JPS63122174A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS63122174A
JPS63122174A JP61266543A JP26654386A JPS63122174A JP S63122174 A JPS63122174 A JP S63122174A JP 61266543 A JP61266543 A JP 61266543A JP 26654386 A JP26654386 A JP 26654386A JP S63122174 A JPS63122174 A JP S63122174A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
region
source
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266543A
Other languages
Japanese (ja)
Inventor
Ryuichi Izawa
井沢 龍一
Eiji Takeda
英次 武田
Yasuo Igura
井倉 康雄
Akiyoshi Hamada
濱田 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61266543A priority Critical patent/JPS63122174A/en
Priority to KR1019870012658A priority patent/KR900008153B1/en
Publication of JPS63122174A publication Critical patent/JPS63122174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To relax an electric field spreading in the transverse direction between a source and a drain, to suppress the occurrence of an avalanche breakdown and a hot carrier, and to realize a hig-withstand-voltage and a high-speed operation by a method wherein a region coming into contact with a gate insulating film, out of a depleted region in a source-drain region, is covered with a gate electrode. CONSTITUTION:An n-type low-concentration source-drain region 3 is formed by introducing an n-type impurity into a p-type Si substrate 8 and by self-aligning with a first gate electrode 1 by making use of the first gate electrode 1 and an insulating film 5 as a mask. Then, an electric-conductive film composed of polycrystalline silicon, a silicide or the like, doped with an electric-conductive impurity of high concentration is deposited on the whole surface. After that, said electric-conductive film is etched anisotropically so that a second gate electrode 6 remains only at the side wall of the first gate electrode 1. Then, after the insulating film has been deposited again on the whole surface, an etching process is executed so that an insulating film 7 can be formed at the side wall so as to cover the second gate electrode 6. Tie film overlaps with the low-concentration source-drain region 3 by means of the second gate electrode 6. The overlapping amount can be controlled by the deposited film thickness for the second gate electrode 6 and by the overetching amount of said electric-conductive film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MOSトランジスタを有する半導体装置に係
り、特に、ソース・ドレイン間電界を緩和するのに好適
な半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a MOS transistor, and more particularly to a semiconductor device suitable for relaxing an electric field between a source and a drain.

〔従来の技術〕[Conventional technology]

VLS Hの基本デバイスとして提案されている高耐圧
トランジスタ構造として、LDD (ライトリ−ドープ
ト ドレイン(Lightly DopedDrain
))構造がある。(LDD構造の文献:アイ・イー・イ
ー・イートランザクションオンエレクトロンデバイスイ
ズイーディ−27第1359〜1367頁(I E E
 E  Trans、 E 1ectronDevic
es、E D−27pp1359−1367))LDD
構造では、ゲート電極をマスクとして半導体基板の表面
領域に不純物を導入し、ゲート電極と自己整合的に低濃
度ソース・ドレイン領域を形成する。低濃度ドレイン領
域が、電圧印加時のソース・ドレイン間の横方向の広が
り電界を緩和し、アバランシェ降伏、およびホットキャ
リア(電界からエネルギーを得て高エネルギー状態にな
ったキャリア)の発生を抑制する働きをする。
LDD (Lightly Doped Drain) is a high-voltage transistor structure proposed as a basic device for VLSH.
)) There is a structure. (Literature on LDD structure: IE Transactions on Electron Devices is E.D.-27, pp. 1359-1367 (I.E.E.
E Trans, E 1ectronDevic
es, ED-27pp1359-1367))LDD
In this structure, impurities are introduced into the surface region of the semiconductor substrate using the gate electrode as a mask, and low concentration source/drain regions are formed in self-alignment with the gate electrode. The low-concentration drain region alleviates the lateral spreading electric field between the source and drain when voltage is applied, suppressing avalanche breakdown and the generation of hot carriers (carriers that obtain energy from the electric field and enter a high-energy state). do the work.

したがって、従来は、LDD構造の電界緩和の効果を高
めるために、低濃度ドレイン領域を長く形成したり、あ
るいは低濃度ドレイン領域の不純物濃度を低下させるこ
とを行ってきた。
Therefore, conventionally, in order to enhance the electric field relaxation effect of the LDD structure, the lightly doped drain region has been formed long or the impurity concentration of the lightly doped drain region has been lowered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、低濃度ドレイン領域の不純物濃度を低くして
いくと、逆に、アバランシェ降伏によるドレイン耐圧の
低下およびホットキャリアの発生による伝達コンダクタ
ンスの低下、しきい値電圧の変動等の特性劣化が顕著と
なり、素子の信頼性が低下する。特に、ストレス時間の
初期(高電圧印加の初期)に大きな劣化が表われる。こ
れは、LDD型MOSトランジスタの側壁スペーサ(ゲ
ート電極の側壁に形成された絶縁11)に注入されたホ
ットキャリアに起因すると言われている。すなわち、側
壁スペーサに注入、捕獲されたホットキャリアが低濃度
ドレイン領域をピンチオフさせ。
However, as the impurity concentration in the lightly doped drain region is lowered, characteristic deterioration such as a decrease in drain breakdown voltage due to avalanche breakdown, a decrease in transfer conductance due to the generation of hot carriers, and fluctuations in threshold voltage becomes noticeable. , the reliability of the device decreases. In particular, significant deterioration appears at the beginning of the stress period (early stage of high voltage application). This is said to be caused by hot carriers injected into the sidewall spacer (insulator 11 formed on the sidewall of the gate electrode) of the LDD type MOS transistor. That is, hot carriers injected into and captured by the sidewall spacer pinch off the low concentration drain region.

伝達コンダクタンスの低下を引き起こす。Causes a decrease in transfer conductance.

このように、従来のLDD型MOSトランジスタでは、
低濃度ドレイン領域の不純物濃度を厳密に制御しないと
、アバランシェ降伏によるドレイン耐圧の低下およびホ
ットキャリアによる伝達コンダクタンスの低下、しきい
値電圧の変動等が顕著となり、素子の信頼性が低下する
問題があった。
In this way, in the conventional LDD type MOS transistor,
If the impurity concentration in the lightly doped drain region is not strictly controlled, a drop in drain breakdown voltage due to avalanche breakdown, a drop in transfer conductance due to hot carriers, and fluctuations in threshold voltage will become noticeable, resulting in a problem of lower device reliability. there were.

さらに、従来のLDD構造では、ゲート電極が、低濃度
ソース・ドレイン領域と重なり合う量(以下、オーバラ
ップ量と称す、)について配慮がされていなかった。
Furthermore, in the conventional LDD structure, no consideration was given to the amount by which the gate electrode overlaps the lightly doped source/drain region (hereinafter referred to as the amount of overlap).

すなわち、低濃度ソース・ドレイン領域は、ゲート電極
をマスクとする不純物ドープにより、該ゲート電極と自
己整合的に形成していたので、低濃度ソース・ドレイン
領域を形成するための不純物のドーズ量が少なく、拡散
層深さが浅い場合には、チャネルへ向かう方向の横方向
拡散層の伸びも短くなり、低濃度ソース・ドレイン領域
とゲート電極とのオーバラップ量は少なくなる。
In other words, since the lightly doped source/drain regions were formed in self-alignment with the gate electrode by impurity doping using the gate electrode as a mask, the dose of impurities for forming the lightly doped source/drain regions was reduced. If the depth of the diffusion layer is small, the extension of the lateral diffusion layer in the direction toward the channel is also short, and the amount of overlap between the lightly doped source/drain region and the gate electrode is reduced.

ところで1本発明者らがシミュレーションした結果、ソ
ース・ドレイン間の横方向床がり電界の強さ、および電
界の最大点位置は、上記オーバラップ量に敏感に影響を
受けることが分かった。まず、電界の強さについての結
果を第2図に示す。
By the way, as a result of simulations conducted by the present inventors, it has been found that the strength of the lateral floor electric field between the source and drain and the position of the maximum point of the electric field are sensitively affected by the amount of overlap. First, FIG. 2 shows the results regarding the electric field strength.

低濃度ドレイン領域の長さは0.44.  ドレイン領
域のn−ドーズ量は、5X10”/e♂および1x10
”/c■3の場合を示した。
The length of the lightly doped drain region is 0.44. The n-dose amount in the drain region is 5×10”/e♂ and 1×10
”/c■3 case is shown.

n−ドーズ量が5 X 10” / cm”と濃度が高
いときは、低濃度ドレイン領域の空乏層幅は小さくなり
、空乏層は該領域の全域には拡がらず、ドレイン領域の
空乏化した領域のうち、ゲート絶縁膜と接する領域は、
はぼ0.2.の長さになる。したがって。
When the n-dose amount is as high as 5 x 10"/cm", the width of the depletion layer in the lightly doped drain region becomes small, the depletion layer does not spread over the entire region, and the depletion layer in the drain region becomes small. Among the regions, the region in contact with the gate insulating film is
Habo 0.2. becomes the length of therefore.

オーバーラツプ量が0.2−以上になり、上記領域を完
全にオーバーラツプすると、第2図に示すように、横方
向電界強度の最大値は小さくなる。
When the amount of overlap is 0.2- or more and the above region is completely overlapped, the maximum value of the lateral electric field strength becomes small as shown in FIG.

これに対して、n−ドーズ量がI XIO”/am’と
濃度が低いときは、低濃度ドレイン領域の空乏層は、該
領域の全域に拡がる。したがって、低濃度ドレイン領域
の長さである0、4t1mよりオーバーラツプ量が少な
く、低濃度ドレイン領域の空乏化領域のゲート絶縁膜と
接触する領域を完全にオーバーラツプしない場合には、
第2図に示すように、横方向電界強度の最大値は、大き
くなり、該領域の全てをゲート電極でオーバラップすれ
ば横方向電界の強度は小さくなる。
On the other hand, when the n-dose amount is as low as I When the amount of overlap is smaller than 0.4t1m and the region in contact with the gate insulating film of the depletion region of the low concentration drain region does not completely overlap,
As shown in FIG. 2, the maximum value of the lateral electric field strength becomes large, and if the entire region is overlapped with the gate electrode, the lateral electric field strength becomes small.

また、本発明者らのシミュレーションによれば。Also, according to the simulations conducted by the present inventors.

ドレイン領域の空乏化領域のゲート絶縁膜と接する領域
を全てゲート電極でオーバラップすると、電界強度の最
大点は、基板の深部に位置するようになる。第3図は、
ゲート電極およびドレイン領域のオーバーラツプ量と、
横方向電界強度の最大点の基板表面からの深さとの関係
を示す図である。
If the entire region of the depletion region of the drain region in contact with the gate insulating film is overlapped with the gate electrode, the maximum point of electric field strength will be located deep in the substrate. Figure 3 shows
The amount of overlap between the gate electrode and drain region,
FIG. 3 is a diagram showing the relationship between the maximum point of the lateral electric field strength and the depth from the substrate surface.

例えば第3図に示すように、n−ドーズ量がlXl0”
/c♂の場合、上記オーバラップ量を、0.1−以上に
すると、電界強度の最大点は、基板表面から約0.05
IIm(50nm)の深さに位置するようになり、基板
の表面近傍ではなくなる。
For example, as shown in Figure 3, the n-dose amount is lXl0''
/c♂, if the above overlap amount is set to 0.1- or more, the maximum point of electric field strength will be approximately 0.05 from the substrate surface.
It is located at a depth of IIm (50 nm) and is no longer near the surface of the substrate.

これに対して、オーバーラツプ量が0.1tm以下にな
ると、電界強度の最大点は基板の表面近傍になる。なお
、n−ドーズ量がI XIO”/(!l”の場合でも、
ゲート電極を高濃度ドレイン領域に到るまでオーバーラ
ツプさせると、電界強度の最大点を基板の内部に位置さ
せることができる。
On the other hand, when the amount of overlap is less than 0.1 tm, the maximum point of electric field strength is near the surface of the substrate. Note that even if the n-dose amount is IXIO"/(!l",
By overlapping the gate electrode all the way to the heavily doped drain region, the maximum point of electric field strength can be located inside the substrate.

以上述べたように、ゲート電極とドレイン領域とのオー
バラップ量は、横方向電界を緩和するためのキーファク
ターの1つである。しかし、従来技術では、低濃度ドレ
イン領域とゲート電極とのオーバラップ量は、自己整合
プロセスを用いているため任意に変えることができない
、特に、低濃度ドレイン領域の不純物濃度が低い場合に
は、不純物の横方向の拡散幅が少ないので、ゲート電極
とドレイン領域とのオーバラップ量は小さくなる。
As described above, the amount of overlap between the gate electrode and the drain region is one of the key factors for relaxing the lateral electric field. However, in the conventional technology, the amount of overlap between the lightly doped drain region and the gate electrode cannot be changed arbitrarily because a self-alignment process is used.Especially when the impurity concentration in the lightly doped drain region is low, Since the lateral diffusion width of impurities is small, the amount of overlap between the gate electrode and the drain region is small.

一方、不純物濃度が低い場合、ドレイン領域の空乏層幅
は大きくなる。結果として、横方向電界強度は、むしろ
大きくなるという問題が生じる。たとえオーバラップ量
を増すために熱処理により拡散層(低濃度ドレイン領域
)を伸ばしても、拡散により不純物濃度はますます低く
なるので、逆に空乏層幅は大きくなり、ゲート電極によ
って低濃度ドレイン領域のゲート絶縁膜と接する空乏層
領域をオーバラップさせることはできない。
On the other hand, when the impurity concentration is low, the width of the depletion layer in the drain region becomes large. As a result, a problem arises in that the lateral electric field strength becomes rather large. Even if the diffusion layer (low-concentration drain region) is extended by heat treatment to increase the amount of overlap, the impurity concentration will become lower due to diffusion, so the depletion layer width will conversely increase, and the gate electrode will cause the low-concentration drain region to expand. The depletion layer region in contact with the gate insulating film cannot overlap.

以上説明したように、ソース・ドレイン領域を従来技術
のように、自己整合プロセスだけで形成するのでは、ゲ
ート電極とのオーバラップ量を最適化して電界緩和を行
うことはできない。
As explained above, if the source/drain regions are formed only by a self-alignment process as in the prior art, it is not possible to optimize the amount of overlap with the gate electrode and relax the electric field.

本発明の目的は、ゲート電極とソース・ドレイン領域と
のオーバラップ量を最適に制御することにより、ソース
・ドレイン間の横方向の広がり電界を緩和し、アバラン
シェ降伏、およびホットキャリアの発生を抑制し、した
がって、高耐圧化および高速化できる半導体装置および
その製造方法を提供することにある。
The purpose of the present invention is to optimally control the amount of overlap between the gate electrode and the source/drain region, thereby alleviating the lateral spreading electric field between the source and drain, thereby suppressing avalanche breakdown and the generation of hot carriers. Therefore, it is an object of the present invention to provide a semiconductor device that can achieve high breakdown voltage and high speed, and a method for manufacturing the same.

また、本発明の他の目的は、上記オーバーラツプ量を任
意に制御することができる半導体装置およびその製造方
法を提供することにある。
Another object of the present invention is to provide a semiconductor device and a method for manufacturing the same, in which the amount of overlap can be arbitrarily controlled.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明の半導体装置は、半
導体基板上にゲート絶縁膜を介して設けたゲート電極と
、上記ゲート電極の両側の上記半導体基板の表面領域に
設けたソース・ドレイン領域を少なくとも有する半導体
装置において、上記ソース・ドレイン領域の空乏化領域
のうち、少なくとも上記ゲート絶縁膜と接触する領域が
、上記ゲート電極によって覆われている(オーバーラツ
プされている)ことを特徴とする。
In order to achieve the above object, a semiconductor device of the present invention includes a gate electrode provided on a semiconductor substrate with a gate insulating film interposed therebetween, and source/drain regions provided in a surface region of the semiconductor substrate on both sides of the gate electrode. In the semiconductor device, at least a region of the depleted region of the source/drain region that is in contact with the gate insulating film is covered (overlapped) by the gate electrode.

また、このような構成の半導体装置を製造するための1
本発明の半導体装置の製造方法は、半導体基板上に絶縁
膜を介して第1のゲート電極を形成する工程と、上記第
1のゲート電極の側壁に第2のゲート電極を形成する工
程と、上記ゲート電極の両側の上記半導体基板の表面領
域に不純物をドープしてソース・ドレイン領域を形成す
る工程とを具備することを特徴とする。
In addition, 1 for manufacturing a semiconductor device with such a configuration.
A method for manufacturing a semiconductor device according to the present invention includes: forming a first gate electrode on a semiconductor substrate via an insulating film; forming a second gate electrode on a sidewall of the first gate electrode; The method is characterized by comprising a step of doping impurities into surface regions of the semiconductor substrate on both sides of the gate electrode to form source/drain regions.

本発明の特徴の1つは、第1のゲート電極と。One of the features of the present invention is that the first gate electrode.

第2のゲート電極とが電気的に接続され、等電位になる
ことである。
The second gate electrode is electrically connected and has the same potential.

上記ドレイン領域の空乏化領域の、上記ゲート絶縁膜と
接触する領域を有効にオーバーラツプさせるための第2
のゲート電極を第1のゲート電極の側壁に形成する一つ
の実施態様においては、従来のLDD型MOSトランジ
スタの製造工程において、ゲート電極の側壁段差部を利
用して、ゲート電極の側壁に絶縁膜(側壁スペーサ)を
形成するのと類似の工程を用いて形成する。
A second layer for effectively overlapping a region of the depletion region of the drain region that is in contact with the gate insulating film.
In one embodiment in which a gate electrode is formed on the side wall of the first gate electrode, an insulating film is formed on the side wall of the gate electrode by using the side wall stepped portion of the gate electrode in the manufacturing process of a conventional LDD type MOS transistor. (sidewall spacers) using a process similar to that used to form sidewall spacers.

すなわち、第1のゲート電極上に全面に第2のゲート電
極を形成すべき導電性膜をCVD法により堆積した後、
全面を異方性ドライエツチングすることにより1段差を
有する第1のゲート電極側壁に上記導電性膜を残存させ
る。したがって、第2ゲート電極は、第1ゲート電極と
自己整合的に形成される。もちろん、第1ゲート電極と
第2ゲート電極とは電気的にも接続しており、ともに等
電位になる。
That is, after depositing a conductive film on the entire surface of the first gate electrode to form the second gate electrode by CVD,
By performing anisotropic dry etching on the entire surface, the conductive film is left on the side wall of the first gate electrode having a one-step difference. Therefore, the second gate electrode is formed in self-alignment with the first gate electrode. Of course, the first gate electrode and the second gate electrode are also electrically connected and have the same potential.

その後、第2ゲート電極の側壁にスペーサ用の絶縁膜を
形成する。側壁絶縁膜を形成するには、従来のLDD構
造で実施される側壁絶縁膜の形成方法と同様の方法、す
なわち、CVD法および異方性エツチングにより形成す
るか、あるいは本発明の別の実施態様では、第1のゲー
ト電極の側壁に形成した第2のゲート電極の表面部分を
熱酸化   ゛することにより形成する。
After that, an insulating film for a spacer is formed on the sidewalls of the second gate electrode. The sidewall insulating film can be formed by a method similar to that used in conventional LDD structures, that is, by CVD and anisotropic etching, or by another embodiment of the present invention. Here, the second gate electrode is formed by thermally oxidizing the surface portion of the second gate electrode formed on the side wall of the first gate electrode.

【作用〕[Effect]

第1ゲート電極は、ソース・ドレイン領域間(LDD構
造にあっては、該第1のゲート電極と自己整合的に形成
される低濃度ソース・ドレイン領域間)をオン・オフさ
′せる働きをする。つまり、第1のゲート電極が通常の
MOSトランジスタのゲート電極としての機能を果たす
The first gate electrode has the function of turning on and off the source/drain region (in the LDD structure, the low concentration source/drain region formed in self-alignment with the first gate electrode). do. That is, the first gate electrode functions as a gate electrode of a normal MOS transistor.

ソース・ドレイン領域の空乏化領域のゲート絶縁膜と接
する領域をオーバーラツプするように形成する第2ゲー
ト電極は、ドレイン領域の空乏化領域にかかる横方向電
界を緩和する働きをする。
The second gate electrode, which is formed so as to overlap the region in contact with the gate insulating film of the depleted region of the source/drain region, serves to alleviate the lateral electric field applied to the depleted region of the drain region.

また、第2のゲート電極は、上記空乏化領域での伝達コ
ンダクタンスを高める働きもする。さらに、従来のLD
D構造で問題となっていたゲート電極側壁の絶縁膜への
ホットキャリア注入を防止し。
The second gate electrode also serves to increase the transfer conductance in the depletion region. Furthermore, conventional LD
This prevents hot carrier injection into the insulating film on the side walls of the gate electrode, which was a problem with the D structure.

かつ低濃度ドレイン領域の基板表面近傍の電位を第2の
ゲート電極によって制御できるので、LDD固有に見ら
れるホットキャリアによる特性劣化、つまり捕獲された
ホットキャリアによる低濃度ソース・ドレインのピンチ
オフ現象を抑制できる。
In addition, since the potential near the substrate surface of the lightly doped drain region can be controlled by the second gate electrode, characteristic deterioration due to hot carriers that is inherent to LDDs, that is, the pinch-off phenomenon of the lightly doped source and drain due to captured hot carriers, is suppressed. can.

さて、このようにゲート電極によって、ドレイン領域の
ゲート絶縁膜と接する空乏化領域をオーバラップさせる
と上記の作用が得られるが、このオーバラップ量が大き
くなると、逆にゲートとソース・ドレイン間の寄生容量
が大きくなる問題が生じる。しかし1本発明ではこの問
題をも解決できる。すなわち、寄生容量を極力小さくす
るために、それぞれ独立に制御可能な、第2のゲート電
極の長さくつまり、第2のゲート電極用の導電性膜の堆
積量および該導電性膜のオーバエッチ量)。
Now, if the depletion region in contact with the gate insulating film in the drain region is overlapped by the gate electrode in this way, the above effect can be obtained, but if this amount of overlap becomes large, conversely, the depletion region between the gate and the source/drain A problem arises in which parasitic capacitance increases. However, the present invention can also solve this problem. That is, in order to minimize the parasitic capacitance, the length of the second gate electrode, the amount of deposition of the conductive film for the second gate electrode, and the amount of overetching of the conductive film can be controlled independently. ).

あるいは第2のゲート電極の側壁に形成するスペーサ用
絶縁膜の厚さくつまり、該絶縁膜の堆積量および該絶縁
膜のオーバーエッチ量、もしくは第2のゲート電極の酸
化量)の制御によって、上記ゲート電極とソース・ドレ
イン領域のオーバーラツプ量および寄生容量を最適化で
きる。
Alternatively, by controlling the thickness of the spacer insulating film formed on the side walls of the second gate electrode, the amount of deposition of the insulating film, the amount of overetching of the insulating film, or the amount of oxidation of the second gate electrode, The amount of overlap and parasitic capacitance between the gate electrode and source/drain regions can be optimized.

以上の作用により高耐圧・高信頼度でかつ高速な微細M
OSトランジスタが実現できる。
Due to the above effects, high-voltage, high-reliability, and high-speed fine M
An OS transistor can be realized.

〔実施例〕〔Example〕

実施例 1 第1図は、本発明の第1の実施例のMOSトランジスタ
の断面図である。
Example 1 FIG. 1 is a cross-sectional view of a MOS transistor according to a first example of the present invention.

図において、8はp型Si基板、1は第1のゲート電極
、2はゲート酸化膜、3はn型低濃度ソース・ドレイン
領域、4はn型高濃度ソース・ドレイン領域、5は第1
のゲート電極1の上部に形成された絶縁膜、6は第1の
ゲート電極1の側壁に形成された第2のゲート電極、7
は第2のゲート電極2の側壁に形成された絶縁膜(側壁
スペーサ)である。
In the figure, 8 is a p-type Si substrate, 1 is a first gate electrode, 2 is a gate oxide film, 3 is an n-type low concentration source/drain region, 4 is an n-type high concentration source/drain region, 5 is the first
6 is a second gate electrode formed on the side wall of the first gate electrode 1; 7 is an insulating film formed on the top of the gate electrode 1;
is an insulating film (sidewall spacer) formed on the sidewall of the second gate electrode 2.

本実施例では、低濃度ドレイン領域3の電圧印加時に生
じる空乏化領域の、ゲート絶縁膜2と接触する領域が、
第2のゲート電146によってオーバーラップするよう
に形成されている。したがって、第2図を用いて説明し
たように、ソース・ドレイン間の横方向広がり電界強度
は、小さくなり、ソース・ドレイン間の電界を緩和する
ことができ。
In this embodiment, the region in contact with the gate insulating film 2 of the depletion region generated when voltage is applied to the lightly doped drain region 3 is
They are formed so as to be overlapped by the second gate electrode 146. Therefore, as explained using FIG. 2, the lateral spreading electric field strength between the source and drain becomes small, and the electric field between the source and drain can be relaxed.

アバランシェ降伏を抑制し、またホットキャリアの発生
を抑制すると共に、ホットキャリアのゲート電極以外へ
の注入を防止できる。したがって。
Avalanche breakdown can be suppressed, generation of hot carriers can be suppressed, and hot carriers can be prevented from being injected into areas other than the gate electrode. therefore.

アバランシェ降伏によるドレイン耐圧の低下、しきい値
電圧の変動等の特性劣化を防止し、素子の信頼性を向上
できる。
It is possible to prevent characteristic deterioration such as a decrease in drain breakdown voltage and fluctuation in threshold voltage due to avalanche breakdown, and improve device reliability.

また、第3図を用いて説明したように、横方向広がり電
界強度の最大点は基板の内部に位置するようになる。こ
のため、ドレインの深部で発生したホットキャリアは、
ゲート酸化膜2へ注入されにくくなるし、また、たとえ
ホットキャリアがゲート酸化膜2に注入され、捕獲され
たとしても捕獲箇所はゲート電極の下に存在するため、
捕獲電荷による低濃度ドレイン領域3のピンチオフ現象
を抑制し、伝達コンダクタンスの低下が防止できる。
Further, as explained using FIG. 3, the maximum point of the lateral spread electric field strength is located inside the substrate. Therefore, hot carriers generated deep in the drain are
This makes it difficult for hot carriers to be injected into the gate oxide film 2, and even if hot carriers are injected into the gate oxide film 2 and captured, the capture location exists under the gate electrode.
It is possible to suppress the pinch-off phenomenon of the lightly doped drain region 3 due to trapped charges, and prevent a decrease in transfer conductance.

さらに、本実施例によると、低濃度ドレイン領域3の空
乏化した領域において、該領域をゲート電極によってオ
ーバラップしたことによる基板表面への電荷誘起が生じ
、伝達コンダクタンスは大きくなるという効果も派生す
る。
Furthermore, according to this embodiment, in the depleted region of the lightly doped drain region 3, charges are induced on the substrate surface due to the overlap of the region with the gate electrode, resulting in the effect that the transfer conductance increases. .

次に、本実施例のLDD型MOSトランジスタの製造方
法について説明する。
Next, a method for manufacturing the LDD type MOS transistor of this example will be explained.

まず、p型Si基板8上に薄いゲート酸化膜2を形成し
た後に、該ゲート酸化膜2上にCVD法により導電性の
第1のゲート電極1と、その上部にS io、膜、Si
、N4膜等から成る絶縁膜5を形成する。この第1のゲ
ート電極1は、導電性不純物をドープした多結晶Si、
あるい′はシリサイド。
First, a thin gate oxide film 2 is formed on a p-type Si substrate 8, and then a conductive first gate electrode 1 is formed on the gate oxide film 2 by a CVD method, and an S io film, a Si
, an insulating film 5 made of N4 film or the like is formed. This first gate electrode 1 is made of polycrystalline Si doped with conductive impurities.
Or ′ is silicide.

タングステン(W)、アルミニウム(荊)等の金属、ま
たはこれらの膜の複合膜であってもよい。
It may be a metal such as tungsten (W) or aluminum, or a composite film of these films.

次に、第1のゲート電極1および絶縁膜5をマスクとし
て、p型Si基板8にn型不純物をドープして該第1の
ゲート電極1と自己整合的にn型低濃度ソース・ドレイ
ン領域3を形成する0次いで、導電性不純物を高濃度に
ドープした多結晶Si、シリサイド等の導電性膜を全面
に堆積する。
Next, using the first gate electrode 1 and the insulating film 5 as masks, the p-type Si substrate 8 is doped with n-type impurities to form n-type low concentration source/drain regions in self-alignment with the first gate electrode 1. Next, a conductive film of polycrystalline Si, silicide, etc. doped with conductive impurities at a high concentration is deposited over the entire surface.

この後、該導電性膜を異方性エツチングして、第1のゲ
ート電極1の側壁のみに第2のゲート電極6を残存させ
る。そこで、再び全面にS i O* Ill等の絶縁
膜を堆積した後、この囚を異方性エツチングして第2の
ゲート電極6上を覆うように側壁の絶縁膜7を形成する
1次に、この状態で、再びn型不純物(つまり、低濃度
ソース・ドレイン領域3と同一導電型の不純物)を高濃
度にドープして、絶縁膜7と自己整合的にn型高濃度ソ
ース・ドレイン領域4を形成する。
Thereafter, the conductive film is anisotropically etched to leave the second gate electrode 6 only on the sidewalls of the first gate electrode 1. Therefore, after depositing an insulating film such as SiO*Ill on the entire surface again, this layer is anisotropically etched to form a sidewall insulating film 7 covering the second gate electrode 6. In this state, the n-type impurity (that is, the impurity of the same conductivity type as the low concentration source/drain region 3) is doped again at a high concentration to form the n-type high concentration source/drain region in self-alignment with the insulating film 7. form 4.

この製造方法の例では、第2のゲート電極6形成用導電
性膜に不純物をドープするのに、異方性エツチングする
前に行ったが、異方性エツチングを行って第2のゲート
電極6を残存させた後、不純物をドープしてもよい。
In the example of this manufacturing method, impurities were doped into the conductive film for forming the second gate electrode 6 before anisotropic etching. After remaining, impurities may be doped.

本実施例では、第2のゲート電極dを用いて低濃度ソー
ス・ドレイン領域3とオーバラップさせている。また、
そのオーバラップ量は、第2のゲート電極6用の堆積膜
厚、および該導電性膜のオーバエツチング量(すなわち
、第2のゲート電極6の長さ)によって制御できる。な
お、該第2のゲート電極6の側壁の絶縁膜7の堆積膜厚
(すなわち、高濃度ソース・ドレイン領域4の形成位置
)によってオーバーラツプ量とは独立に低濃度ソース・
ドレイン領域の長さを制御できる。
In this embodiment, the second gate electrode d is used to overlap the lightly doped source/drain region 3. Also,
The amount of overlap can be controlled by the deposited film thickness for the second gate electrode 6 and the amount of overetching of the conductive film (ie, the length of the second gate electrode 6). Note that depending on the deposited film thickness of the insulating film 7 on the side wall of the second gate electrode 6 (that is, the formation position of the high concentration source/drain region 4), the low concentration source/drain region 4 can be formed independently of the amount of overlap.
The length of the drain region can be controlled.

この結果、低濃度ソース・ドレイン領域3間の★動的な
チャネル長を一定にした状態で、ゲート/ドレインのオ
ーバラップ量、および低濃度ソース・ドレイン領域3の
長さを各々独立に変えることができる。
As a result, while keeping the dynamic channel length between the lightly doped source and drain regions 3 constant, the amount of gate/drain overlap and the length of the lightly doped source and drain regions 3 can be changed independently. I can do it.

したがって、通常の5vの電源電圧による動作時におい
て、低濃度ドレイン領域3の空乏層が十分に伸びつつも
、高濃度ドレイン領域4に達しないように、低濃度ドレ
イン領域3の長さを適正化し、その状態で低濃度ドレイ
ン領域3のゲート酸化膜2に接する空乏化領域を第2の
ゲート電極6で完全にオーバラップさせることができる
0例えば、n−ドーズ量が5X10’″/C■2の場合
、第2図に示したように、空乏層幅は約0.2t1mに
なるので。
Therefore, the length of the lightly doped drain region 3 is optimized so that the depletion layer of the lightly doped drain region 3 extends sufficiently but does not reach the highly doped drain region 4 during operation with a normal power supply voltage of 5V. In this state, the depletion region in contact with the gate oxide film 2 of the low concentration drain region 3 can be completely overlapped with the second gate electrode 60. For example, if the n- dose is 5X10'''/C2 In this case, as shown in FIG. 2, the depletion layer width is approximately 0.2t1m.

低濃度ドレイン領域3の長さを0.27a*以上に設定
し、かつオーバラップ量を0.2.にすることができる
The length of the low concentration drain region 3 is set to 0.27a* or more, and the overlap amount is set to 0.2. It can be done.

本実施例では、実効チャネル長が一定のままで、ドレイ
ン横方向電界を緩和できるので、ドレイン耐圧を向上で
きる。しかも、ゲート/ドレインのオーバラップ量を低
濃度ドレイン領域3のゲート絶縁膜に接する空乏化領域
に限定でき、高濃度ドレイン領域4にまで到らせないよ
うにできる。このため、不必要なオーバラップによるゲ
ート/ドレインの寄生容量増加という問題も解決できる
In this embodiment, since the drain lateral electric field can be relaxed while the effective channel length remains constant, the drain breakdown voltage can be improved. Furthermore, the amount of gate/drain overlap can be limited to the depleted region in contact with the gate insulating film of the lightly doped drain region 3, and can be prevented from reaching the highly doped drain region 4. Therefore, the problem of increased gate/drain parasitic capacitance due to unnecessary overlap can also be solved.

なお、本実施例では、nチャネルMOSトランジスタを
例に挙げて説明したが、pチャネルMOSトランジスタ
の場合においても同様の効果が得られる。
Although this embodiment has been described using an n-channel MOS transistor as an example, similar effects can be obtained in the case of a p-channel MOS transistor.

実施例 2 第4図(a)〜(c)は、本発明の第2の実施例のMo
Sトランジスタの製造工程断面図である。
Example 2 FIGS. 4(a) to 4(c) show Mo of the second example of the present invention.
FIG. 3 is a cross-sectional view of the manufacturing process of the S transistor.

本実施例は、第1の実施例とは、第2のゲート電極の側
壁に形成する絶縁膜の形成方法が異なる。
This embodiment differs from the first embodiment in the method of forming the insulating film formed on the sidewall of the second gate electrode.

上記第1の実施例では、第2のゲート電極の側壁絶縁膜
をCVD法により堆積させたが、本実施例では、第1の
ゲート電極の側壁に形成した第2のゲート電極を表面部
分を酸化させることにより形成する。以下、工程順に説
明する。
In the first embodiment described above, the sidewall insulating film of the second gate electrode was deposited by the CVD method, but in this embodiment, the surface portion of the second gate electrode formed on the sidewall of the first gate electrode was deposited. Formed by oxidation. The steps will be explained below in order.

まず、第4図(a)に示すように、Si基Fi8上に形
成したゲート酸化膜2上に、CVD法により第1のゲー
ト電極1および絶縁膜5を堆積する。
First, as shown in FIG. 4(a), a first gate electrode 1 and an insulating film 5 are deposited by CVD on a gate oxide film 2 formed on a Si-based Fi8.

次に、これらの膜をホトレジスト膜をマスクとしてドラ
イエツチングし、ゲート電極の形状に加工する0次に、
第1のゲート電極1および絶縁膜5をマスクとして不純
物をドープして低濃度ソース・ドレイン領域3を該ゲー
ト酸化膜1と自己整合的に形成する。
Next, these films are dry-etched using a photoresist film as a mask to process them into the shape of the gate electrode.
Using first gate electrode 1 and insulating film 5 as masks, impurities are doped to form lightly doped source/drain regions 3 in self-alignment with gate oxide film 1 .

続いて、多結晶S1膜を低圧CVD法によりウェハ全面
に均一に堆積する。この後、該多結晶S1膜にりん(P
)、ひ素(As)等の導電性不純物をドープする。この
後、異方性エツチングにより上記多結晶Si膜をエツチ
ングし、第4図(b)に示すように、第1のゲート電極
1の側壁にのみ第2のゲート電極6を残存させる。
Subsequently, a polycrystalline S1 film is uniformly deposited over the entire surface of the wafer by low pressure CVD. After this, the polycrystalline S1 film is
), doped with conductive impurities such as arsenic (As). Thereafter, the polycrystalline Si film is etched by anisotropic etching, leaving the second gate electrode 6 only on the side walls of the first gate electrode 1, as shown in FIG. 4(b).

次に、高濃度に不純物を含んだ多結晶SLの酸化速度は
大きいという現象を利用して選択酸化を行い、第4図(
c)に示すように、第2のゲート電極6の側壁に絶縁膜
(酸化膜)7を形成する0次いで、絶縁膜7と自己整合
的に高濃度ソース・ドレイン領域4を形成する。
Next, selective oxidation was performed using the phenomenon that polycrystalline SL containing a high concentration of impurities has a high oxidation rate, as shown in Figure 4 (
As shown in c), an insulating film (oxide film) 7 is formed on the sidewalls of the second gate electrode 6. Next, highly doped source/drain regions 4 are formed in self-alignment with the insulating film 7.

本実施例によれば、第2のゲート電極6の側壁絶縁膜7
を膜質が均一な酸化膜によって形成でき、しかも、第4
図(c)に示すごとく、第2のゲート電極6の端部での
ゲート酸化膜2の膜厚が厚くなる効果が生じる。このよ
うに、ゲート電極の端部でゲート酸化膜2の膜厚が厚く
なると、第2のゲート電極6と、高濃度ソース・ドレイ
ン領域4との間のフリンジ電界が緩和される。このため
According to this embodiment, the sidewall insulating film 7 of the second gate electrode 6
can be formed by an oxide film with uniform film quality, and the fourth
As shown in Figure (c), the effect of increasing the thickness of the gate oxide film 2 at the end of the second gate electrode 6 is produced. As described above, when the gate oxide film 2 becomes thicker at the end of the gate electrode, the fringe electric field between the second gate electrode 6 and the heavily doped source/drain region 4 is relaxed. For this reason.

ゲート端部での電界集中が緩和され、横方向電界強度を
より緩和できるという効果が生じる。
The effect is that the electric field concentration at the gate end is relaxed, and the lateral electric field strength can be further relaxed.

なお、上記の製造工程において、第2のゲート電極6を
第1のゲート電極1の側壁に形成した後、該電極6に高
濃度の不純物をドープしても°よい。
Note that in the above manufacturing process, after the second gate electrode 6 is formed on the side wall of the first gate electrode 1, the electrode 6 may be doped with a high concentration of impurity.

このとき、ドープする不純物の導電型を高濃度ソース・
ドレイン領域4の導電型と同じにすれば、高濃度ソース
・ドレイン領域4の形成を同時に行うことができる。絶
縁膜7はこの後形成する。さて、本実施例においても、
オーバーラツプ量および低濃度ドレイン領域3の長さを
任意に変えることができる。
At this time, the conductivity type of the impurity to be doped is
If the conductivity type is the same as that of the drain region 4, the highly doped source/drain regions 4 can be formed at the same time. The insulating film 7 will be formed after this. Now, also in this example,
The amount of overlap and the length of the lightly doped drain region 3 can be changed arbitrarily.

実施例 3 第5図は1本発明の第3の実施例のMOSトランジスタ
の断面図である0本実施例は、第1図の実施例に示した
LDD構造の代わりにSD(シングルドレイン(S i
ngla D rain) )構造にした場合の実施例
である。以下の図面において、第1図と同じ符号のもの
は、第1図と同じ部分を示す。
Embodiment 3 FIG. 5 is a cross-sectional view of a MOS transistor according to a third embodiment of the present invention. In this embodiment, an SD (single drain (S) i
This is an example in which a structure is adopted. In the following drawings, the same reference numerals as in FIG. 1 indicate the same parts as in FIG. 1.

本実施例においても、ゲート電極(1もしくは6)が、
高濃度ソース・ドレイン領域4の空乏化領域の少なくと
もゲート酸化膜2に接する領域をオーバーラツプするよ
うに形成しであるので、ソース・ドレイン間の横方向電
界を緩和でき、実施例1と同様の効果を奏することがで
きる。
Also in this example, the gate electrode (1 or 6) is
Since the depletion region of the high concentration source/drain region 4 is formed so as to overlap at least the region in contact with the gate oxide film 2, the lateral electric field between the source and drain can be relaxed, and the same effect as in the first embodiment can be obtained. can be played.

実施例 4 第6図は1本発明の第4の実施例のMOSトランジスタ
の断面図である0本実施例は、第4図(c)に示した実
施例のLDD構造の代わりにSD構造にした場合の実施
例である。
Embodiment 4 FIG. 6 is a cross-sectional view of a MOS transistor according to a fourth embodiment of the present invention. This embodiment uses an SD structure instead of the LDD structure of the embodiment shown in FIG. 4(c). This is an example of the case.

実施例 5 第7図は、本発明の第5の実施例のMOSトランジスタ
の断面図である0本実施例は、第1図に示した実施例の
LDD構造の代わりにDDD (ダブル ディフユーズ
ド ドレイン(DoubleD 1ffused D 
rain))構造にした場合の実施例である0本実施例
では、緩傾斜型拡散層71で高濃度のソース・ドレイン
拡散層4を囲むように形成しである。
Embodiment 5 FIG. 7 is a cross-sectional view of a MOS transistor according to a fifth embodiment of the present invention. In this embodiment, a DDD (double diffused drain) structure is used instead of the LDD structure of the embodiment shown in FIG. (Double D 1ffused D
In this embodiment, which is an embodiment in which a rain)) structure is adopted, a gently sloped diffusion layer 71 is formed so as to surround the highly doped source/drain diffusion layer 4.

実施例 6 第8図は、本発明の第6の実施例のMOSトランジスタ
の断面図である0本実施例は、第4図に示した実施例の
LDD構造の代わりにDDD′a造にした場合の実施例
である。
Embodiment 6 FIG. 8 is a cross-sectional view of a MOS transistor according to a sixth embodiment of the present invention. In this embodiment, a DDD'a structure is used instead of the LDD structure of the embodiment shown in FIG. This is an example of the case.

第6図、第7図および第8図に示した実施例においても
、ソース・ドレイン領域のゲート酸化膜に接する空乏化
領域をゲート電極によってオーバーラツプすることによ
って、ソース・ドレイン間の広がり電界を緩和できる。
In the embodiments shown in FIGS. 6, 7, and 8, the spreading electric field between the source and drain is alleviated by overlapping the depletion region in contact with the gate oxide film in the source/drain region with the gate electrode. can.

実施例 7 第9図は、本発明の第7の実施例のMOSトランジスタ
の断面図である。第7図、第8図の実施例のDDD構造
においては、高濃度ソース・ドレイン領域4を第1のゲ
ート電極1をマスクとして不純物をドープすることによ
り、高濃度ソース・ドレイン領域4を第1のゲート電極
1と自己整合的に形成したが、本実施例では、高濃度の
ソース・ドレイン領域4を、第2のゲート電極6をマス
クとする不純物ドープにより第2のゲート電極6と自己
整合的に形成した場合の実施例である0本実施例によれ
ば、緩傾斜型拡散層71の領域に広がる空乏層はゲート
電極によって完全にオーバーラツプされるため、この効
果により電界の緩和が図れると共に、緩傾斜型拡散層7
1の長さが長くなるので、該領域での電界緩和はより一
層顕著になる。
Embodiment 7 FIG. 9 is a cross-sectional view of a MOS transistor according to a seventh embodiment of the present invention. In the DDD structure of the embodiment shown in FIGS. 7 and 8, the highly doped source/drain region 4 is doped with impurities using the first gate electrode 1 as a mask. However, in this example, the highly doped source/drain regions 4 are formed in self-alignment with the second gate electrode 6 by doping with impurities using the second gate electrode 6 as a mask. According to this embodiment, which is an embodiment in which the depletion layer is formed in a similar manner, the depletion layer that spreads in the region of the gently sloped diffusion layer 71 is completely overlapped by the gate electrode. , gently sloped diffusion layer 7
As the length of 1 becomes longer, the electric field relaxation in this region becomes even more significant.

実施例 8 第10図は1本発明の第8の実施例のMOSトランジス
タの断面図である。第8図の実施例の構造で、高濃度の
ソース・ドレイン領域4を第2のゲート電極6の側壁酸
化膜7と自己整合的に形成した場合の実施例である0本
実施例によれば、ゲート電極は緩傾斜型拡散層フ1を完
全にオーバーラツプしており、また、緩傾斜型拡散層7
1が実施例7よりも長くなるので、ソース・ドレイン間
の広がり電界を緩和できる。
Embodiment 8 FIG. 10 is a sectional view of a MOS transistor according to an eighth embodiment of the present invention. According to this embodiment, which is an embodiment in which the highly doped source/drain region 4 is formed in a self-aligned manner with the sidewall oxide film 7 of the second gate electrode 6 in the structure of the embodiment shown in FIG. , the gate electrode completely overlaps the gently sloped diffusion layer 7, and the gate electrode completely overlaps the gently sloped diffusion layer 7.
1 is longer than in Example 7, the spreading electric field between the source and drain can be relaxed.

実施例 9 第11図は1本発明の第9の実施例のMOSトランジス
タの断面図である0本実施例は、高濃度ソース・ドレイ
ン領域4を、ゲート酸化膜2が形成されたSi基板8の
表面より深部に形成したLDD構造の場合で、ゲート電
極を、低濃度ソース・ドレイン領域3と高濃度ソース・
ドレイン領域4とが接合する位置までオーバーラツプさ
せた場合の実施例である。
Embodiment 9 FIG. 11 is a cross-sectional view of a MOS transistor according to a ninth embodiment of the present invention. In this embodiment, a heavily doped source/drain region 4 is formed on a Si substrate 8 on which a gate oxide film 2 is formed. In the case of an LDD structure formed deeper than the surface of
This is an example in which they overlap to the point where they are joined to the drain region 4.

本実施例によれば、第2のゲート電極6が低濃度ソース
・ドレイン領域3のゲート酸化膜2に接する空乏化領域
を完全にオーバラップしているため、ソース・ドレイン
間の広がり電界が緩和される。さらに、この効果に加え
て、高濃度ソース・ドレイン領域4が基板深部に在るの
で、動作時における電流路を、基板の深部に位置させる
ことができる。したがって、ゲート酸化膜2や、側壁絶
縁膜7に捕獲されたホットキャリアの影響を受けにくく
なると共に、電位の高い高濃度ソース・ドレイン領域4
が基板の深部に在るので、横方向電界強度の最大点も基
板深部に位置するようになるので、電界の緩和がより顕
著になる。
According to this embodiment, since the second gate electrode 6 completely overlaps the depletion region in contact with the gate oxide film 2 of the low concentration source/drain region 3, the spreading electric field between the source and drain is relaxed. be done. Furthermore, in addition to this effect, since the highly doped source/drain regions 4 are located deep in the substrate, the current path during operation can be located deep in the substrate. Therefore, it becomes less susceptible to the influence of hot carriers captured in the gate oxide film 2 and the sidewall insulating film 7, and the highly doped source/drain regions 4 with high potential
is located deep in the substrate, the maximum point of the lateral electric field strength is also located deep in the substrate, and the relaxation of the electric field becomes more significant.

実施例 10 第12図は、本発明の第10の実施例のMOSトランジ
スタの断面図である0本実施例は、第11図の実施例に
おいて、第2のゲート電極6の側壁酸化膜7を第4図の
実施例に示した方法、すなわち、第2のゲート電極6の
表面部分の酸化により形成した場合の実施例である0本
実施例によっても、第11図の実施例と同様の効果が得
られる。
Embodiment 10 FIG. 12 is a cross-sectional view of a MOS transistor according to a tenth embodiment of the present invention. This embodiment differs from the embodiment of FIG. 11 in that the sidewall oxide film 7 of the second gate electrode 6 is This embodiment, which is an embodiment in which the second gate electrode 6 is formed by the method shown in the embodiment of FIG. is obtained.

実施例 11 第13図(a)〜(c)は、本発明の第11の実施例の
MOSトランジスタを示す工程断面図である。
Example 11 FIGS. 13(a) to 13(c) are process cross-sectional views showing a MOS transistor according to an eleventh example of the present invention.

本実施例のMOSトランジスタの製造方法を説明する。A method of manufacturing the MOS transistor of this example will be explained.

まず、第13図(a)に示すように、n型あるいはn型
の不純物をドープしたSi基板8の表面にゲート酸化膜
2を形成する。この上に、第1のゲート電極を形成する
ために、導電性不純物を高濃度にドープした多結晶5i
ljJ、あるいはシリサイド膜、W等の金属膜、または
これらの膜の複合膜を堆積させる1次いで、該導電性膜
の上に絶縁膜5を堆積させた後、ホトエツチング法によ
り上記導電性膜および絶縁膜5をパターニングし、第1
のゲート電極11を形成する。ただし、このとき。
First, as shown in FIG. 13(a), a gate oxide film 2 is formed on the surface of an n-type or Si substrate 8 doped with n-type impurities. On top of this, a polycrystalline 5i doped with conductive impurities at a high concentration is used to form a first gate electrode.
Depositing ljJ, a silicide film, a metal film such as W, or a composite film of these films.1 Next, an insulating film 5 is deposited on the conductive film, and then the conductive film and the insulating film are removed by photo-etching. The film 5 is patterned and the first
A gate electrode 11 is formed. However, at this time.

第13図(a)に示すように、aで示した膜厚分だけ上
記導電性膜を残存させる。  ′ 次に、第1のゲート電極11および絶縁膜5をマスクと
して、Si基板8の表面領域に該基板8とは異なる導電
型、すなわちn型不純物をイオン打込みして低濃度ソー
ス・ドレイン領域3を形成する。ここで、イオン打込み
のエネルギーは、膜厚aの膜を通り抜けてSi基板8に
注入されるだけの値に適正化する。なお、膜厚aを残す
ことにより第1のゲート電極11をパターニングするた
めのエツチング加工時に、ゲート酸化膜2および81基
板8にダメージが与えられるのを防止できる。
As shown in FIG. 13(a), the conductive film is left by the thickness indicated by a. 'Next, using the first gate electrode 11 and the insulating film 5 as masks, ions of impurities of a conductivity type different from that of the substrate 8, that is, n-type, are implanted into the surface region of the Si substrate 8 to form the low concentration source/drain regions 3. form. Here, the energy for ion implantation is optimized to a value that allows the ions to be implanted into the Si substrate 8 through a film having a thickness a. Note that by leaving the film thickness a, it is possible to prevent damage to the gate oxide film 2 and the substrate 8 during the etching process for patterning the first gate electrode 11.

しかし、一方、膜厚aが大きくなると、イオン打込みの
際イオンが注入されず、低濃度ソース・ドレイン領域の
形成が困難になり、また、後の工程で膜厚aの部分をエ
ツチング加工したときの垂直段差が大きくなるという問
題が生じる。そこで、膜厚aは20〜50n陶程度が良
い。
However, on the other hand, if the film thickness a becomes large, ions will not be implanted during ion implantation, making it difficult to form low concentration source/drain regions. A problem arises in that the vertical step difference becomes large. Therefore, the film thickness a is preferably about 20 to 50 nm.

次に、第13図(b)に示すように、第2のゲート電極
を形成するための導電性膜60を全面に堆積する。該層
は導電性不純物をドープした多結晶S1膜、あるいはシ
リサイド膜、W等の金属膜、またはこれらの膜の複合膜
によって形成する。したがって、第1のゲート電極11
と同じ材料でも、異なる材料でもよい。
Next, as shown in FIG. 13(b), a conductive film 60 for forming a second gate electrode is deposited over the entire surface. The layer is formed of a polycrystalline S1 film doped with conductive impurities, a silicide film, a metal film such as W, or a composite film of these films. Therefore, the first gate electrode 11
It may be the same material as or a different material.

この後、第13図(Q)に示すように、導電性膜60を
異方性エツチングすることにより、第2のゲート電極6
を第1のゲート電極11の側壁に残すように加工する0
次に、第2のゲート電極6をマスクとして膜厚aの残存
膜をエツチングする。もちろん、第2のゲート電極6を
オーバエツチングしながら、膜厚aの残存膜をエツチン
グしてもよい。
Thereafter, as shown in FIG. 13(Q), the conductive film 60 is anisotropically etched to form the second gate electrode 6.
is processed so that it remains on the side wall of the first gate electrode 11.
Next, the remaining film having a thickness a is etched using the second gate electrode 6 as a mask. Of course, the remaining film having a thickness a may be etched while over-etching the second gate electrode 6.

続いて、第2のゲート電極6および第1のゲiト電極1
1の膜厚8部分の側壁に、絶縁膜7を形成する0次いで
、低濃度ソース・ドレイン領域3と同−導電型、すなわ
ちn型の高濃度ソース・ドレイン領域4を、絶縁117
に自己整合的に形成する。
Subsequently, the second gate electrode 6 and the first gate electrode 1
An insulating film 7 is formed on the side wall of the 8-thick portion of the insulating film 7. Next, a highly doped source/drain region 4 of the same conductivity type as the lightly doped source/drain region 3, that is, an n-type, is coated with an insulating film 7.
form in a self-consistent manner.

本実施例によれば、上記の実施例と同様な効果が得られ
、加えて第1のゲート電極のエツチング加工に伴うゲー
ト酸化膜2およびSi基板8へのダメージが除去できる
。しかも、膜厚aの残存膜が薄いことにより、膜厚8部
分をエツチングした第13図(e)の状態で、ゲート側
壁部に生じる垂直段差がなく、ゆるやかな勾配になる。
According to this embodiment, the same effects as those of the above-mentioned embodiments can be obtained, and in addition, damage to the gate oxide film 2 and the Si substrate 8 caused by etching the first gate electrode can be removed. Moreover, since the remaining film having a film thickness of a is thin, in the state shown in FIG. 13(e) in which a portion of the film thickness of 8 is etched, there is no vertical step on the gate side wall portion, resulting in a gentle slope.

もし垂直段差が大きくなると、後の多層配線工程で該段
差部でのエツチング残液が生じるという問題が起きる。
If the vertical step becomes large, a problem arises in that etching residual liquid is generated at the step in the subsequent multilayer wiring process.

したがって、本実施例はこの問題に対しても対処してい
る。
Therefore, this embodiment also addresses this problem.

なお1以上の説明では、空乏層幅と不純物濃度との係わ
りを重点に置いて説明してきたが、衆知のように、空乏
層幅は、不純物濃度の他に、電源電圧によっても変わる
。したがって、実際のLSIに適用しようとする電源電
圧および低濃度ドレイン領域の不純物濃度とを考慮して
、低濃度ドレイン領域の空乏層幅を明らかにし、ゲート
絶縁膜に接する空乏層領域を完全にオーバーラツプすれ
ばよい。
In the above explanations, emphasis has been placed on the relationship between the depletion layer width and the impurity concentration, but as is well known, the depletion layer width varies depending on the power supply voltage as well as the impurity concentration. Therefore, in consideration of the power supply voltage to be applied to an actual LSI and the impurity concentration of the lightly doped drain region, the depletion layer width of the lightly doped drain region is clarified and the depletion layer region in contact with the gate insulating film is completely overlapped. do it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドレイン領域の少なくともゲート絶縁
膜に接する空乏化領域を、ゲート電極でオーバラップさ
せることができるので、ソース・ドレイン間の横方向電
界を緩和することができる。
According to the present invention, since at least the depleted region of the drain region in contact with the gate insulating film can be overlapped with the gate electrode, the lateral electric field between the source and the drain can be relaxed.

しかも、ゲート電極と、ドレイン領域とのオーバラップ
量を任意に制御でき、上記空乏化領域に限定できるので
、オーバラップ量が不必要に大きくなって寄生容量が増
大するという問題は避けることができる。また、本発明
を、LDD型MoSトランジスタに適用した場合、低濃
度ソース・ドレイン領域間の実効的なチャネル長を一定
にした状態で、上記オーバラップ量と、低濃度ドレイン
領域の長さをそれぞれ独立に変えることができる。
Moreover, since the amount of overlap between the gate electrode and the drain region can be controlled arbitrarily and can be limited to the depleted region, it is possible to avoid the problem of an increase in parasitic capacitance due to an unnecessarily large amount of overlap. . Furthermore, when the present invention is applied to an LDD type MoS transistor, the above-mentioned overlap amount and the length of the lightly doped drain region are respectively adjusted while keeping the effective channel length between the lightly doped source and drain regions constant. Can be changed independently.

この結果、電界強度を70%から50%程度に緩和する
ことができ、アバランシェ降伏を防止し、高耐圧なサブ
ミクロンデバイスの実現が可能となる。
As a result, the electric field strength can be relaxed from 70% to about 50%, avalanche breakdown can be prevented, and a submicron device with high breakdown voltage can be realized.

加えて寄生容量を極力抑え、かつ上記空乏化領域をゲー
ト電極でオーバラップさせたことにより、伝達コンダク
タンスを従来型LDDの場合の約2倍径度に増大でき、
高速なデバイスを実現できる。
In addition, by minimizing parasitic capacitance and overlapping the depletion region with the gate electrode, the transfer conductance can be increased to about twice that of a conventional LDD.
High-speed devices can be realized.

また1本発明の構造により横方向の電界強度の最大点が
ゲート電極の内側で、かつ基板の内部に位置するように
なり、ドレインで発生したホトキャリアは、ゲート絶縁
膜に注入しにくくなるので、ホットキャリアの発生によ
る特性劣化を抑制する効果もあり、従来型LDDに比べ
て伝達コンダクタンスの劣化を、1/1Gから1/10
0程度にすることができる。
Furthermore, due to the structure of the present invention, the maximum point of the lateral electric field strength is located inside the gate electrode and inside the substrate, making it difficult for photocarriers generated at the drain to be injected into the gate insulating film. It also has the effect of suppressing characteristic deterioration due to the generation of hot carriers, reducing the deterioration of transfer conductance from 1/1G to 1/10 compared to conventional LDDs.
It can be set to about 0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のMOSトランジスタの
断面図、第2図はゲート/ドレインのオーバラップ量と
横方向電界強度との関係を示す図、第3図はゲート/ド
レインのオーバラップ量と最大電界強度の発生点の位置
との関係を示す図、第4図(a)〜(c)は本発明の第
2のMOSトランジスタの製造工程断面図、第5図〜第
12図は本発明の第3〜第10の実施例のMOSトラン
ジスタの断面図、第13図(a)〜(Q)は本発明の第
11の実施例のMOSトランジスタの製造工程断面図で
ある。 1.11・・・第1のゲート電極 2・・・ゲート絶縁膜 3・・・低濃度ソース・ドレイン領域 4・・・高濃度ソース・ドレイン領域 6・・・第2のゲート電極 7・・・絶縁膜      8・・・Si基板代理人弁
理士  中 村 純之助 第1図 第2図 第3図 ゲートノドしイソのオーバつ−ノブ量(μm)第6図 第6図 71:暖噛fF!ソース・ドし4ソ鎖工五第10図 第12図 8:シリコン丞炊
FIG. 1 is a cross-sectional view of a MOS transistor according to the first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between gate/drain overlap amount and lateral electric field strength, and FIG. 3 is a diagram showing the relationship between gate/drain overlap amount and lateral electric field strength. A diagram showing the relationship between the amount of overlap and the position of the point where the maximum electric field strength occurs. FIGS. 4(a) to 4(c) are sectional views of the manufacturing process of the second MOS transistor of the present invention, and FIGS. The figures are cross-sectional views of MOS transistors according to third to tenth embodiments of the present invention, and FIGS. 13(a) to (Q) are cross-sectional views of the manufacturing process of MOS transistors according to the eleventh embodiment of the present invention. 1.11...First gate electrode 2...Gate insulating film 3...Low concentration source/drain region 4...High concentration source/drain region 6...Second gate electrode 7...・Insulating film 8...Si substrate attorney Junnosuke Nakamura Figure 1 Figure 2 Figure 3 Gate throat over-knob amount (μm) Figure 6 Figure 6 71: Warm bite fF! Sauce Doshi 4 Sauce Chain Work 5 Figure 10 Figure 12 Figure 8: Silicone Cooking

Claims (1)

【特許請求の範囲】 1、半導体基板上にゲート絶縁膜を介して設けたゲート
電極と、上記ゲート電極の両側の上記半導体基板の表面
領域に設けたソース・ドレイン領域を少なくとも有する
半導体装置において、少なくとも上記ソース・ドレイン
領域の空乏化領域のうち、少なくとも上記ゲート絶縁膜
と接触する領域が、上記ゲート電極によって覆われてい
ることを特徴とする半導体装置。 2、上記ソース・ドレイン領域のうち少なくともドレイ
ン領域が、上記ゲート電極から離れる方向に低濃度領域
と高濃度領域とから成っていることを特徴とする特許請
求の範囲第1項記載の半導体装置。 3、半導体基板上に絶縁膜を介して第1のゲート電極を
形成する工程と、上記第1のゲート電極の側壁に第2の
ゲート電極を形成する工程と、上記ゲート電極の両側の
上記半導体基板の表面領域に不純物をドープしてソース
・ドレイン領域を形成する工程とを具備することを特徴
とする半導体装置の製造方法。 4、上記第2のゲート電極を形成するのに、該電極形成
用の導電性膜を全面に堆積した後、異方性エッチングを
行うことにより、上記第1のゲート電極の側壁に上記第
2のゲート電極を残存させて形成することを特徴とする
特許請求の範囲第3項記載の半導体装置の製造方法。 5、上記第2のゲート電極の側壁にCVD法もしくは熱
酸化法を用いて絶縁膜を形成する工程を具備することを
特徴とする特許請求の範囲第3項記載の半導体装置の製
造方法。 6、上記第1のゲート電極を膜厚の厚い部分と薄い部分
とで構成し、該第1のゲート電極の薄い部分の上部で、
かつ厚い部分の側壁に第2ゲート電極を設けることを特
徴とする特許請求の範囲第3項記載の半導体装置の製造
方法。 7、上記第1のゲート電極をマスクとする不純物ドープ
により低濃度ソース・ドレイン領域を形成した後、上記
第2のゲート電極を形成し、次に、該第2のゲート電極
の側壁に絶縁膜を形成し、該絶縁膜をマスクとする不純
物ドープにより高濃度ソース・ドレイン領域を形成する
ことを特徴とする特許請求の範囲第3項記載の半導体装
置の製造方法。
[Claims] 1. A semiconductor device having at least a gate electrode provided on a semiconductor substrate via a gate insulating film, and source/drain regions provided in a surface region of the semiconductor substrate on both sides of the gate electrode, A semiconductor device, wherein at least a region of the depleted region of the source/drain region that is in contact with the gate insulating film is covered with the gate electrode. 2. The semiconductor device according to claim 1, wherein at least the drain region of the source/drain regions consists of a low concentration region and a high concentration region in a direction away from the gate electrode. 3. A step of forming a first gate electrode on a semiconductor substrate via an insulating film, a step of forming a second gate electrode on the side wall of the first gate electrode, and a step of forming the semiconductor on both sides of the gate electrode. 1. A method of manufacturing a semiconductor device, comprising the step of doping impurities into a surface region of a substrate to form source/drain regions. 4. To form the second gate electrode, after depositing a conductive film for forming the electrode over the entire surface, anisotropic etching is performed to form the second gate electrode on the sidewall of the first gate electrode. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is formed with a remaining gate electrode. 5. The method of manufacturing a semiconductor device according to claim 3, further comprising the step of forming an insulating film on the side wall of the second gate electrode using a CVD method or a thermal oxidation method. 6. The first gate electrode is composed of a thick part and a thin part, and above the thin part of the first gate electrode,
4. The method of manufacturing a semiconductor device according to claim 3, further comprising providing the second gate electrode on the sidewall of the thick portion. 7. After forming low concentration source/drain regions by impurity doping using the first gate electrode as a mask, forming the second gate electrode, and then forming an insulating film on the sidewalls of the second gate electrode. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the high concentration source/drain regions are formed by doping with impurities using the insulating film as a mask.
JP61266543A 1986-11-11 1986-11-11 Semiconductor device and its manufacture Pending JPS63122174A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61266543A JPS63122174A (en) 1986-11-11 1986-11-11 Semiconductor device and its manufacture
KR1019870012658A KR900008153B1 (en) 1986-11-11 1987-11-10 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266543A JPS63122174A (en) 1986-11-11 1986-11-11 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS63122174A true JPS63122174A (en) 1988-05-26

Family

ID=17432318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266543A Pending JPS63122174A (en) 1986-11-11 1986-11-11 Semiconductor device and its manufacture

Country Status (2)

Country Link
JP (1) JPS63122174A (en)
KR (1) KR900008153B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212835A (en) * 1988-06-30 1990-01-17 Toshiba Corp Semiconductor device and manufacture thereof
JPH0334550A (en) * 1989-06-30 1991-02-14 Nec Corp Mos transistor
US5141891A (en) * 1988-11-09 1992-08-25 Mitsubishi Denki Kabushiki Kaisha MIS-type semiconductor device of LDD structure and manufacturing method thereof
US5254490A (en) * 1990-01-11 1993-10-19 Seiko Epson Corporation Self-aligned method of fabricating an LDD MOSFET device
JPH0629524A (en) * 1992-04-14 1994-02-04 Toshiba Corp Manufacture of semiconductor device
US5426327A (en) * 1990-10-05 1995-06-20 Nippon Steel Corporation MOS semiconductor with LDD structure having gate electrode and side spacers of polysilicon with different impurity concentrations
US5654212A (en) * 1995-06-30 1997-08-05 Winbond Electronics Corp. Method for making a variable length LDD spacer structure
US5798550A (en) * 1990-10-01 1998-08-25 Nippondenso Co. Ltd. Vertical type semiconductor device and gate structure
JP2007311498A (en) * 2006-05-17 2007-11-29 Denso Corp Semiconductor device
JP2010225636A (en) * 2009-03-19 2010-10-07 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device
KR100995330B1 (en) * 2003-04-29 2010-11-19 매그나칩 반도체 유한회사 Semiconductor device fabricating method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212835A (en) * 1988-06-30 1990-01-17 Toshiba Corp Semiconductor device and manufacture thereof
US5141891A (en) * 1988-11-09 1992-08-25 Mitsubishi Denki Kabushiki Kaisha MIS-type semiconductor device of LDD structure and manufacturing method thereof
JPH0334550A (en) * 1989-06-30 1991-02-14 Nec Corp Mos transistor
US5254490A (en) * 1990-01-11 1993-10-19 Seiko Epson Corporation Self-aligned method of fabricating an LDD MOSFET device
US5798550A (en) * 1990-10-01 1998-08-25 Nippondenso Co. Ltd. Vertical type semiconductor device and gate structure
US5426327A (en) * 1990-10-05 1995-06-20 Nippon Steel Corporation MOS semiconductor with LDD structure having gate electrode and side spacers of polysilicon with different impurity concentrations
JPH0629524A (en) * 1992-04-14 1994-02-04 Toshiba Corp Manufacture of semiconductor device
US5640035A (en) * 1992-04-14 1997-06-17 Kabushiki Kaisha Toshiba MOSFET having improved driving performance
US5654212A (en) * 1995-06-30 1997-08-05 Winbond Electronics Corp. Method for making a variable length LDD spacer structure
KR100995330B1 (en) * 2003-04-29 2010-11-19 매그나칩 반도체 유한회사 Semiconductor device fabricating method
JP2007311498A (en) * 2006-05-17 2007-11-29 Denso Corp Semiconductor device
JP2010225636A (en) * 2009-03-19 2010-10-07 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
KR880006789A (en) 1988-07-25
KR900008153B1 (en) 1990-11-03

Similar Documents

Publication Publication Date Title
US5444282A (en) Semiconductor device and a method of manufacturing thereof
JPH0328059B2 (en)
JPH02250331A (en) Semiconductor device and its manufacture
JPS63122174A (en) Semiconductor device and its manufacture
KR0180310B1 (en) Method for manufacturing cmos transistor
JPS6055665A (en) Manufacture of semiconductor device
JPS6344770A (en) Field effect transistor and manufacture of the same
JPS63177471A (en) Mos-type semiconductor device
KR100313546B1 (en) Transistor forming method
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JP2727590B2 (en) MIS type semiconductor device
JPH1145999A (en) Semiconductor device and manufacture thereof and image display device
JP3061157B2 (en) Method for forming semiconductor device
JPS62122273A (en) Semiconductor device and manufacture thereof
KR950000145B1 (en) It ldd structure for ig fet and manufacturing method thereof
JPH06105715B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2776891B2 (en) Semiconductor integrated circuit device
JP3530410B2 (en) Method for manufacturing semiconductor device
KR940004415B1 (en) Making method and structure of mosfet
JPH05283688A (en) Mos-type semiconductor device and its production
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
KR100376874B1 (en) Method for manufacturing transistor of semiconductor device
JP2001250941A (en) Semiconductor device and its manufacturing method