JPH0334550A - Mos transistor - Google Patents

Mos transistor

Info

Publication number
JPH0334550A
JPH0334550A JP16906789A JP16906789A JPH0334550A JP H0334550 A JPH0334550 A JP H0334550A JP 16906789 A JP16906789 A JP 16906789A JP 16906789 A JP16906789 A JP 16906789A JP H0334550 A JPH0334550 A JP H0334550A
Authority
JP
Japan
Prior art keywords
gate electrode
spacers
region
polycrystalline silicon
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16906789A
Other languages
Japanese (ja)
Inventor
Fumihiro Okabe
岡部 文洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16906789A priority Critical patent/JPH0334550A/en
Publication of JPH0334550A publication Critical patent/JPH0334550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To accurately control, to a desired value, an overlap size of a gate electrode with an n-type diffusion region as a source-drain region of a low impurity concentration by providing the following: conductive spacers formed on both side faces in a length direction of the gate electrode; insulating spacers formed outside the individual conductive spacers. CONSTITUTION:A gate insulating film 12 and a gate electrode 13 which is composed of polycrystalline silicon doped with phosphorus are formed on a p-type semiconductor substrate 11. Then, an n-type impurity-introduced region 14a is formed; a heat treatment is executed to form an n-type diffusion region 14. Then, a polycrystalline silicon film 15 doped with phosphorus is formed by a vapor growth method; an anisotropic reactive ion etching operation of this film is executed to form polycrystalline silicon spacers 16 on side faces of the gate electrode 13. Then, silicon oxide spacers 17 are formed by a vapor growth method ot silicon oxide and by an anisotropic reactive ion etching operation, then, an n-type impurity-introduced region 18a is formed by making use of the gate electrode 13, the polycrystalline silicon spacers 16 and the silicon oxide spacers 17 as a mask for ion implantation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、MOSトランジスタに関し、特に、高濃度の
ソース・ドレイン領域のチャネル測に低濃度のソース・
トレイン領域を設けてドレイン付近の電界を緩和し、長
期間使用してもしきい値電圧やgmが変動しないように
なされたMOSトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to MOS transistors, and in particular, the present invention relates to MOS transistors.
The present invention relates to a MOS transistor in which a train region is provided to relax the electric field near the drain so that the threshold voltage and gm do not change even after long-term use.

[従来の技術] 従来、この種MOSトランジスタとしては、第3図に示
すものが用いられてきた。同図に示すように、p型半導
体基板31の表面領域内には、ソース・ドレイン領域を
構成するn+型拡散領域38とn−型拡散領域34とが
形成され、p型半導体基板31上には、ゲート絶縁WA
32を介してその側面に酸化シリコンスペーサ37を有
するゲート電極33が形成されている。
[Prior Art] Conventionally, as this type of MOS transistor, the one shown in FIG. 3 has been used. As shown in the figure, in the surface region of the p-type semiconductor substrate 31, an n+ type diffusion region 38 and an n- type diffusion region 34, which constitute source/drain regions, are formed. is gate insulation WA
A gate electrode 33 having a silicon oxide spacer 37 is formed on the side surface of the gate electrode 32 via the gate electrode 32 .

この構造のMOSトランジスタは次のように製遺される
。まず、p型半導体基板31上にゲート絶縁膜32を介
してゲート電極33を形成し、このゲート電極33をマ
スクとしてn型不純物をドーピングしてn−型拡散領域
34を形成する0次に、ゲート電極33の側面に酸化シ
リコンスペーサ37を形成し、ゲート電極33と酸化シ
リコンスペーサ37とをマスクとしてn型不純物をドー
ピングしてn1型拡散領域38を形成する。
A MOS transistor having this structure is manufactured as follows. First, a gate electrode 33 is formed on a p-type semiconductor substrate 31 via a gate insulating film 32, and an n-type impurity is doped using this gate electrode 33 as a mask to form an n-type diffusion region 34. A silicon oxide spacer 37 is formed on the side surface of the gate electrode 33, and an n1 type diffusion region 38 is formed by doping with an n-type impurity using the gate electrode 33 and the silicon oxide spacer 37 as a mask.

[発明が解決しようとする課題] 上述した従来のタイプのMOSトランジスタにおいては
、n−型拡散領域とゲート電極とのオーバーラツプ寸法
が一定の範囲に、すなわち、0゜2〜0.3μm程度の
範囲に確保されていることが、gmを大きくし電流供給
能力を高める上で有利であることが知られている。しか
しながら、従来のMOS)ランジスタにあっては、この
オーバーラツプ寸法は、イオン注入後の熱処理条件のみ
によって決定されるので、オーバーラツプを上記範囲に
収めることに困難があった。従って、従来のトランジス
タでは電流供給能力が不足したり、特性がばらついたり
する欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional type MOS transistor, the overlap size between the n-type diffusion region and the gate electrode is within a certain range, that is, within a range of approximately 0.2 to 0.3 μm. It is known that it is advantageous to increase gm and increase the current supply capability by ensuring that the gm is constant. However, in conventional MOS transistors, this overlap size is determined only by the heat treatment conditions after ion implantation, and therefore it is difficult to keep the overlap within the above range. Therefore, conventional transistors have drawbacks such as insufficient current supply capability and variations in characteristics.

[課題を解決するための手段] 本発明によるMOSトランジスタは、p型半導体基板上
のゲート絶縁膜上に形成されたゲート電極と、ゲート電
極の長さ方向の側面に設けられた導電性のスペーサと、
この導電性のスペーサの更に外側の側面に設けられた絶
縁性のスペーサと、前記p型半導体基板の表面領域内に
前記ゲート電極に対して自己整合的に形成されたn−型
拡散領域と、前記絶縁性のスペーサに対して自己整合的
にp型半導体基板の表面領域内に形成されたn+型拡散
領域とを具備している。
[Means for Solving the Problems] A MOS transistor according to the present invention includes a gate electrode formed on a gate insulating film on a p-type semiconductor substrate, and a conductive spacer provided on a longitudinal side surface of the gate electrode. and,
an insulating spacer provided on an outer side surface of the conductive spacer; an n-type diffusion region formed in a surface region of the p-type semiconductor substrate in a self-aligned manner with respect to the gate electrode; and an n+ type diffusion region formed in a surface region of a p-type semiconductor substrate in self-alignment with the insulating spacer.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図(g)は、本発明の一実施例を示す断面図であり
、第1図(a)〜(f)はその製造工程を説明するため
の断面図である。第1図(g>に示すMOSトラン、ジ
スタを形成するには、まず、第1図(a>に示すように
、p型半導体基板11上にゲート絶縁11112および
リンドープの多結晶シリコンからなるゲート電極13を
形成する0次に、第1図(b)に示すようにゲート電極
13をイオン注入のマスクとしてリン、砒素等のn型不
純物をI X 10 ’2〜I X 1014/cnl
程度導入してn型不純物導入領域14aを形成し、続い
て900℃以上の熱処理を行うことにより、n型不純物
導入領域14a内に導入されたn型不純物を活性化して
、第1図(c)に示すようにn−型拡散領域14を形成
する0次に、第1図(d)に示すように、リンドープの
多結晶シリコン被膜15を気相成長法により形成し、こ
れに異方性のある反応性イオンエツチングを施して、第
1図(e)に示すように、ゲート電極13の側面に多結
晶シリコンスペーサ16を形成する0次に、第1図(f
)に示すように、酸化シリコンスペーサ17を、酸化シ
リコンの気相成長法と異方性の反応性イオンエツチング
によって形成し、次いで前記ゲート電極13、多結晶シ
リコンスペーサ16および酸化シリコンスペーサ17を
イオン注入のマスクとして、砒素あるいはリンをI X
 1015〜I X 1016/cffI程度ドーピン
グしてn型不純物導入領域18aを形成する。最後に、
熱処理を行ってn型不純物導入領域18a内の不純物を
活性化し、n中型拡散領域18を形成して第1図(g)
に示すトランジスタを得る。
FIG. 1(g) is a cross-sectional view showing one embodiment of the present invention, and FIGS. 1(a) to (f) are cross-sectional views for explaining the manufacturing process thereof. In order to form the MOS transistors and transistors shown in FIG. 1 (g), first, as shown in FIG. Forming the electrode 13 Next, as shown in FIG. 1(b), using the gate electrode 13 as a mask for ion implantation, n-type impurities such as phosphorus and arsenic are implanted at IX10'2 to IX1014/cnl.
The n-type impurity introduced into the n-type impurity introduction region 14a is activated by introducing the n-type impurity into the n-type impurity introduction region 14a, and then performing heat treatment at 900° C. or higher to form the n-type impurity introduction region 14a. ) As shown in FIG. 1(d), a phosphorus-doped polycrystalline silicon film 15 is formed by vapor phase epitaxy, and an anisotropic A reactive ion etching process is performed to form a polycrystalline silicon spacer 16 on the side surface of the gate electrode 13 as shown in FIG. 1(e).
), the silicon oxide spacer 17 is formed by a silicon oxide vapor phase growth method and anisotropic reactive ion etching, and then the gate electrode 13, the polycrystalline silicon spacer 16 and the silicon oxide spacer 17 are formed by ion etching. Arsenic or phosphorus as a mask for implantation
The n-type impurity doped region 18a is formed by doping to about 1015 to I.times.1016/cffI. lastly,
Heat treatment is performed to activate the impurity in the n-type impurity introduction region 18a, forming the n-medium diffusion region 18, as shown in FIG. 1(g).
Obtain the transistor shown in .

この実施例において、ゲート電f113と多結晶シリコ
ンスペーサ16とで新しいゲート電極を構成しているが
、多結晶シリコンスペーサ16の厚さは正確にコントロ
ールすることができ、そしてn−型拡散領域を形成する
際の熱処理は短時間で済ますことができるので、本発明
によれば、新たに形成されたゲート電極とn−型拡散領
域とのオーバーラツプ寸法を所望の値にコントロールす
ることができる。従って、本発明によれば、電流供給能
力の大きいトランジスタをばらつきを少なく提供するこ
とができる。
In this embodiment, the gate electrode f113 and the polycrystalline silicon spacer 16 constitute a new gate electrode, and the thickness of the polycrystalline silicon spacer 16 can be precisely controlled, and the n-type diffusion region can be Since the heat treatment during formation can be completed in a short time, according to the present invention, the overlap dimension between the newly formed gate electrode and the n-type diffusion region can be controlled to a desired value. Therefore, according to the present invention, it is possible to provide a transistor with a large current supply capability with little variation.

第2図は、本発明の他の実施例を示す断面図であって、
同図において、第1図の実施例と同一の部分には下1桁
が共通する参照番号が付されてぃる。この実施例の先の
実施例と相違する点は、ゲート電f!23上に酸化シリ
コンpA29が形成されている点である。この実施例の
トランジスタを製造するには、第1図(a)に相当する
工程段階において、ゲート電極23上に予め酸化シリコ
ン膜29を設けておき、この膜を設けたまま第1図に示
した諸工程を実施すればよい。本実施例によれば、スペ
ーサ26.27を形成する際にゲート電極23の膜厚が
減少させられることがないのでより信頼性の高いトラン
ジスタを提供することができる。
FIG. 2 is a sectional view showing another embodiment of the present invention,
In the figure, parts that are the same as those in the embodiment of FIG. 1 are given reference numbers having the same last digit. The difference between this embodiment and the previous embodiment is that the gate voltage f! The point is that a silicon oxide pA 29 is formed on 23. To manufacture the transistor of this embodiment, a silicon oxide film 29 is previously provided on the gate electrode 23 in a process step corresponding to FIG. 1(a), and the silicon oxide film 29 is shown in FIG. All you have to do is carry out the various steps. According to this embodiment, since the film thickness of the gate electrode 23 is not reduced when forming the spacers 26 and 27, a more reliable transistor can be provided.

なお、以上の実施例では、n−型拡散領域がn“型拡散
領域より深くなるように形成されていたがこれを変更し
てn−型拡散領域の方が浅くなるように形成してもよい
In the above embodiments, the n-type diffusion region was formed to be deeper than the n" type diffusion region, but even if this was changed and the n-type diffusion region was formed to be shallower, good.

[発明の効果] 以上説明したように、本発明によれば、ゲート電極と、
低不純物濃度のソース・ドレイン領域であるn−型拡散
領域とのオーバーラツプ寸法を所望の値に正確にコント
ロールすることができるので、電流供給能力が高く特性
にばらつきの少ないトランジスタを提供することができ
る。
[Effects of the Invention] As explained above, according to the present invention, the gate electrode and
Since the overlap dimension with the n-type diffusion region, which is the source/drain region with low impurity concentration, can be precisely controlled to a desired value, it is possible to provide a transistor with high current supply capability and little variation in characteristics. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(g〉、第2図は、それぞれ、本発明の実施例を
示す断面図、第1図(a)〜第1図(f)は、第1図(
g>の実施例の製造工程の段階を示す断面図、第3図は
、従来例を示す断面図である。 11.21.31・・・p型半導体基板、 12.22
.32・・・ゲート絶縁膜、  13.23.33・・
・ゲート電極、 14.24.34・・・n−型拡散領
域、 14a・・・n型不純物導入領域、 15・・・
多結晶シリコン被膜、 16.26・・・多結晶シリコ
ンスペーサ、  17.27.37・・・酸化シリコン
スペーサ、 18.28.38・・・n+型拡散領域、
 18a・・・n型不純物導入領域、 29・・・酸化
シリコン膜。
FIG. 1(g) and FIG. 2 are sectional views showing embodiments of the present invention, and FIGS. 1(a) to 1(f) are sectional views of FIG.
FIG. 3 is a sectional view showing a conventional example. 11.21.31...p-type semiconductor substrate, 12.22
.. 32...Gate insulating film, 13.23.33...
・Gate electrode, 14.24.34...n-type diffusion region, 14a...n-type impurity introduction region, 15...
Polycrystalline silicon film, 16.26... Polycrystalline silicon spacer, 17.27.37... Silicon oxide spacer, 18.28.38... N+ type diffusion region,
18a...N-type impurity introduced region, 29...Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板の表面領域内に所定の間隔をも
って形成された2つの高不純物濃度の第1の第2導電型
領域と、前記2つの第1の第2導電型領域の対向する側
にそれぞれの第1の第2導電型領域に隣接して形成され
た低不純物濃度の第2の第2導電型領域と、前記2つの
第1の第2導電型領域の間の前記半導体基板上にゲート
絶縁膜を介して形成されたゲート電極と、前記ゲート電
極の長さ方向の両側面に形成された導電性のスペーサと
、各導電性のスペーサの外側に形成された絶縁性のスペ
ーサとを具備し、前記第2の第2導電型領域と前記半導
体基板とで形成するpn接合の半導体基板の表面に露出
した部分が前記ゲート電極下に存在していることを特徴
とするMOSトランジスタ。
Two first second conductivity type regions with high impurity concentration formed at a predetermined interval in a surface region of a first conductivity type semiconductor substrate, and opposing sides of the two first second conductivity type regions. on the semiconductor substrate between a second second conductivity type region with a low impurity concentration formed adjacent to each of the first second conductivity type regions and the two first second conductivity type regions; a gate electrode formed through a gate insulating film, conductive spacers formed on both longitudinal sides of the gate electrode, and insulating spacers formed on the outside of each conductive spacer. A MOS transistor comprising: a pn junction formed by the second second conductivity type region and the semiconductor substrate; a portion exposed on the surface of the semiconductor substrate is present under the gate electrode.
JP16906789A 1989-06-30 1989-06-30 Mos transistor Pending JPH0334550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16906789A JPH0334550A (en) 1989-06-30 1989-06-30 Mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16906789A JPH0334550A (en) 1989-06-30 1989-06-30 Mos transistor

Publications (1)

Publication Number Publication Date
JPH0334550A true JPH0334550A (en) 1991-02-14

Family

ID=15879718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16906789A Pending JPH0334550A (en) 1989-06-30 1989-06-30 Mos transistor

Country Status (1)

Country Link
JP (1) JPH0334550A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190983A (en) * 1985-02-20 1986-08-25 Hitachi Ltd Semiconductor integrated circuit device
JPS63122174A (en) * 1986-11-11 1988-05-26 Hitachi Ltd Semiconductor device and its manufacture
JPS6486517A (en) * 1988-04-15 1989-03-31 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190983A (en) * 1985-02-20 1986-08-25 Hitachi Ltd Semiconductor integrated circuit device
JPS63122174A (en) * 1986-11-11 1988-05-26 Hitachi Ltd Semiconductor device and its manufacture
JPS6486517A (en) * 1988-04-15 1989-03-31 Seiko Epson Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
KR100302187B1 (en) Method for fabricating semiconductor device
US4108686A (en) Method of making an insulated gate field effect transistor by implanted double counterdoping
US4771014A (en) Process for manufacturing LDD CMOS devices
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPH03145138A (en) Formation of dmos transistor
JP5220970B2 (en) Manufacturing method of high voltage transistor
JPH0334550A (en) Mos transistor
JPS63142676A (en) Manufacture of semiconductor device
JPH08503814A (en) Single diffusion method for manufacturing semiconductor devices
JP2848274B2 (en) Method for manufacturing semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JPS62241375A (en) Manufacture of semiconductor integrated circuit device
JP2948892B2 (en) Mos field-effect transistor and its manufacture
JPS6110987B2 (en)
JP2919659B2 (en) Method for manufacturing insulated gate field effect transistor
JP2953020B2 (en) Method for manufacturing semiconductor device
KR970006219B1 (en) Fabrication method of semiconductor device
JP2573303B2 (en) Method for manufacturing semiconductor device
KR930009480B1 (en) Manufacturing method of semiconductor device
JPH04346476A (en) Manufacture of mosfet
KR930001420B1 (en) Eprom and method of fabricating therefor
JPS62130562A (en) Manufacture of field effect transistor
JPS6323362A (en) Manufacture of semiconductor device
JPH01123474A (en) Insulated gate type semiconductor device
JPH02180029A (en) Manufacture of semiconductor device