JPS63177471A - Mos-type semiconductor device - Google Patents

Mos-type semiconductor device

Info

Publication number
JPS63177471A
JPS63177471A JP866787A JP866787A JPS63177471A JP S63177471 A JPS63177471 A JP S63177471A JP 866787 A JP866787 A JP 866787A JP 866787 A JP866787 A JP 866787A JP S63177471 A JPS63177471 A JP S63177471A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor substrate
source
drain
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP866787A
Other languages
Japanese (ja)
Inventor
Keiichi Higashiya
東谷 恵市
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP866787A priority Critical patent/JPS63177471A/en
Publication of JPS63177471A publication Critical patent/JPS63177471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the controllability of the effective channel length and to prevent a punch-through phenomenon from occurring at a miniaturized MOS transistor by a method wherein a source-drain region is formed on a semiconductor substrate and only on both side-walls of a gate electrode. CONSTITUTION:A gate insulating film 3 and a gate electrode 4 are formed on one main face of a semiconductor substrate 1; impurity regions 5, 6 whose conductivity type is opposite to that of the semiconductor substrate 1 are formed on the semiconductor substrate 1 and only on both sides of the gate electrode 4. For example, after a gate oxide film 3 and a gate electrode 4 have been formed, an oxide film 7 is coated only on the periphery of the gate electrode 4, and polysilicon is then deposited. This polysilicon film is to contain phosphorus or arsenic. Then, said polysilicon film is left only on the side walls of the gate electrode 4 in the channellength direction by using an etching method or the like; a source 5 and a drain 6 are formed. In addition, impurities are diffused into silicon from the source 5 and the drain 6 during a subsequent heat-treatment process so that shallow junction regions 8, 9 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はMOS形半導体装置に係り、特にその微細化
のための新しい構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a MOS type semiconductor device, and particularly to a new structure for miniaturization thereof.

〔従来の技術〕  □ 従来のこの種の半導体装置を第3図に示す。第3図はn
チャネル形MOS)ランジスタ(n −MOSTと略記
する)を示す断面図で、これを用いて、従来の製造方法
を簡単に説明する。まず′、p形高比抵抗、例えば10
〜30Ω・cmのシリコン基板101の活性領域102
にn−MOSTのしきい値電圧を制御するためにチャネ
ル領域にボロンBをイオン注入する0次に、ゲート酸化
膜1゜3、ゲートとなるポリシリコン電極及びシリサイ
ド電極を形成する。続いて、n形ソース領域1゜5およ
びドレイン領域106をヒ素(As)またはリン(P)
のイ・オン注入によって形成する。
[Prior Art] □ A conventional semiconductor device of this type is shown in FIG. Figure 3 shows n
1 is a cross-sectional view showing a channel type MOS transistor (abbreviated as n-MOST), and a conventional manufacturing method will be briefly explained using this cross-sectional view. First, p-type high resistivity, for example 10
~30Ω・cm active region 102 of silicon substrate 101
Next, boron B is ion-implanted into the channel region to control the threshold voltage of the n-MOST. Next, a gate oxide film 1.3, a polysilicon electrode and a silicide electrode which will become the gate are formed. Subsequently, the n-type source region 1.5 and drain region 106 are treated with arsenic (As) or phosphorus (P).
Formed by ion implantation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来技術による構造ではいくつかの欠点があ
る。その1つは、ゲート長の微細化に伴い、セルフアラ
イメント方式で形成されるソース領域105およびドレ
イン領域106の距離が小さくなる。従ってドレインに
電圧を印加した場合、ドレイン領域106から生じる空
乏層はチャネルドープされていない基板側つまり低濃度
領域で特に顕著に伸び、この空乏層の端部がソース領域
に到達し、パンチスルー現象が生じる。第2の欠点はソ
ース・ドレイン領域をイオン注入と熱処理により形成す
るので、ゲート長方向にも結合部が拡散され、ゲート電
極のポリシリコン長よりも実効チャネル長が短くなり、
微細トランジスタでは制御性もわるいという欠点があっ
た。
Such prior art structures have several drawbacks. One of them is that as the gate length becomes smaller, the distance between the source region 105 and the drain region 106 formed by a self-alignment method becomes smaller. Therefore, when a voltage is applied to the drain, the depletion layer generated from the drain region 106 extends particularly on the undoped substrate side, that is, the low concentration region, and the end of this depletion layer reaches the source region, causing a punch-through phenomenon. occurs. The second drawback is that since the source/drain regions are formed by ion implantation and heat treatment, the bonding portion is also diffused in the gate length direction, making the effective channel length shorter than the polysilicon length of the gate electrode.
The drawback of fine transistors is that they have poor controllability.

この発明は上記のような従来のものの問題点を解決する
ためになされたもので、微細化MOSトランジスタにお
いて、実効チャネル長の制御性を向上できるとともに、
パンチスルー現象を抑制できるMOS形半導体装置を得
るこ去を目的とする。
This invention was made to solve the problems of the conventional ones as described above, and it is possible to improve the controllability of the effective channel length in miniaturized MOS transistors, and
The object of the present invention is to obtain a MOS type semiconductor device that can suppress the punch-through phenomenon.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るMOS形半導体装置は、半導体基板上で
かつゲート電極の両側壁部にのみソース・ドレイン領域
を形成したものである。
The MOS type semiconductor device according to the present invention has source/drain regions formed only on both side walls of a gate electrode on a semiconductor substrate.

〔作用〕[Effect]

この発明においては、半導体基板上でかつゲート電極の
両側壁部にのみソース・ドレイン領域を形成しているの
で、ゲート電極の長さが実効チャネル長となり、又、ゲ
ートチャネル下の低濃度不純物領域でのポテンシャルの
低下によるドレインからの空乏層の伸びはソースに到達
しにくり、パンチスルー現象を抑制できる。
In this invention, since the source/drain regions are formed on the semiconductor substrate and only on both side walls of the gate electrode, the length of the gate electrode becomes the effective channel length, and the low concentration impurity region under the gate channel The extension of the depletion layer from the drain due to the drop in potential at the source is difficult to reach the source, and the punch-through phenomenon can be suppressed.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は、この発明の一実施例によるn −MO
STのチャネル長方向の構造を示す断面図で、第1図中
)はチャネル幅方向の構造を示す断面図である。
FIG. 1(a) shows an n-MO according to an embodiment of the present invention.
FIG. 1 is a cross-sectional view showing the structure of ST in the channel length direction; FIG. 1) is a cross-sectional view showing the structure in the channel width direction.

このn−MO8Tの製造方法について説明する。A method for manufacturing this n-MO8T will be explained.

ゲート酸化M*3およびゲート電極4を形成した後、上
記ゲート電極4の周囲にのみ酸化膜7をつける。
After forming the gate oxide M*3 and the gate electrode 4, an oxide film 7 is formed only around the gate electrode 4.

次にポリシリコンをデボする。このポリシリコン膜は、
リンCP)およびヒ素(As)を含んだものでも良いし
、ノンドープのポリシリコン膜形成後、上記不純物を含
ませたものでも良い。次にチャネル長方向のゲート電極
4の側壁にのみ上記ポリシリコンをエンチング等により
残し、ソース5゜ドレイン6を形成する。また後工程の
熱処理により上記ソース・ドレインから不純物がシリコ
ン中に拡散させ、浅い接合領域8.9を形成する。
Next, the polysilicon is debossed. This polysilicon film is
It may contain phosphorus (CP) and arsenic (As), or it may contain the above impurities after forming a non-doped polysilicon film. Next, the polysilicon is left only on the side walls of the gate electrode 4 in the channel length direction by etching or the like, and a source 5° drain 6 is formed. Further, by heat treatment in a post-process, impurities are diffused into the silicon from the source/drain to form a shallow junction region 8.9.

このように、本実施例ではゲート電極の両側壁部にソー
ス・ドレインを形成するようにしたので、ドレインに電
圧を印加していった場合、チャネル領域の深いところで
ドレインから伸びる空乏層ヤがソースに達するまでの距
離が従来より長くなり、パンチスルー現象を抑制できる
。また実効チャネル長もゲート電極のバターニング精度
により制御できる。
In this way, in this example, the source and drain are formed on both side walls of the gate electrode, so when a voltage is applied to the drain, the depletion layer extending from the drain deep in the channel region The distance it takes to reach the point is longer than before, and the punch-through phenomenon can be suppressed. The effective channel length can also be controlled by the patterning accuracy of the gate electrode.

第2図はこの発明の第2の実施例によるn−MOSTの
構造を示す断面図である。
FIG. 2 is a sectional view showing the structure of an n-MOST according to a second embodiment of the present invention.

本実施例において、ゲート電極の形成および周囲の酸化
膜の形成は第1図と同じであるが、このn −M OS
 Tでは、ソース15.ドレイン16は高濃度のヒ素(
As)もしくはリン(P)を含んだシリコンエピタキシ
ャル層の選択エピタキシャル成長により形成する。
In this example, the formation of the gate electrode and the surrounding oxide film are the same as in FIG.
In T, source 15. Drain 16 has a high concentration of arsenic (
It is formed by selective epitaxial growth of a silicon epitaxial layer containing As) or phosphorus (P).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、MOS形半導体装置
において、ソース・ドレイン領域を半導体基板上でかつ
ゲート電極の両側壁部にのみ形成するようにしたので、
ドレイン電圧の印加によるチャネル領域の深い領域での
ポテンシャルの低下によるドレインからの空乏層の伸び
がソースに達する距離が長くなり、パンチスルー現象を
抑制でき、また精度の良い実効チャネル長が得られる効
果がある。
As described above, according to the present invention, in the MOS type semiconductor device, the source/drain regions are formed on the semiconductor substrate and only on both side walls of the gate electrode.
The effect of reducing the potential in the deep region of the channel region due to the application of drain voltage increases the distance that the depletion layer extends from the drain to the source, suppressing the punch-through phenomenon, and obtaining a highly accurate effective channel length. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例によるn −M○S
Tの構造を示すチャネル長方向の断面図、第1図(b)
は上記実施例のチャネル幅方向の断面図、第2図はこの
発明の第2の実施例によるn−MOSTの構造を示す断
面図、第3図は従来のn −MOSTの構造を示す断面
図である。 図において、1.101はシリコン基板、102はしき
い値電圧制御用イオン注入領域、3,7゜103.10
7は酸化膜、4,104はゲート電極、5.15.10
5はソース、6,16.106はドレインである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1(a) shows n-M○S according to an embodiment of the present invention.
Cross-sectional view in the channel length direction showing the structure of T, Figure 1(b)
is a sectional view in the channel width direction of the above embodiment, FIG. 2 is a sectional view showing the structure of an n-MOST according to a second embodiment of the present invention, and FIG. 3 is a sectional view showing the structure of a conventional n-MOST. It is. In the figure, 1.101 is a silicon substrate, 102 is an ion implantation region for threshold voltage control, and 3.7° 103.10
7 is an oxide film, 4,104 is a gate electrode, 5.15.10
5 is a source, and 6, 16.106 is a drain. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)MOS形半導体装置において、 半導体基板の一方の主面部にゲート絶縁膜およびゲート
電極を形成し、 上記半導体基板とは反対の導電形の不純物領域を、上記
半導体基板上でかつ上記ゲート電極の両側壁部にのみ形
成したことを特徴とするMOS形半導体装置。
(1) In a MOS semiconductor device, a gate insulating film and a gate electrode are formed on one main surface of a semiconductor substrate, and an impurity region of a conductivity type opposite to that of the semiconductor substrate is formed on the semiconductor substrate and at the gate electrode. A MOS type semiconductor device characterized in that the MOS type semiconductor device is formed only on both side wall portions of the MOS type semiconductor device.
(2)上記ゲート電極の両側の不純物領域はポリシリコ
ンにリン又はヒ素をドープしてなるものであることを特
徴とする特許請求の範囲第1項記載のMOS形半導体装
置。
(2) The MOS type semiconductor device according to claim 1, wherein the impurity regions on both sides of the gate electrode are formed by doping polysilicon with phosphorus or arsenic.
(3)上記ゲート電極の両側の不純物領域は高濃度のヒ
素又はリンを含んだシリコンエピタキシャル層の選択エ
ピタキシャル成長により形成したものであることを特徴
とする特許請求の範囲第1項記載のMOS形半導体装置
(3) The MOS semiconductor according to claim 1, wherein the impurity regions on both sides of the gate electrode are formed by selective epitaxial growth of a silicon epitaxial layer containing a high concentration of arsenic or phosphorus. Device.
JP866787A 1987-01-16 1987-01-16 Mos-type semiconductor device Pending JPS63177471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP866787A JPS63177471A (en) 1987-01-16 1987-01-16 Mos-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP866787A JPS63177471A (en) 1987-01-16 1987-01-16 Mos-type semiconductor device

Publications (1)

Publication Number Publication Date
JPS63177471A true JPS63177471A (en) 1988-07-21

Family

ID=11699284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP866787A Pending JPS63177471A (en) 1987-01-16 1987-01-16 Mos-type semiconductor device

Country Status (1)

Country Link
JP (1) JPS63177471A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201931A (en) * 1989-01-31 1990-08-10 Oki Electric Ind Co Ltd Manufacture of mos transistor
US4994869A (en) * 1989-06-30 1991-02-19 Texas Instruments Incorporated NMOS transistor having inversion layer source/drain contacts
US5024959A (en) * 1989-09-25 1991-06-18 Motorola, Inc. CMOS process using doped glass layer
JPH03268436A (en) * 1990-03-19 1991-11-29 Toshiba Corp Mos device and manufacture thereof
US5108940A (en) * 1987-12-22 1992-04-28 Siliconix, Inc. MOS transistor with a charge induced drain extension
US5132758A (en) * 1988-02-12 1992-07-21 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
US5208471A (en) * 1989-06-12 1993-05-04 Hitachi, Ltd. Semiconductor device and manufacturing method therefor
US5264380A (en) * 1989-12-18 1993-11-23 Motorola, Inc. Method of making an MOS transistor having improved transconductance and short channel characteristics
EP1280191A2 (en) * 2001-07-25 2003-01-29 Chartered Semiconductor Manufacturing Pte Ltd. A method to form elevated source/drain regions using polysilicon spacers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108940A (en) * 1987-12-22 1992-04-28 Siliconix, Inc. MOS transistor with a charge induced drain extension
US5132758A (en) * 1988-02-12 1992-07-21 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
JPH02201931A (en) * 1989-01-31 1990-08-10 Oki Electric Ind Co Ltd Manufacture of mos transistor
US5208471A (en) * 1989-06-12 1993-05-04 Hitachi, Ltd. Semiconductor device and manufacturing method therefor
US4994869A (en) * 1989-06-30 1991-02-19 Texas Instruments Incorporated NMOS transistor having inversion layer source/drain contacts
US5024959A (en) * 1989-09-25 1991-06-18 Motorola, Inc. CMOS process using doped glass layer
US5264380A (en) * 1989-12-18 1993-11-23 Motorola, Inc. Method of making an MOS transistor having improved transconductance and short channel characteristics
JPH03268436A (en) * 1990-03-19 1991-11-29 Toshiba Corp Mos device and manufacture thereof
EP1280191A2 (en) * 2001-07-25 2003-01-29 Chartered Semiconductor Manufacturing Pte Ltd. A method to form elevated source/drain regions using polysilicon spacers
EP1280191A3 (en) * 2001-07-25 2003-08-06 Chartered Semiconductor Manufacturing Pte Ltd. A method to form elevated source/drain regions using polysilicon spacers

Similar Documents

Publication Publication Date Title
JP3223329B2 (en) Method of manufacturing MOSFET
US5548143A (en) Metal oxide semiconductor transistor and a method for manufacturing the same
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
US5998848A (en) Depleted poly-silicon edged MOSFET structure and method
JPH0824145B2 (en) Method for manufacturing CMOS semiconductor device
JPS58147074A (en) Metal oxide semiconductor transistor device and method of producing same
US20060211197A1 (en) Mos transistor and method of manufacturing the same
JPS6055665A (en) Manufacture of semiconductor device
EP0187260B1 (en) Process for fabricating a semiconductor integrated circuit device having misfets
JP4424887B2 (en) Manufacturing method of semiconductor device
US4713329A (en) Well mask for CMOS process
JPS63177471A (en) Mos-type semiconductor device
JP5060002B2 (en) Manufacturing method of semiconductor device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JP2860482B2 (en) Method for manufacturing semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JPH0338839A (en) Manufacture of semiconductor device
JP3036964B2 (en) Method for manufacturing semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
KR100618313B1 (en) Cmos having elevated source/drain and method of fabricating thereof
JPH0491481A (en) Mis field effect transistor
JP3014138B2 (en) Semiconductor device
JPH0342872A (en) Manufacture of semiconductor device
KR100200343B1 (en) High voltage mos transistor and manufacturing method thereof