第2配線層15を形成する。こ
のとき、第2配線層15の一部が前記露出した第1配線
JGQ 13 aと接触するようにする。
Next, as shown in FIG. 3(d), the first
The entire surface of the insulating film 14 is etched until the wiring layer 13a is exposed. This etching includes wet etching,
Although it is different from dry etching using a gas, dry etching is superior in terms of uniformity and reproducibility. Among them, dry etching using a parallel plate type plasma etching apparatus is extremely superior. Further, as the etching gas, oxygen or a mixed gas mainly containing oxygen may be used. Typical etching conditions include oxygen gas pressure of 0.02 (Torr) and high frequency power density of 0.15.
(Approximately 1200CX / when W/cffl “l”
An etching rate of min ) is obtained. Finally, a metal layer that will become the second layer of wiring, such as aluminum, is deposited to a thickness of approximately 1 μm over the entire surface by vapor deposition or sputtering, and a pattern of this aluminum film is engraved using photolithography. A second wiring layer 15 is formed as shown in FIG. 3(e). At this time, a part of the second wiring layer 15 is brought into contact with the exposed first wiring JGQ 13a.

かくして本実施例方法によれば、第2配線層15は表面
が略平坦な絶縁膜14上に形成されることになる。した
がって、第1配線層13のエツジ部において第2配線層
15に段切れが生じる等の不都合を未然に防止すること
ができる。
Thus, according to the method of this embodiment, the second wiring layer 15 is formed on the insulating film 14 whose surface is substantially flat. Therefore, inconveniences such as breakage in the second wiring layer 15 at the edge portion of the first wiring layer 13 can be prevented.

また、各配線層13.15のコンタクトをとるに際し従
来のようにスルーホールを用いる必要が全くないことか
ら、コンタクト部において第2配線層15の段切れが生
じる等の不都合もない。このため、製造歩留り及び信頼
性の著しい向上をはかυ得る。
In addition, since there is no need to use through holes as in the prior art when making contact between the wiring layers 13 and 15, there is no problem such as breakage of the second wiring layer 15 at the contact portion. Therefore, manufacturing yield and reliability can be significantly improved.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記配線層として(r:i、アルミニウム
の他に各種の導体膜を用いることができる。また、配線
層の形成方法も蒸着法やスパッタ法等に限定されないの
は勿論のことである。さらに、配線層間の絶縁膜は、表
面平坦化の観点から有機物であるのが最も好ましいが、
S io、や8i3N、等の無機物であってもよい。こ
の場合、表面平坦化のために上記無機物絶縁膜を被着し
たのち、該絶縁膜上にレノスト等の有機物を比較的厚く
塗布してレジスト表面を平坦化し、その後レジスト及び
絶縁膜の各エツチング速度が略等しい条件で全面エツチ
ングを施すようにすればよい。
Note that the present invention is not limited to the embodiments described above. For example, various conductive films other than (r:i) and aluminum can be used as the wiring layer. Also, it goes without saying that the method for forming the wiring layer is not limited to vapor deposition, sputtering, or the like. Furthermore, it is most preferable that the insulating film between the wiring layers is made of an organic material from the viewpoint of surface flattening.
It may also be an inorganic material such as Sio, 8i3N, or the like. In this case, after depositing the above-mentioned inorganic insulating film for surface flattening, an organic material such as lenost is applied relatively thickly on the insulating film to flatten the resist surface, and then each etching rate of the resist and the insulating film is adjusted. Etching may be performed on the entire surface under substantially equal conditions.

また、前記基板上に凸部を形成する方法は何ら実施例に
限定されるものではなく、適宜変更可能である。さらに
、半導体基板等において素子形成の過程で必然的に形成
される凸部を有する場合、この凸部を利用することも可
能である。
Furthermore, the method for forming the convex portions on the substrate is not limited to the embodiments, and can be changed as appropriate. Furthermore, if a semiconductor substrate or the like has a convex portion that is inevitably formed during the process of forming an element, it is also possible to utilize this convex portion.

また、基板として半導体基板の代りに絶縁基板を用いる
ことも可能である。その他、本発明の要旨を逸脱しない
範囲で種々変形して実施することができる。
Furthermore, it is also possible to use an insulating substrate instead of a semiconductor substrate as the substrate. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は従来の多層配線製造工程を示す
断面図、第2図(a) (b)は上記従来方法の問題点
を説明するための断面図、第3図(a)〜(e)は本発
明の一実施例方法に係わる多層配線製造工程を示す断面
図、第4図(a)〜(C)は上記実施例で使用した凸部
を形成工程を示す断面図である。 11・・・基板、12.33・・・凸部、13・・・第
1配線層、14・・・絶縁膜、15・・第2配線層、3
1・・・ポリシリコン島、32・・・酸化膜。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2丙 第3図 第゛3図 第4図
FIGS. 1(a) to (d) are cross-sectional views showing the conventional multilayer wiring manufacturing process, FIGS. 2(a) and (b) are cross-sectional views for explaining the problems of the conventional method, and FIG. a) to (e) are cross-sectional views showing the multilayer wiring manufacturing process according to an embodiment of the present invention, and FIGS. 4(a) to (C) are cross-sectional views showing the process of forming the convex portions used in the above embodiment. It is a diagram. DESCRIPTION OF SYMBOLS 11... Substrate, 12.33... Convex part, 13... First wiring layer, 14... Insulating film, 15... Second wiring layer, 3
1... Polysilicon island, 32... Oxide film. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 C Figure 3 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)゛  基板上に複数の配線層を積層してなる多層
配線を製造する方法において、前記基板上の所定の位置
に凸部を形成する工程と、次いで上記基板上に第1の配
線層を形成しかつ該配線層の一部を上記凸部上に形成す
る工程と、次いで全面に絶縁膜を被着しかつその表面を
平坦化する工程と、次いで全面エツチングを施し前記凸
部上の第1配線層が露出するまで上記絶縁膜をエツチン
グする工程と、次いで上記絶縁膜上に第2配線層を形成
しかつ該配線層の一部を上記・ 露出した第1配線層に
接触せしめる工程とを具備したことを特徴とする多層配
線の製造方法。
(1)゛ In a method for manufacturing multilayer wiring formed by laminating a plurality of wiring layers on a substrate, a step of forming a convex portion at a predetermined position on the substrate, and then forming a first wiring layer on the substrate. and forming a part of the wiring layer on the convex portion, then a step of depositing an insulating film over the entire surface and flattening the surface, and then etching the entire surface to form a part of the wiring layer on the convex portion. etching the insulating film until the first wiring layer is exposed; and then forming a second wiring layer on the insulating film and bringing a portion of the wiring layer into contact with the exposed first wiring layer. A method for manufacturing multilayer wiring, characterized by comprising:
(2)  前記絶縁膜として、有機物を用いたことを特
徴とする特許請求の範囲第1項記載の多層配線の製造方
法。
(2) The method for manufacturing a multilayer wiring according to claim 1, wherein an organic material is used as the insulating film.
(3)  前記絶縁膜として無機物を用い、この絶縁膜
を全面に被着したのち、該絶縁膜上にレジストを塗布し
全面エツチングをしてその表面を平坦化するようにした
ことを特徴とする特許請求の範囲第1項記載の多層配線
の製造方法。
(3) The insulating film is made of an inorganic material, and after the insulating film is deposited on the entire surface, a resist is applied on the insulating film and the entire surface is etched to flatten the surface. A method for manufacturing a multilayer wiring according to claim 1.
(4)  前記絶縁膜を全面エツチングする工程として
、平行平板型プラズマエツチング装置を用いたことを特
徴とする特許請求の範囲第1項り己載の多層配線の製造
方法。
(4) A method of manufacturing a multilayer wiring according to claim 1, characterized in that a parallel plate type plasma etching apparatus is used in the step of etching the entire surface of the insulating film.
JP7042983A 1983-04-21 1983-04-21 Fabrication of multilayer interconnection Pending JPS59195845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7042983A JPS59195845A (en) 1983-04-21 1983-04-21 Fabrication of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7042983A JPS59195845A (en) 1983-04-21 1983-04-21 Fabrication of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS59195845A true JPS59195845A (en) 1984-11-07

Family

ID=13431224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7042983A Pending JPS59195845A (en) 1983-04-21 1983-04-21 Fabrication of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS59195845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091340A (en) * 1988-07-19 1992-02-25 Nec Corporation Method for forming multilayer wirings on a semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833854A (en) * 1981-08-21 1983-02-28 Fujitsu Ltd Manufacture of semiconductor device
JPS5833853A (en) * 1981-08-21 1983-02-28 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833854A (en) * 1981-08-21 1983-02-28 Fujitsu Ltd Manufacture of semiconductor device
JPS5833853A (en) * 1981-08-21 1983-02-28 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091340A (en) * 1988-07-19 1992-02-25 Nec Corporation Method for forming multilayer wirings on a semiconductor device

Similar Documents

Publication Publication Date Title
JPH0645327A (en) Semiconductor device and manufacture thereof
JPS63240045A (en) Semiconductor device
JPS59195845A (en) Fabrication of multilayer interconnection
JP2738682B2 (en) Wiring formation method
JPS5893328A (en) Method of flattening insulating layer
JPH0265256A (en) Manufacture of semiconductor device
JPH05175195A (en) Manufacture of semiconductor device
JPS62118539A (en) Formation of multilayer interconnection
JP2671369B2 (en) Method for manufacturing semiconductor device
JPS62155537A (en) Manufacture of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPH098007A (en) Method for flattening insulation film
KR920003876B1 (en) Manufacturing method of semiconductor device
JPH02156537A (en) Manufacture of semiconductor device
JPH0587973B2 (en)
JPS592351A (en) Manufacture of semiconductor device
JPH0212827A (en) Manufacture of semiconductor device
JPH03153035A (en) Manufacture of semiconductor device
JPH04264728A (en) Semiconductor device and production thereof
JPH0797583B2 (en) Method for forming interlayer insulating film
JPS5895839A (en) Manufacture of semiconductor device
JPS61288445A (en) Manufacture of semiconductor device
JPS60234344A (en) Manufacture of semiconductor device
JPS63226041A (en) Manufacture of semiconductor integrated circuit device
JPS6235537A (en) Semiconductor device and manufacture thereof