JPS63130198A - 流体処理装置並びにその製法 - Google Patents

流体処理装置並びにその製法

Info

Publication number
JPS63130198A
JPS63130198A JP61275471A JP27547186A JPS63130198A JP S63130198 A JPS63130198 A JP S63130198A JP 61275471 A JP61275471 A JP 61275471A JP 27547186 A JP27547186 A JP 27547186A JP S63130198 A JPS63130198 A JP S63130198A
Authority
JP
Japan
Prior art keywords
pipe
fluid
tube
treatment device
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61275471A
Other languages
English (en)
Inventor
ジェラルド・シー・ラップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertech Treatment Systems Inc
Original Assignee
Vertech Treatment Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertech Treatment Systems Inc filed Critical Vertech Treatment Systems Inc
Publication of JPS63130198A publication Critical patent/JPS63130198A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/083Wet air oxidation using deep well reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Treatment Of Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、市のスラッジを含む流体の廃物の流奴の垂直
方式の湿式酸化に用いられるような流体処理装置に関す
る。
地上の湿式酸化機構は、下水の汚物処理から出る市のス
ラッジの処理の為には数年間余り満足し得なかった。地
上の湿式酸化機構は、酸化反応乞する為高い圧力と熱と
を用いるが、装置はエネルギが有効ではなく、機構は不
十分でスラッジの酸化は一部のみであった。(ジンメル
マンの米国特許第2,665,249号、ヒエースラ他
の米国特許第2.932,613号参照)地上の湿式酸
化方法は、従って沈澱、排水、乾燥、焼却等を含む市の
スラッジの従来の処理方法を変光なかつ九。
種々の垂直方式の流体の処理機構が従来技術によって考
えられたが非常に限定され之装置においてのみ用いられ
た。この流体の処理機構は制御部から地下に延びる垂直
のパイプを利用している。
処理されるべき流体はポンプで垂直の反応パイプ内に送
られ、流体は所望の流体の反応を助ける圧力ヘッドを生
じる。現在迄用いらnた処理において、反応は電気的抵
抗コイル或は熱交換器内を循環する加熱された流体によ
って加えらnる別の熱を必要とする。乏気或は他のガス
が処理されるべき流体に加えられて反応を助けている。
いくつかの従来技術の特許は、市のスラッジ或は他の流
体の廃物の流れの処理の為垂直の湿式酸化反応機構を提
供しているが、これ等の特許に示した方法及び装置は、
例えば米国特許第3,449,247号に示すように不
十分であった。これ等の従来技術の特許に示すように、
流体ヘッドによって生ずる圧力は反応装置の長さに応す
る。かくして若し、市のスラッジ内の酸化し得る材料の
濃度が機構中に供給されて空気内で用い得る酸素に対し
て平衡するならば、理論上略1マイルの深さで市のスラ
ブ・ゾを十分酸化し得る。然し乍ら出願人の知識では、
本発明の譲受人を除き誰も市のスラッジ用の垂直の湿式
酸化機構を建設し得なかった。
本発明の譲受人に譲渡され、名称が1地表下で制御され
促進され念化学反応をする為の方法と装置”であるドク
タ、マツフグルウの米国特許第4.272,383号は
、現在コロラド州のロングモントで実験用の基本として
作動している市のスラッジ用の最初に成功した垂直の湿
式酸化反応機構の原理を示している。このマツフグルウ
の特許に示され次装置は、一連の略同心で望遠鏡的に配
置されたパイプを有し、このパイプの内方のパイプ内に
は薄められた市のスラッジが導入され、パイプの底部に
隣接する反応部に向って下方に流れ、内方のパイプを包
囲する第2のパイプを経て上方に再循環し、反応を続け
る。圧縮空気がティラー型のガスの泡の形で下方に流れ
るスラッジ内に供給される。マツフグルウの特許におい
ては、反応の温度は内部の同心のパイプを包囲する熱交
換器のジャケットによって制御さn1加熱された油或は
他の熱交換流体がジャケット内に送らnて反応部の温度
を制御する。
本発明の流体処理装置は、中心に熱交換器を設け、処理
されるべき流体は熱交換器を包囲する再循環ノクイグ内
にあり、反応部の温度制御をより良くし、処理されるべ
き流体を更に有効に加熱する。
熱交換器の中心の熱い流体を送る・ダイブは熱絶縁チュ
ーブでありて、このチューブは2個の同心で且離間した
状態で望遠鏡的に配置されチューブ間の間隙はシールさ
れると共に、不活性ガスで充填さnている。本発明の流
体処理装置に用いられるパイプ及び熱絶縁チューブは全
体の流体処理装置の長さに適応する垂直に相互連結され
た一組のパイプである。熱絶縁チューブは油の井戸工業
及び他の工業において数年間加熱された流体及びガス全
流すのに用いられた。然し乍ら以下に述べるように、本
発明の流体処理装置では、パイプの底部に隣接して位置
した反応部内において熱を出来るだけ一部に集中する必
要がある。加熱された油或は他の熱伝達流体は、装置の
頂部即ち地上で供給さ汎る。かくして熱絶縁チューブよ
り再循環する熱伝達流体への熱損失は最小でなければな
らない。
現在相当の熱損失はガス状の水素を形成する為に再結合
する熱絶縁チューブのチューブ間の間隙内への水素原子
の浸透に原因する事が判っ念。従って、熱絶縁チューブ
の熱絶縁特性を改良する為、水素の浸透を阻止する改良
された熱絶縁チー−ブを開発する事が必要であり、この
ようにしてここに述べた形の熱交換器と流体処理装置が
改良さ詐る。
前述し九ように、本発明の熱交換器と熱絶縁チューブと
に限定されるわけではないが、特に市のスラッジと他の
流体の廃物の湿式酸化を含む垂直の流体処理装置のよう
な高い温度と圧力で流体を連結処理する流体処理装置に
用いられる。好ましい熱交換器は開口端を設けた細長い
熱絶縁チューブを有し、このチューブは熱絶縁チューブ
と連通すると共に開口端に隣接する閉止端を有する第2
の/4’イブ内に略同心的且望遠鏡的に配置さnている
。熱絶縁チューブは第1の内方のチューブと第2の外方
のチューブとを有し、外方のチーーグは略同心で第1の
チューブを離間した状態で包囲している。第1と第2の
チューブ間の間隙はシールされてアルプン、ヘリウム或
はキセノンのよりな不活性ガスで充填されている。油の
ような熱伝達流体が熱絶縁チューブの第1の内方のチュ
ーブ内に高い温度で供給される。熱伝達流体は次で加熱
、再循環の為に熱絶縁チューブを経て流n1熱絶縁チュ
ーブの外方のチューブと流体と酸化ガスを含む・ぞイブ
との間の環状の間隙を経て復帰する。
熱交換器の最も好ましい実施例においては、熱絶縁チュ
ーブは熱絶縁チューブの両チューブの内外面に水素の浸
透防壁を有する0この防壁はアルミニ為−ム、ニッケル
或は銅でチューブの内外面をコーティングすることによ
り形成さnる。防壁は熱絶縁チューブの第1と第2のチ
ューブ間の間隙内への水素原子の流れを減少し、それに
よって熱絶縁チューブの中心のチューブ内の熱い熱伝達
流体から、その内面が熱絶縁チューブの外面である環状
部内の復帰熱伝達流体への熱損失を減少する。本発明の
熱交換器が流体内に沈められると、熱伝達は熱交換器の
端部に隣接して位置する反応部内に集中する。そしてこ
の事は本発明の垂直の流体処理装置においては特に好都
合である。細長い流体の熱交換器は次で処理されるべき
流体を含む循環パイプによって包囲される。循環・ぜイ
ブは、熱交換器の外側の、4イグを望遠鏡的に離間した
状態で包囲する第2のパイプを有し、熱伝達流体を熱交
換器の外側のパイプと接触状態で流す。略同心で第2の
パイプを包囲する第3のノfイゾは市のスラッジのよう
な処理されるべき流体を流す。処理されるべき流体は第
2のツクイブと第3のノぐイブとの間を流れ最も外側の
第4のパイプを経て再循環する。この実施例においては
、流体処理装置は流体の循環パイプの端部に隣接する流
体反応部がある。
前述したように、本発明の流体処理装置は、市のスラッ
ジ及び汚染した流体の廃物を含む流体を高い温度と圧力
で連続して処理するのに特に適している。流体処理装置
が湿式酸化によって市のスラッジ及び他の廃物を処理す
るのに利用される場合は、流体処理装置は地中に1マイ
ル以上の深さで垂直に延びる複数の細長い略同心で望遠
鏡的に配置された・母イブを有する。熱い熱伝達流体を
流す中心の熱絶縁チューブVs、開ロ端を有し、熱交換
器の外側のパイプに熱絶縁チューブの開口端に隣接する
閉止端を有し、熱絶縁チ1−プと連通し熱伝達流体の連
続する流nを与えている。熱交換器の外側の/IPイブ
を包囲する流体循環・々イブの第3のパイプは又開口端
を有し、最も外側のパイプは又流体循環パイプの開口端
と連通ずる閉止端を有し、処理されるべき流体の連続す
る循環を与えている。加熱された反応部はかくして流体
循環パイプの底部に隣接して位置し、循環ノクイグ内の
流体ヘッドの圧力は、反応部内の高い温度と圧力で流体
の廃物の反応を保証している。
本発明の熱交換器と流体処理装置との最も好ましい実施
例においては、水素の拡散防壁は絶縁チューブの同心チ
ューブの内外面上におけるアルミニュームの拡散コーテ
ィングであり、鉄−アルミニューム合金の表面コーティ
ングを形成している。
鉄−アルミニ晶−ムの合金のコーティングはチ凰−1間
のシールされ九間隙内への水素原子の拡散を防止するの
に特に有効である事が判った。拡散防壁は又チューブの
表面に鋼或はニッケルを電気メッキする事によっても形
成さnる。前述したように、熱絶縁チューブのチューブ
間のシールされ次間隙への水素原子の拡散は熱伝導率を
増加し、熱絶縁チューブを経て流れる熱伝達流体から熱
交換器の第3の外側のパイプ内の再循環する熱伝達流体
への放射方向の熱損失を増加する。
前述したように、熱交換装置に用いらnる熱絶縁チュー
ブを形成する方法は、望遠鏡的にチューブを配置し、チ
ューブの内外面に水素浸透防壁を形成し、チューブを同
心的、且離間し次状態で望遠鏡的に組み込むと共にチュ
ーブ間の間隙をシールする工程よシなる。前記間隙は次
で空気が抜かtt、不活性ガスで充填される事が好まし
い。本発明の熱絶縁チューブを形成する最も好ましい方
法においては、水素の浸透防壁のコーティングは表面に
鉄−アルミニュームの合金を形成するようにアルミニュ
ームでチューブの内外面を拡散コーティングする事によ
って形成される。前述し念ように水素浸透防壁はニッケ
ルで表面を電気メッキするか或は銅による電気メッキで
形成される。
図示に示した連結する流体の処理装置20は、市のスラ
ッジの湿式酸化処理を含む種々の汚染した流体の廃物を
処理するのに適した垂直の流体反応装置である。前述の
マツクダルウの特許に述べたように、流体処理装置は地
面内に垂直に延びる略同心で望遠鏡的に挿入され之複数
のパイプよりなる。市のスラッジの湿式酸化の為の処理
装置においては、例えば、/4’イブは地下に略1マイ
ルも延びて相当の圧力ヘッドを生じる。然し乍ら、パイ
プの長さは処理される流体と所望の流体反応に応するも
のである。本発明の流体処理装置は固体の粒子が循環す
る流体中に浮遊する種々の変換反応にも用いられる。更
に、ノ臂イグ或はチューブは連、癒してない。各パイプ
は複数の部分からなり、各部分は油の井戸の中のパイプ
と同様に連続して連結さnている。代表的な市のスラッ
ジの湿式酸化装置においては、各パイプの長さは40フ
イートで、全長は約5,200フイートであり、処理さ
れる流体の流れの割合は1分間当り約80乃至400ガ
ロンである。
本発明の流体処理装置の好ましい実施例においては、流
体の熱交換器22は流体処理装置の同心ツバイブの中心
に位置している。この熱交換器の第1の即ち最も内側の
パイプは開口端26を有する熱絶縁チューブ24である
。以下に更に詳細に述ヘルように、熱絶縁チューブは、
チューブ内ニおいて下方に流れる加熱された熱を伝達す
る流体から第2のパイfzg内において再循環する上方
に流れる熱を伝達する流体への放射方向の熱伝達を減少
する。図に示すように、第1のパイプ即ち熱絶縁チュー
ブは第2のパイプ28内に略同心的に望遠鏡的に挿入さ
几、第2のパイプは絶縁チューブの開口端26に隣接す
る閉止端3oを有する。
処理される流体は以下に述べるように、熱交換器22の
まわりを循環する。
外方の流体の循環パイプの第1のパイプである第3のパ
イプ32は、略同心的に離間し望遠鏡的に熱交換器22
を取シまいている。第3のパイプ32は熱交換器の閉止
端3oに隣接する開口端34を有する。第4の/4’イ
グ36は略同心的に離間し望遠鈍的に第3のi4イブを
包囲し、第3のパイプ32の開口端34に隣接する閉止
端38を有する。
処理されるべき流体は熱交換器22の第2のノやイブ2
8に接してノーイブ32を経て下方に循環し、次いで処
理された流体は第3のパイプ?2の開口端34を経なが
ら第3のノ(イブ32の外面に接触して第4のパイプ3
6を経て上方に流れる。前記し次マツクグルウの特許に
示す如く、流体処理装置は装置の底部に隣接して反応部
があり、そこで処理されるべき流体は熱と圧力とにより
反応する。
本発明の原理的目的は、熱交換器から伝達された熱をパ
イプ32内において下方の反応部に循環する流体に集中
し、熱伝達装置の特に上方部における放射方向の熱伝達
を減少することである。
第1図は流体処理装置と方法に用いらnる地上の要素を
概略的に示している。油のような熱伝達流体はタンク4
0内に貯められている。油は任意のガスヒータのよりな
ヒータ42で加熱される。
油は一ンプ44によってタンク40からライン46を経
てヒータ42に送らn、流れの割合は弁52によって制
御される。加熱された油は次でライン48を経て送らn
、その流れの割合は弁50によって制御される。流体の
反応が湿式酸化反応のように熱を伴う場合には好ましい
温度を超える反応部の冷却が必要となる。かくして装置
は油が冷却される熱交換器54を有する。タンク40か
ら油はライン56を経てポンプ57により熱交換器54
に送られる。流れは弁62によって制御される。
冷却された油は次でライン58と弁60とにより流体処
理装置の供給ライン48に送らnる。
加熱され九油は次でライン48を経て隔離され九管24
の頂部に供給される。第2図に最も良く示すように、加
熱された油は、次で矢印70で示すように隔離され九管
を下方に流詐る。油は更に管24の開口端26よシ出て
矢印22に示すように管に接触しつつパイプ28を経て
上方に再循畷する。油或は他の熱伝達流体はパイfzg
の頂部からライン74、弁76を経てタンク40に戻る
市の下水汚物等汚染された工業用の流体のような処理さ
れるべき流体は、パイプ32の頂部に供給され前記熱交
換器22のまわシを循環する。第1図に示すように、処
理されるべき流体はタンク80に貯えら詐る。前記のマ
ツフグルウの特許に述べらnたように、流体処理装置は
市の汚水処理プラントから出るスラッジの処理に特に適
している。
スラッジはライン82を経て流れ、その流れは弁82に
よって制御さnる。流体のスラッジは次でライン86と
弁88とを経て装置に送られる。流体のスラッジは、市
の汚水処理プラントからライン90と弁95を経て送ら
nる液体の放出物で薄められる。流体のスラッジは薄め
らnて流体処理装置に送らnる酸化し得る材料の比率を
制御する事が好ましい。処理されるべき薄められた流体
のスラッジ或は他の流体は矢印94で示すように熱交換
器22の外壁28に接触しつつパイプ32を経て下方に
流れる。前記し九ように、パイプ32は開口端34を有
し、処理され念流体は外側のパイf36を経て上方に流
n流体処理装置から放出される。第1図に示すように、
処理さn之流体はパイプ36からライン98を経てタン
ク100に送ら几る。装置が流体のスラッジの湿式酸化
の為に用いられる場合は、タンク100は不活性の灰が
水から殆ど分離されるタンクである事が好ましい。灰は
ライン102を経て除去され、その流れの割合は弁10
4によって制御される。湿式酸化反応装置においてに表
面に浮ぶ水がライン106を経て流され希釈剤として用
いられる。第1図に示すように、水はライン106を経
て流れ)9イブ32と連通するライン86に送られる。
流れと希釈の割合は弁10Bによって制御される。前記
のマツフグルウの特許に示すように、市のスラッジ及び
他の汚染材料の湿式酸化中に下方に流nるスラッジ内に
空気が供給される。空気にティラー形の泡の形で地上3
9の下方で処理されるべき流体の下方への流れに供給さ
れる事が好ましい。他の流体の反応は所望の反応に応じ
て他のガスを必要とする。前記した装置は従って、空気
圧縮機110を有し、圧縮空気がライン112により地
上の下方でパイプ32内に処理されるべき下方に流詐る
流体に供給され、その流れは弁114によって制御され
る。圧縮機110は又本発明の流体処理装置において生
ずる反応によって要求さnる任意のガスを吐出するポン
プである。
前述したように、本発明の流体処理装置は、主として上
昇した温度と圧力で流体中の廃物を処理するものである
。圧力は流体のヘッドで与えられ、温度は反応熱と熱交
換器22とによって与えられる。市のスラッジの代表的
な湿式酸化反応においては底部の孔の温度は約500度
Fである。かくして、熱交換器の第2の即ち外側の・ぐ
イブ28に送られる油は500度F以上であるべきであ
る。
代表的な湿式酸化反応においては油は約700度Fの温
度でチューブ24の入口に送られる。油或は他の熱伝達
流体は次で管24の開口端26にむかって下方に流れ、
そこから約525度F乃至550度Fの温度で熱交換器
の外側のパイプ28に流れる。流体は次で第2図の矢印
72で示すようにパイプ28内を上昇し、パイプ32の
内側のパイプ28の外表面と接触する処理されるべき下
方に流nる流体を加熱する。/?イfzsの頂部出口に
おける油の温度は約150度Fである。前述し次ように
、流体の反応は下方に流れる流体の温度が350度Fを
超える反応部で生ずる。従って流体処理装置の好ましい
実施例は、チューブ24を用いてチューブ24内の下方
に流nる熱伝達流体から、パイプ28内の冷めたい熱伝
達流体への放射方向の熱伝達を減少する。チューブ24
の詳細を第2図に示す。チューブ24は夫々外表面12
2と内表面124とを有する内方のチューブ120と、
夫々外表面128と内表面130とを有する外方のチュ
ーブ126とを有する。内方のチューブ120は互いに
離間した関係で外方のチューブ126と同心で望遠競的
にはめ込まnている。チューブ間の間隙132はシール
リング134で密封固定されている。この間隙は次で空
気が抜かれ、アルゴン、ヘリニーム及びキセノンのよう
な不活性ガスを充填している。不活性ガスは熱伝導性が
低く、間隙132を経て放射方向の熱伝達を減少してい
る。
間隙132を横切る熱伝達は次の式によって決着る。
Q = KA  t/r ここでQは1時間当りのbtuにおいて示され比熱で、
Kは熱伝導率、Aは熱伝達面積、t/rは基本的な温度
勾配である。コロラド州のロングモントで実験的に操作
している湿式酸化装置においては、ンチの外径を有して
いる。外方のチューブ126おいては、熱交換器の頂部
におけるtは550度F(700度F乃至150度F)
である。かくして、温度勾配は犬であり、パイプ24が
良く熱絶縁さnていないと、相当の放射方向の熱伝達が
流体処理装置の上部で生ずる。
熱絶縁チューブ24の使用により、放射方向の熱損失は
相当に減少するが、熱絶縁特性は時と共に減少する。熱
絶縁したチューブの熱絶縁特性の減少は少くとも間隙1
32内の離間したチューブの壁を通る水素原子の浸透に
よる。水素原子はチ島−1120と126との隙間に浸
透し得る。
水素原子は次で化合して壁を通過し得ない水素ガスを形
成する。水素ガスは次で間隙132内に貯りガスの熱伝
導率を増加する。前記したように間隙には不活性ガスが
充壓されている。従って、本発明の熱絶縁チューブは間
隙内に水素原子の流れを減少する水素の浸透防壁を有す
る。
最も好ましい水素浸透の防壁は両チューブ120と12
6の外表面122,128と内表面124゜130とに
対するアルミ二一−ムの拡散コーティングである。チュ
ーブはコーティングが鉄とアルミニュームの合金である
ようなスチールで形成さnることが好ましい。アルミニ
ュームのコーティングは普通チューブ状のスチールの炉
内でなさn% ”アロナイジングとして知らnる方法に
より腐蝕抵抗と炉の寿命を改良している。アロナイジン
グ方法においては、パイプはアルミニュームとアルミニ
為−ム粉末で内外をつつま1、炉中に約1700度Fで
3日乃至4日問おかれる。コーティングは非常に硬く溶
接ではとれない。このようにアロナイズサf17’l−
フルミニー−ムー鉄のコーティングハ水素原子の拡散を
減少する。
水素の拡散防壁コーティングはチューブの内、外にニッ
ケルの電気メッキをしても形成される。
ニッケルの電気メッキコーティングは又アロナイズの表
面と同様のすばらしい水素原子の拡散防壁を提供する。
最後に水素の拡散防壁は銅の電気メッキでも得らnるが
、銅は溶接で干渉され、逆にチューブの強度特性に影響
がある。表面がニッケル或は銅で電気メッキさnる場合
コーティングの厚さは略0.001ミlJである。裸の
スチールと水素の浸透防壁全コーティングしたチューブ
とを比較すると、コーティングされたチューブは約10
00の7アクタで減少した水素浸透率を有する。アロナ
イズされたスチールとニッケルメッキさntスケールと
を比較すると、浸透率は約10の7アクタで減少した。
かくして、最も好ましい実施例は、鉄−アルミニューム
の合金を形成するアルミニュームのコーティングによっ
て形成された水素拡散壁である。水素拡散防壁はチュー
ブの熱絶縁特性の退化を相当に減少する。
熱絶縁チューブを形成する方法は、第2図の120.1
26で示すように継目のないチューブを望遠鏡的に挿入
して形成する。水素の浸透防壁のコーティングは次で両
チューブの内外面に胞される。チューブは次で第2図に
示すように同心的に組み立てらn、チューブ間の間隙は
シールリング134でシールさfる。チューブ間の間隙
は突気が抜かれ、その間隙はネオン、アルゴン或はキセ
ノンのような不活性ガスで充填さnる。防壁は、前記し
たような水素原子の浸透を減少するから、熱絶縁の退化
を受けない。
本発明は種々の変形をなし得るものである。本発明は特
に市のスラッジの湿式酸化に用いらnるような垂直のチ
ューブ即ち深い井戸の反応装置に適している。然し乍ら
、本発明装置は種々の汚染した流体或は流体中に浮遊す
る汚染した固体の廃物の処理に用いられる。本発明装置
は又高い温匣と圧力゛、ヲ必要とする流体反応で種々の
材料を処理するのに用いらnる。
【図面の簡単な説明】
第1図は本発明の連続流体処理装置の好ましい実施例の
概略図で第2図は第1図に示し文処理装置の下部の断面
図である。 24・・・熱絶縁チューブ、26・・・開口端、28・
・・第2のパイプ、30・・・閉止端、120・・・内
方の金属チューブ、126・・・外方の金属チューブ、
132・・・間隙。

Claims (15)

    【特許請求の範囲】
  1. (1)第2のパイプによって略同心的且望遠鏡的に挿入
    されると共に包囲された開口端を有する細長い熱絶縁チ
    ューブを有し、第2のパイプは前記開口端に隣接し且連
    通する閉止端を有し、前記チューブは第1の内方の金属
    チューブと、このチューブと略同心で第1のチューブを
    離間した状態で包囲する第2の外方の金属チューブを有
    し、両チューブの内外面にはアルミニューム、ニッケル
    と銅よりなる群から選ばれた金属コーティングの水素浸
    透の防壁を有し、前記第1と第2のチューブとの間隙は
    シールされると共に不活性ガスで充填され、熱い熱伝達
    流体が前記熱絶縁チューブの一端に供給されてこのチュ
    ーブ内を流れ、前記熱伝達流体は加熱且再循環の為第2
    のパイプを経て冷却、復帰し、前記防壁は前記間隙内へ
    の水素原子の流れを減少し、それによって前記熱絶縁チ
    ューブ内の熱伝達流体から前記第2のパイプ内の復帰熱
    伝達流体への熱損失を減少する流体処理装置。
  2. (2)前記熱絶縁チューブの第1と第2のチューブはス
    チールで前記水素拡散防壁は前記内外面上に鉄−アルミ
    ニューム合金を形成するアルミニューム拡散コーティン
    グをしてなる特許請求の範囲第1項記載の流体処理装置
  3. (3)前記水素の拡散防壁はニッケルと銅からなる群か
    ら選ばれた電気メッキコーティングである特許請求の範
    囲第1項記載の流体処理装置。
  4. (4)高い温度で流体を処理する流体の処理装置であっ
    て、この処理装置は処理されるべき流体を含む流体循環
    パイプによって包囲された細長い流体熱交換器を有し、
    この熱交換器は閉止端部を有する第2のパイプとこの第
    2のパイプの閉止端部に隣接して開口端部を有し、離間
    した関係で前記第2のパイプ内に略同心的に且望遠鏡的
    に挿入された熱絶縁チューブとを有し、このチューブは
    略同心で望遠鏡的に配置され且互いに離間した金属チュ
    ーブであって、両チューブ間の間隙はシールされると共
    に不活性ガスで充填され、熱い熱伝達流体が前記熱絶縁
    チューブを経て一方向に流れ、前記熱絶縁チューブのま
    わりを反対方向に前記第2のパイプを経ながら冷却復帰
    し、前記循環パイプは前記第2のパイプと接触して処理
    されるべき流体を流すと共に離間した関係で前記第2の
    パイプを望遠鏡的にとりまく第3のパイプと、この第3
    のパイプを略同心的に離間した関係で取りまき、処理さ
    れた流体を再循環する第4のパイプとを有して、熱伝達
    流体からの熱で処理されるべき流体を加熱し前記熱絶縁
    チューブは水素の浸透防壁を有し、この防壁は前記金属
    チューブの内外面に施されたコーティングであって前記
    チューブ間の間隙内への水素原子とこの間隙内に生じる
    水素ガスの浸透を制限し、前記防壁は前記熱絶縁チュー
    ブ内の熱い熱伝達流体から前記第2のパイプ内の復帰す
    る熱伝達流体への熱損失を減少し、前記第2のパイプの
    閉止端に隣接する第3のパイプ内の処理されるべき流体
    に対し、所定の加熱部を提供する流体処理装置。
  5. (5)前記熱絶縁チューブはスチールであって前記水素
    拡散防壁は前記内外面のアルミニュームの拡散コーティ
    ングであり、前記チューブを通る水素原子の拡散を制限
    する鉄−アルミニューム合金を形成する特許請求の範囲
    第4項記載の流体処理装置。
  6. (6)前記水素拡散防壁は、ニッケルと銅よりなる群か
    ら選ばれた前記表面への電気メッキコーティングである
    特許請求の範囲第4項記載の流体処理装置。
  7. (7)高い温度と圧力で流体の廃物を連続処理する流体
    処理装置であって、この処理装置は地下に垂直に延びる
    複数の細長い略同心で望遠鏡的に配置されたパイプを有
    し、このパイプは略同心的に望遠鏡的に間隙を有して配
    置されたチューブであり、この間隙はシールされると共
    に不活性ガスで充填された第1の内方のパイプと、下端
    において前記第1のパイプと連通し閉止端部を有すると
    共に離間した状態で前記第1のパイプを包囲する第2の
    パイプと、下端に開口を有し離間した状態で前記第2の
    パイプを包囲する第3のパイプと、離間した状態で前記
    第3のパイプを包囲し、第3のパイプと連通する第4の
    パイプとよりなり、前記第1のパイプの熱絶縁チューブ
    内に供給された熱い熱伝達流体はこの第1のパイプを経
    て下方に流れ、前記第1のパイプと第2のパイプとの間
    を上方に再循環して前記第2のパイプと第3のパイプと
    の間隙内を下方に流れる流体の廃物と接触し、この廃物
    は前記第3のパイプと装置から放出されるべき前記第4
    のパイプとの環状の間隙内を上方に再循環し、前記パイ
    プの長さは十分に長く流体圧力ヘッドを有して前記流体
    の廃物と反応し、前記熱絶縁チューブはその間隙内への
    水素原子の浸透を制限する水素浸透防壁を有し、前記第
    1のパイプ内を下方に流れる前記熱伝達流体から前記第
    1のパイプと第2のパイプとの間の間隙内を上方に再循
    環する熱伝達流体への熱損失を減少し、前記第4のパイ
    プの下部に所定の反応部を形成して、前記流体の廃物が
    この反応部で熱と圧力とにより反応する流体処理装置。
  8. (8)前記水素浸透防壁は、前記熱絶縁チューブをコー
    ティングする水素原子防壁である特許請求の範囲第7項
    記載の流体処理装置。
  9. (9)前記チューブはスチールで、前記防壁のコーティ
    ングはアルミニューム、ニッケル及び銅からなる群から
    選ばれる特許請求の範囲第8項記載の流体処理装置。
  10. (10)前記熱絶縁チューブはスチールで、前記水素拡
    散防壁は前記チューブの内外面への拡散コーティングで
    あり、鉄−アルミニュームの合金を形成する特許請求の
    範囲第9項記載の流体処理装置。
  11. (11)前記水素拡散防壁のコーティングはニッケルと
    銅よりなる群から選ばれた電気メッキのコーティングで
    ある特許請求の範囲第9項記載の流体処理装置。
  12. (12)(a)望遠鏡的に配置され得るスチールチュー
    ブを形成する工程と、 (b)前記チューブの内外面に水素浸透防壁コーティン
    グを形成する工程と、 (c)前記チューブを同心的望遠鏡的に離間した状態で
    組み立て、チューブ間の間隙をシールする工程と、 (d)前記チューブ間の間隙内の空気を抜き、次でこの
    間隙を不活性ガスで充填する工程とよりなる流体処理装
    置に用いられる熱絶縁チューブの形成方法。
  13. (13)前記水素浸透防壁コーティングは、前記チュー
    ブの内外面をアルミニュームで拡散コーティングし、そ
    の表面に鉄−アルミニュームの合金を形成する特許請求
    の範囲第12項記載の流体処理装置に用いられる熱絶縁
    チューブの形成方法。
  14. (14)前記防壁コーティングは前記チューブの内外面
    をニッケルの電気メッキで形成する特許請求の範囲第1
    2項記載の流体処理装置に用いられる熱絶縁チューブの
    形成方法。
  15. (15)前記防壁コーティングは前記チューブの内外面
    を銅の電気メッキで形成する特許請求の範囲第12項記
    載の流体処理装置に用いられる熱絶縁チューブの形成方
    法。
JP61275471A 1985-07-17 1986-11-20 流体処理装置並びにその製法 Pending JPS63130198A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/755,880 US4671351A (en) 1985-07-17 1985-07-17 Fluid treatment apparatus and heat exchanger

Publications (1)

Publication Number Publication Date
JPS63130198A true JPS63130198A (ja) 1988-06-02

Family

ID=25041058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275471A Pending JPS63130198A (ja) 1985-07-17 1986-11-20 流体処理装置並びにその製法

Country Status (4)

Country Link
US (1) US4671351A (ja)
EP (1) EP0267338B1 (ja)
JP (1) JPS63130198A (ja)
NL (1) NL192402C (ja)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778586A (en) * 1985-08-30 1988-10-18 Resource Technology Associates Viscosity reduction processing at elevated pressure
DK71987D0 (da) * 1987-02-13 1987-02-13 Nordiske Kabel Traad Fremgangsmaade til rensning af olie- og kemikalieforurenet jord
US4744908A (en) * 1987-02-24 1988-05-17 Vertech Treatment Systems, Inc. Process for effecting chemical reactions
US4818371A (en) * 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4774006A (en) * 1987-06-22 1988-09-27 Vertech Treatment Systems, Inc. Fluid treatment method
JP2644891B2 (ja) * 1988-06-07 1997-08-25 株式会社日本触媒 廃水の浄化方法
CH674258A5 (ja) * 1988-09-26 1990-05-15 Ammonia Casale Sa
IT8909365A0 (it) * 1989-03-15 1989-03-15 Chimica Edile Artigiana Di Ghi Dispositivo per accelerare l'azione di malte espansive
US5048597A (en) * 1989-12-18 1991-09-17 Rockwell International Corporation Leak-safe hydrogen/air heat exchanger in an ACE system
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
US5228514A (en) * 1992-11-19 1993-07-20 Ruska Laboratories, Inc. Gas trap apparatus
FR2707380B1 (fr) * 1993-07-06 1995-09-22 Const Aero Navale Et Echangeur annulaire de sécurité pour fluides incompatibles.
US5542467A (en) * 1993-07-06 1996-08-06 Societe E'etudes Et De Constructions Aero-Navales Safety annular heat exchanger for incompatible fluids
US5509462A (en) * 1994-05-16 1996-04-23 Ground Air, Inc. Ground source cooling system
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method
US5620606A (en) 1994-08-01 1997-04-15 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with particles
US5755974A (en) 1994-08-01 1998-05-26 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with a salt
US5482629A (en) * 1994-12-07 1996-01-09 Universal Environmental Technologies, Inc. Method and apparatus for separating particles from liquids
US5536385A (en) * 1995-03-03 1996-07-16 Envirocorp Services & Technology, Inc. Production and purification of contaminated effluent streams containing ammonium sulfate and ammonia
US5561985A (en) * 1995-05-02 1996-10-08 Ecr Technologies, Inc. Heat pump apparatus including earth tap heat exchanger
US5706888A (en) * 1995-06-16 1998-01-13 Geofurnace Systems, Inc. Geothermal heat exchanger and heat pump circuit
US5560220A (en) * 1995-09-01 1996-10-01 Ecr Technologies, Inc. Method for testing an earth tap heat exchanger and associated apparatus
US6017460A (en) 1996-06-07 2000-01-25 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
US5749242A (en) * 1997-03-24 1998-05-12 Mowery; Timothy W. Evaporator for an ice making machine
US5879108A (en) * 1997-06-09 1999-03-09 Eder Associates Air sparging/soil vapor extraction apparatus
US5800705A (en) * 1997-08-07 1998-09-01 United States Filter Corporation Heat exchanger for aeration tank
US5937665A (en) * 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit
US5983660A (en) * 1998-01-15 1999-11-16 Geofurnace Systems, Inc. Defrost subcircuit for air-to-air heat pump
GB9822048D0 (en) * 1998-10-10 1998-12-02 Cumberland Electrochemical Ltd Electrolysers
EP0999294A1 (en) * 1998-10-10 2000-05-10 Cumberland Electrochemical Limited Bipolar metal electrode and electrolyser therewith
AUPR544601A0 (en) * 2001-06-04 2001-06-28 Exergen Pty Ltd High pressure extraction
DE10202261A1 (de) * 2002-01-21 2003-08-07 Waterkotte Waermepumpen Gmbh Wärmequellen- oder Wärmesenken-Anlage mit thermischer Erdankopplung
WO2003075256A1 (fr) * 2002-03-05 2003-09-12 Nec Corporation Affichage d'image et procede de commande
US7338433B2 (en) 2002-08-13 2008-03-04 Allergan, Inc. Remotely adjustable gastric banding method
BR0306183A (pt) 2002-08-28 2004-10-19 Inamed Medical Products Corp Dispositivo de enfaixamento gástrico resistente à fadiga
KR101291439B1 (ko) 2004-01-23 2013-07-31 알러간, 인코포레이티드 해제가능하게 고정할 수 있는 일체형의 조절가능한 위밴드
ATE444045T1 (de) 2004-03-08 2009-10-15 Allergan Medical S A Verschlusssystem für röhrenförmige organe
CA2569043C (en) 2004-03-18 2010-08-17 Allergan, Inc. Apparatus and method for volume adjustment of intragastric balloons
US8251888B2 (en) * 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US7582269B2 (en) * 2005-09-23 2009-09-01 Vertical Tube Reactor, Llc Thermally autogenous subsurface chemical reactor and method
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
JP3927593B1 (ja) * 2006-09-22 2007-06-13 博明 上山 二重管式地熱水循環装置
DE102006050922A1 (de) * 2006-10-28 2008-04-30 Hans Huber Ag Maschinen- Und Anlagenbau Verfahren und Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit
US7815741B2 (en) 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
US7815876B2 (en) 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
BRMU8701289U2 (pt) * 2007-07-11 2009-02-25 Ivane Rodrigues De Souza aparelho para produzir biocarvço
AU2009257591A1 (en) * 2008-06-11 2009-12-17 Allergan, Inc. Implantable pump system
WO2010042493A1 (en) 2008-10-06 2010-04-15 Allergan, Inc. Mechanical gastric band with cushions
US20100185049A1 (en) 2008-10-22 2010-07-22 Allergan, Inc. Dome and screw valves for remotely adjustable gastric banding systems
WO2010048280A1 (en) * 2008-10-22 2010-04-29 Allergan, Inc. Electrically activated valve for implantable fluid handling system
US8307896B2 (en) * 2009-04-27 2012-11-13 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
SE535370C2 (sv) * 2009-08-03 2012-07-10 Skanska Sverige Ab Anordning och metod för lagring av termisk energi
US20110201874A1 (en) * 2010-02-12 2011-08-18 Allergan, Inc. Remotely adjustable gastric banding system
US8678993B2 (en) * 2010-02-12 2014-03-25 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8764624B2 (en) 2010-02-25 2014-07-01 Apollo Endosurgery, Inc. Inductively powered remotely adjustable gastric banding system
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US9028394B2 (en) 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US20110270024A1 (en) 2010-04-29 2011-11-03 Allergan, Inc. Self-adjusting gastric band having various compliant components
US20110270025A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Remotely powered remotely adjustable gastric band system
US8955591B1 (en) 2010-05-13 2015-02-17 Future Energy, Llc Methods and systems for delivery of thermal energy
US9226840B2 (en) 2010-06-03 2016-01-05 Apollo Endosurgery, Inc. Magnetically coupled implantable pump system and method
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
US8698373B2 (en) 2010-08-18 2014-04-15 Apollo Endosurgery, Inc. Pare piezo power with energy recovery
MX336326B (es) 2010-08-18 2016-01-15 Future Energy Llc Metodos y sistemas para un suministro mejorado de energia termica para pozos horizontales.
US20120059216A1 (en) 2010-09-07 2012-03-08 Allergan, Inc. Remotely adjustable gastric banding system
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
SE536722C2 (sv) 2012-11-01 2014-06-17 Skanska Sverige Ab Energilager
SE536723C2 (sv) 2012-11-01 2014-06-24 Skanska Sverige Ab Termiskt energilager innefattande ett expansionsutrymme
SE537267C2 (sv) 2012-11-01 2015-03-17 Skanska Sverige Ab Förfarande för drift av en anordning för lagring av termiskenergi
FR3011010B1 (fr) * 2013-09-24 2020-03-06 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de depot d’un revetement protecteur contre la corrosion
WO2015060979A1 (en) * 2013-10-24 2015-04-30 The Regents Of The University Of California Bioreactor and perfusion system
ES2440088B2 (es) * 2013-12-03 2014-09-12 Universidad Politécnica de Madrid Intercambiador de calor con tubos concéntricos.
FR3066778B1 (fr) 2017-05-29 2020-08-28 Majus Ltd Installation de rechauffage de conduite d'extraction d'hydrocarbures
DE102018005394A1 (de) * 2018-07-09 2020-01-09 Enerpipe Gmbh Wärmetauscher
WO2023168351A2 (en) * 2022-03-03 2023-09-07 Jonathan Jay Feinstein Multi-annular heat exchanger

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2665249A (en) * 1950-03-27 1954-01-05 Sterling Drug Inc Waste disposal
US2665556A (en) * 1951-02-03 1954-01-12 Griscom Russell Co Insulated bayonet tube vaporizer
US2730337A (en) * 1953-04-13 1956-01-10 Charles N Roswell Heat exchanger
DE1252597B (de) * 1955-01-24 1967-10-19 Sterling Diug Inc New York NY (V St A) Verfahren zum Behandeln von dispergierte, oxydierbare, organische und gegebenenfalls anorganische Stoffe enthaltenden Abwassern und Vorrichtung zur Durchfuhrung des Verfahrens
US3449247A (en) * 1965-10-23 1969-06-10 William J Bauer Process for wet oxidation of combustible waste materials
US3606999A (en) * 1967-08-04 1971-09-21 Harold L Lawless Method of and apparatus for carrying out a chemical or physical process
US3853759A (en) * 1968-06-06 1974-12-10 J Titmas Dynamic hydraulic column activation method
US3680631A (en) * 1970-10-02 1972-08-01 Atlantic Richfield Co Well production apparatus
US3763935A (en) * 1972-05-15 1973-10-09 Atlantic Richfield Co Well insulation method
US3861461A (en) * 1972-09-21 1975-01-21 Foster Wheeler Corp Bayonet tube heat exchange
US4272383A (en) * 1978-03-17 1981-06-09 Mcgrew Jay Lininger Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions
NL7805467A (nl) * 1978-05-19 1979-11-21 Neratoom Warmtewisselaar.
JPS5542315A (en) * 1978-09-18 1980-03-25 Hitachi Ltd Servo-circuit of vtr
DE3029753A1 (de) * 1980-08-06 1982-02-25 Günter 4952 Porta Westfalica Strathe Waermeaustauscher zur nutzung der erdwaerme
DE3033255A1 (de) * 1980-09-04 1982-03-18 Schmidt, Paul, 5940 Lennestadt Rohrsonde zum gewinnen von erdwaerme
DE3047708A1 (de) * 1980-12-18 1982-07-22 Helmut 5430 Montabaur Baldus Waermetauscher zur gewinnung von umweltwaerme
NL8302251A (nl) * 1983-06-24 1985-01-16 Zappey B V Injectiebuis voor het in de grond injecteren van stoom.
US4574875A (en) * 1983-12-05 1986-03-11 Geo-Systems, Inc. Heat exchanger for geothermal heating and cooling systems

Also Published As

Publication number Publication date
EP0267338B1 (en) 1990-10-03
EP0267338A1 (en) 1988-05-18
NL192402C (nl) 1997-07-04
NL192402B (nl) 1997-03-03
US4671351A (en) 1987-06-09
NL8602373A (nl) 1988-04-18

Similar Documents

Publication Publication Date Title
JPS63130198A (ja) 流体処理装置並びにその製法
US4741386A (en) Fluid treatment apparatus
US4869833A (en) Method and apparatus for controlled chemical reactions
US4721575A (en) Method and apparatus for controlled chemical reactions
EP0282276B1 (en) Apparatus and method for effecting chemical reactions
US6878290B2 (en) Method for oxidizing materials in supercritical water
US4774006A (en) Fluid treatment method
CN103508589B (zh) 超临界水氧化或气化处理高含盐有机废水的反应器
JPH03500264A (ja) 湿式酸化型プロセスにおける固形体分離方法及び装置
CN102992466B (zh) 有机污染物超临界水氧化处理装置
EP0240340B1 (en) Method and reaction apparatus for effecting controlled chemical reactions
EP0580806B1 (en) Very high temperature heat exchanger
JPH088982B2 (ja) 水溶液に溶解又は懸濁させた物質の酸化法
JP3274280B2 (ja) 高圧反応容器装置
FI86579B (fi) Laongstraeckt vaermevaexlare och vaetskebehandlingsanordning.
CA1249807A (en) Fluid treatment apparatus, heat exchanger and method of forming an insulated tubular
JPS5921655B2 (ja) 地表下の制御され、促進された化学反応をおこなう方法および装置
NO167234B (no) Vaeskebehandlingsapparat til kontinuerlig behandling av spillvaesker og fremgangsmaate til fremstilling av et isolert roersett for bruk i vaeskebehandlingsapparatet.
KR100912336B1 (ko) 혼합형 초임계수 산화장치
JP3040371B2 (ja) 熱交換装置及びそれを用いた装置
DK165268B (da) Varmevekslere til apparat for kontinuerlig behandling af flydende affald
US7147823B2 (en) High temperature cooling system and method
CN217895332U (zh) 一种防堵塞的超临界水氧化反应装置
Rogak et al. Thermal design of supercritical water oxidation reactors
JPH11264690A (ja) 水の高温高圧システムの腐食防止法