JPS6258622B2 - - Google Patents

Info

Publication number
JPS6258622B2
JPS6258622B2 JP57059591A JP5959182A JPS6258622B2 JP S6258622 B2 JPS6258622 B2 JP S6258622B2 JP 57059591 A JP57059591 A JP 57059591A JP 5959182 A JP5959182 A JP 5959182A JP S6258622 B2 JPS6258622 B2 JP S6258622B2
Authority
JP
Japan
Prior art keywords
membrane
group
metal
cation exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059591A
Other languages
Japanese (ja)
Other versions
JPS58176222A (en
Inventor
Osamu Nakagawa
Katsunori Orisaka
Tooru Kyota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57059591A priority Critical patent/JPS58176222A/en
Publication of JPS58176222A publication Critical patent/JPS58176222A/en
Publication of JPS6258622B2 publication Critical patent/JPS6258622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は、金属が表面上に固着した陽イオン交
換膜を提供するものであり、その製造方法及び水
溶液、特にハロゲン化物の電気分解におけるその
使用法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cation exchange membrane with metals fixed on its surface, and relates to its preparation and use in aqueous solution, particularly halide electrolysis.

陽イオン交換膜により陽極室と陰極室に分割さ
れた電解槽で塩化アルカリを電解して、水酸化ア
ルカリを製造する方法(イオン交換膜法)におい
て、近年、省エネルギー開発が進行しつつあり、
この観点からこの種技術においては、電解電圧を
極力低くするよう努力されている。その手段とし
ては、従来、陽極や陰極の材質,組成及び形状を
考慮したり、あるいは用いるイオン交換膜の組成
や、イオン交換基の種類を特定化する等種々の手
段が提案されているが、いずれもそれなりの効果
はあるものの必ずしも工業的に充分満足し得るも
のではなかつた。
In recent years, energy-saving development has been progressing in the method of producing alkali hydroxide by electrolyzing alkali chloride in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method).
From this point of view, in this type of technology, efforts are being made to lower the electrolysis voltage as much as possible. Various methods have been proposed in the past, such as considering the material, composition, and shape of the anode and cathode, or specifying the composition of the ion exchange membrane used and the type of ion exchange group. Although all of them have certain effects, they are not necessarily fully satisfactory industrially.

一方近年、SPE電解法と称する技術が注目を集
めてきている。これは電極層と陽イオン交換膜と
を一体化し電解電圧の低減をねらつたものであ
り、相当の効果を得ている。又、陽イオン交換膜
と電極活性をもたない、例えば金属酸化物等から
なる多孔層とを一体化させ、これを食塩電解にお
ける隔膜として使用する方法等が提案されてい
る。(特開昭56―75583,特開昭56―112487,特開
昭56―108888等)。
On the other hand, in recent years, a technology called SPE electrolysis has been attracting attention. This is aimed at reducing the electrolysis voltage by integrating the electrode layer and the cation exchange membrane, and has achieved considerable effects. Furthermore, a method has been proposed in which a cation exchange membrane and a porous layer having no electrode activity, such as a metal oxide, are integrated, and this is used as a diaphragm in salt electrolysis. (Unexamined Japanese Patent Publications 1983-75583, 1982-112487, 1982-108888, etc.).

このように、電解電圧を低減せしむる方法とし
て、陽イオン交換膜表面上を、ある種の金属及び
金属酸化物等からなる層でおおうという方法が、
一つの流れとなつてきている。
As described above, one method for reducing the electrolysis voltage is to cover the surface of the cation exchange membrane with a layer made of certain metals, metal oxides, etc.
It is becoming a trend.

陽イオン交換膜を金属及び/又は金属酸化物を
含む層でおおう方法としては、PTFE等の結合剤
を用いて触媒,粒子を焼結成形し、膜面にホツト
プレスする乾式法(特開昭53―52297)等,還元
剤を用い溶液中で膜面に金属を析出させる湿式
法、いわゆる化学メツキ法(特公昭56―36873,
特開昭56―136985)等が知られている。
As a method for covering a cation exchange membrane with a layer containing metal and/or metal oxide, there is a dry method (Japanese Patent Laid-Open No. 1983-1995) in which catalysts and particles are sintered and formed using a binder such as PTFE, and then hot-pressed onto the membrane surface. -52297), etc., a wet method in which metal is deposited on the film surface in a solution using a reducing agent, the so-called chemical plating method (Japanese Patent Publication No. 56-36873,
Japanese Unexamined Patent Publication No. 136985) is known.

本発明者らは、以上のような観点から乾式法,
湿式法による隔膜の電解性能について鋭意研究を
重ねた結果、以下のような結論を導くに至つた。
From the above points of view, the present inventors developed a dry method,
As a result of intensive research on the electrolytic performance of diaphragms using the wet method, we came to the following conclusions.

1 乾式法では膜面上への金属層の固着を均一に
行うことがむずかしく、ひいては膜の電解性能
に再現性をもたせることがむずかしい。更に電
解中、金属層の膜面上からの離脱をまぬがれな
い。
1. In the dry method, it is difficult to uniformly adhere the metal layer onto the membrane surface, and in turn, it is difficult to achieve reproducibility in the electrolytic performance of the membrane. Furthermore, during electrolysis, the metal layer cannot be avoided from detaching from the film surface.

2 湿式法では、乾式法に比べ再現性を得るのは
容易である。しかしながら、金属が膜表面上に
のみ不均一に析出するため、金属の離脱の度合
は、乾式法以上である。更にこの点を改良する
目的で固着条件を厳しくすると電流効率の低下
を引き起こしてしまう。
2. It is easier to obtain reproducibility with wet methods than with dry methods. However, since the metal is non-uniformly deposited only on the film surface, the degree of metal separation is higher than that of the dry method. Furthermore, if the fixing conditions are made stricter for the purpose of improving this point, the current efficiency will be lowered.

本発明者らは、このような結論をふまえ、更に
研究を重ねた結果、膜面あるいは膜中に還元剤を
存在させ、次に溶液中で負の金属錯体イオンを形
成する金属塩を含浸させ、化学メツキすることに
よつて陽イオン交換膜上に非常に強固にしかも均
一に結合した金属層を有する陽イオン交換膜を得
ることができることを見い出して本発明を完成さ
せた。
Based on these conclusions, the present inventors conducted further research and found that a reducing agent is present on or in the membrane, and then a metal salt that forms a negative metal complex ion is impregnated in the solution. The inventors have completed the present invention by discovering that a cation exchange membrane having a metal layer bonded very firmly and uniformly to the cation exchange membrane can be obtained by chemical plating.

本発明の効果は、おおよそ次のように説明する
ことができる。
The effects of the present invention can be roughly explained as follows.

正の金属錯体イオンを用いると、膜中の交換基
がアニオン基であるため、これらのイオンが選択
的に該基のところにとり込まれ、その結果、吸着
が不均一となつてしまい、膜の性能を低下させて
しまう。又、負の金属錯体イオンを膜に含浸した
場合、均一に含浸はされるものの吸着部がないた
め、還元剤で処理する段階で還元剤中で還元が起
り、実質膜表面に化学メツキすることが不可能で
ある。上記の欠点を解決するため、まず、膜中に
還元剤を含浸しておき、次に負の金属錯体イオン
を含浸することにより、膜表面あるいは膜内に均
一にこれらのイオンが導入され、かつ還元剤が膜
中に存在しているため、化学メツキが容易に起
り、その結果、均一に化学メツキが起り、密着性
の優れた状態で金属を表面に固着する事ができ
る。
When positive metal complex ions are used, since the exchange groups in the membrane are anion groups, these ions are selectively incorporated into the groups, resulting in non-uniform adsorption and damage to the membrane. This will reduce performance. In addition, when a membrane is impregnated with negative metal complex ions, although it is impregnated uniformly, there is no adsorption part, so reduction occurs in the reducing agent during treatment with a reducing agent, resulting in chemical plating on the actual membrane surface. is not possible. In order to solve the above drawbacks, first, the membrane is impregnated with a reducing agent and then with negative metal complex ions, so that these ions are uniformly introduced onto the membrane surface or inside the membrane, and Since the reducing agent is present in the film, chemical plating occurs easily, and as a result, chemical plating occurs uniformly and the metal can be fixed to the surface with excellent adhesion.

本発明で用い得る陽イオン交換膜は以下の如き
重合体より得ることができる。バーフルオロカー
ボン重合体で陽イオン交換基及び/又は陽イオン
交換基になり得る基を有するものである。これら
基としては、スルホン酸基(−SO3M但し、Mは
水素原子あるいは金属原子),スルホン酸基の前
駆体であるところの−SO2F,−SO2Cl,カルボン
酸基(−COOM但し、Mは水素原子あるいは金
属原子)、カルボン酸基の前駆体であるところの
−COF,−COOR(Rは炭素数1〜5のアルキル
基)及び−CNを挙げることができる。該重合体
としては、例えば、下記一般式で示す重合体が挙
げられる。
The cation exchange membrane that can be used in the present invention can be obtained from the following polymers. It is a barfluorocarbon polymer having a cation exchange group and/or a group that can become a cation exchange group. These groups include sulfonic acid groups (-SO 3 M, where M is a hydrogen atom or a metal atom), -SO 2 F, -SO 2 Cl, which are precursors of sulfonic acid groups, and carboxylic acid groups (-COOM (M is a hydrogen atom or a metal atom), -COF, -COOR (R is an alkyl group having 1 to 5 carbon atoms), which are precursors of a carboxylic acid group, and -CN. Examples of the polymer include polymers represented by the following general formula.

〔ただし、R′=−CF3,−CF2−O−CF3 n=0又は1〜5 m=0又は1 o=0又は1,p=1〜6 X=−SO3M(Mは水素原子あるいは金属原
子),−SO2F,−SO2Cl −COOM(Mは水素原子あるいは金属原子), −COOR1(R1=1〜5のアルキル基), −CN,−COF〕 又、上記二成分系に第三成分あるいは第四成分
を加えて重合した重合体も使用できる。
[However, R' = -CF 3 , -CF 2 -O-CF 3 n = 0 or 1 to 5 m = 0 or 1 o = 0 or 1, p = 1 to 6 X = -SO 3 M (M is hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl -COOM (M is a hydrogen atom or metal atom), -COOR 1 (R 1 = alkyl group of 1 to 5), -CN, -COF] or A polymer obtained by adding a third component or a fourth component to the above two-component system can also be used.

更に具体的には、例えば以下のものを示すこと
ができる。
More specifically, the following can be shown, for example.

これら重合体において交換基容量が0.5meq/
g乾燥樹脂〜1.5meq/g乾燥樹脂になるように
調節するのが好ましい。
In these polymers, the exchange group capacity is 0.5meq/
It is preferable to adjust the amount to 1.5 meq/g dry resin to 1.5 meq/g dry resin.

本発明では、膜状に成形したこれら重合体を単
独で用いることができるのはもちろんであるが、
スルホン酸基もしくは該基に変換できる基とカル
ボン酸基もしくは該基に変換できる基とが混在す
る形、好ましくはスルホン酸基もしくは該基に変
換できる基を有する重合体と、カルボン酸基もし
くは該基に変換できる基を有する重合体が片側ず
つに層状となつた形のものも用いることができ
る。
In the present invention, these polymers molded into a membrane can of course be used alone, but
A polymer having a mixture of a sulfonic acid group or a group that can be converted into this group and a carboxylic acid group or a group that can be converted into this group, preferably a polymer having a sulfonic acid group or a group that can be converted into this group, and a carboxylic acid group or a group that can be converted into this group. A polymer having a group that can be converted into a group formed in a layer on each side can also be used.

このような膜状物は、スルホン酸基もしくは該
基に変換できる基を有する重合体(例えば(A)群の
重合体)と、カルボン酸基もしくは該基に変換で
きる基をもつ重合体(例えば(B)群の重合体)とを
各々膜状に成形したのち、両者をはり合せること
によつて得ることができるし、又、スルホン酸基
もしくは該基に変換できる基のみをもつ重合体の
膜状物の片側のみを化学処理し、これら基をカル
ボン酸基に変えることによつても得ることができ
る。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into this group (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to this group (for example, (B) group polymers) can be obtained by forming them into a membrane and then gluing them together.Also, it is possible to obtain polymers having only sulfonic acid groups or groups that can be converted into sulfonic acid groups. It can also be obtained by chemically treating only one side of the membrane to convert these groups into carboxylic acid groups.

更に又、カルボン酸基もしくは該基に変換でき
る基のみをもつ重合体の膜状物の片側のみを化学
処理し、これら基をスルホン酸基に変えることに
よつても得ることができる。用いる膜の厚さは、
50μ〜500μが一般的に用いられ、膜の比電導
度,電流効率を考慮して適当な厚みを選択する。
Furthermore, it can also be obtained by chemically treating only one side of a polymer film having only carboxylic acid groups or groups that can be converted into carboxylic acid groups to convert these groups into sulfonic acid groups. The thickness of the membrane used is
A thickness of 50μ to 500μ is generally used, and an appropriate thickness is selected in consideration of the specific conductivity and current efficiency of the film.

本発明の第1段階では、この様な重合体膜から
得られるイオン交換膜中に還元剤を含浸させる。
還元剤としては、例えばヒドラジン,NaBH4
はNaH2PO2の水溶液を用いることができる。
In the first step of the present invention, the ion exchange membrane obtained from such a polymer membrane is impregnated with a reducing agent.
As the reducing agent, for example, an aqueous solution of hydrazine, NaBH 4 or NaH 2 PO 2 can be used.

第2段階では、溶液中で負の金属錯体イオンを
形成する金属塩を膜に含浸させる。溶液中で負の
金属錯体イオンを形成する金属塩としては、例え
ば塩酸に溶解されたPdCl2,H2PtCl6の水溶液、
K2〔Ni(CN)4〕の水溶液,K4〔Ru(CN)6〕の水
溶液,これらの混合液などが挙げられる。
In the second step, the membrane is impregnated with metal salts that form negative metal complex ions in solution. Examples of metal salts that form negative metal complex ions in solution include aqueous solutions of PdCl 2 and H 2 PtCl 6 dissolved in hydrochloric acid;
Examples include an aqueous solution of K 2 [Ni(CN) 4 ], an aqueous solution of K 4 [Ru(CN) 6 ], and a mixture thereof.

膜中にこれらの塩を含浸させる時間は数秒ない
し数十分であり、目的の沈着物が得られるまで、
還元剤の含浸と上記の塩を含浸させる工程を繰り
返して行えばよい。
The time for impregnating these salts into the membrane is from several seconds to several tens of minutes, and the process is continued until the desired deposit is obtained.
The steps of impregnating with a reducing agent and impregnating with the above salt may be repeated.

実施例 1 CF2=CF2との共重合体(交換容量0.92ミリ当量/g乾燥)
のフイルム(5ミル)とCF2=CF2との共重合体(交換容量0.96ミリ当量/g乾燥)
のフイルム(2ミル)とをはり合せたのち、加水
分解しカルボン酸基とスルホン酸基の2層構造膜
を得た。
Example 1 CF 2 = CF 2 and copolymer with (exchange capacity 0.92 meq/g dry)
film (5 mil) and CF 2 = CF 2 and Copolymer with (exchange capacity 0.96 meq/g dry)
film (2 mil), and then hydrolyzed to obtain a two-layer structure film of carboxylic acid groups and sulfonic acid groups.

次に該膜を、沸水処理したのち、カルボン酸基
層のみを処理できるようにセルにセツトした。
Next, the membrane was treated with boiling water and then set in a cell so that only the carboxylic acid base layer could be treated.

次に10容量%のヒドラジン水溶液を含浸したの
ち、0.5重量%H2PtCl6の水溶液を膜表面に接触含
浸させた。次に水で十分洗浄したのち、上記の処
理を2回(但し、1回の接触時間を15分とす
る。)繰返したのち10重量%NaOH水溶液で60〜
70℃で処理した。
Next, after impregnating with a 10% by volume hydrazine aqueous solution, the membrane surface was impregnated with a 0.5% by weight aqueous solution of H 2 PtCl 6 . Next, after thoroughly washing with water, the above treatment was repeated twice (however, each contact time was 15 minutes), and then a 10% by weight NaOH aqueous solution was used for 60~
Processed at 70°C.

上記で得たカルボン酸基層上に白金が固着した
イオン交換膜のカルボン酸基層が陰極に向くよう
に食塩電解槽を組み立てた。陽極として、ルテニ
ウム酸化物を被覆したチタンエキスパンデツドメ
タル、陰極として、鉄製のエキスパンデツドメタ
ルを用いた。陽極と膜、陰極と膜は、それぞれ加
圧接触させた。
A salt electrolytic cell was assembled so that the carboxylic acid base layer of the ion exchange membrane, on which platinum was fixed on the carboxylic acid base layer obtained above, faced the cathode. Titanium expanded metal coated with ruthenium oxide was used as the anode, and expanded iron metal was used as the cathode. The anode and the membrane were brought into contact with each other under pressure, and the cathode and the membrane were brought into contact with each other under pressure.

陽極室に飽和食塩水,陰極室に水を供給して、
陰極室の苛性ソーダ濃度を35%に保ちつつ、温度
90℃,電流密度30A/dm2で電解したところ、電
圧は3.20ボルト,電流効率は95%であつた。又、
6ケ月の運転においても電圧は20mV上昇したに
すぎなかつた。尚、上記の処理を施していない膜
を用いた場合は、電圧は3.45ボルトで電流効率
は、96%であつた。
Supply saturated saline solution to the anode chamber and water to the cathode chamber,
While maintaining the caustic soda concentration in the cathode chamber at 35%, the temperature
When electrolyzed at 90°C and a current density of 30 A/dm 2 , the voltage was 3.20 volts and the current efficiency was 95%. or,
Even after 6 months of operation, the voltage increased by only 20 mV. Note that when a membrane not subjected to the above treatment was used, the voltage was 3.45 volts and the current efficiency was 96%.

比較例 1 実施例1で用いた膜を用いて、還元剤と
H2PtCl6の含浸操作の順序を逆にして行つたとこ
ろ化学メツキはほとんどされなかつた。
Comparative Example 1 Using the membrane used in Example 1, a reducing agent and
When the H 2 PtCl 6 impregnation procedure was reversed, little chemical plating occurred.

実施例 2 CF2=CF2との共重合体(交換容量1.4ミリ当量/g乾燥)
を7ミルの厚さでフイルムにしたのち、加水分解
することによつて、陽イオン交換膜を得た。
Example 2 CF 2 = CF 2 and Copolymer with (exchange capacity 1.4 meq/g dry)
A cation exchange membrane was obtained by forming a film with a thickness of 7 mil and then hydrolyzing it.

本陽イオン交換膜を用いて実施例1で示された
と同一の条件で白金を固着せしめたのち、実施例
1と同様の条件で運転した。
After fixing platinum using this cation exchange membrane under the same conditions as shown in Example 1, the membrane was operated under the same conditions as in Example 1.

電圧は、3.27ボルトで電流効率は、95%であり
6ケ月の運転においても、25mVの上昇にすぎな
かつた。
The voltage was 3.27 volts, the current efficiency was 95%, and the increase was only 25 mV even after 6 months of operation.

本発明の処理を施していない膜を用いた場合、
電圧は3.52ボルト電流効率は95%であつた。
When using a membrane that has not been subjected to the treatment of the present invention,
The voltage was 3.52 volts and the current efficiency was 95%.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜に、還元剤を含浸せしめたの
ち、溶液中で負の金属錯体イオンを形成する金属
塩を含浸せしめ、化学メツキすることを特徴とす
る陽イオン交換膜に金属を固着せしめる方法。 2 交換基がスルホン酸基からなる陽イオン交換
膜を使用する特許請求の範囲第1項記載の方法。 3 交換基がカルボン酸基から成る陽イオン交換
膜を使用する特許請求の範囲第1項記載の方法。 4 交換基がスルホン酸基とカルボン酸基とから
成る多層構造を有する陽イオン交換膜を使用する
特許請求の範囲第1項記載の方法。 5 固着される金属が白金,パラジウム,ルテニ
ウム,ニツケルあるいはこれらの混合物から選ば
れる特許請求の範囲第1,2,3または第4項記
載の方法。
[Claims] 1. A cation exchange membrane characterized in that the cation exchange membrane is impregnated with a reducing agent, and then impregnated with a metal salt that forms a negative metal complex ion in a solution, and then chemically plated. A method of attaching metal to 2. The method according to claim 1, which uses a cation exchange membrane in which the exchange group is a sulfonic acid group. 3. The method according to claim 1, which uses a cation exchange membrane in which the exchange group is a carboxylic acid group. 4. The method according to claim 1, which uses a cation exchange membrane having a multilayer structure in which the exchange groups are sulfonic acid groups and carboxylic acid groups. 5. The method according to claim 1, 2, 3 or 4, wherein the metal to be fixed is selected from platinum, palladium, ruthenium, nickel or a mixture thereof.
JP57059591A 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane Granted JPS58176222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059591A JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059591A JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS58176222A JPS58176222A (en) 1983-10-15
JPS6258622B2 true JPS6258622B2 (en) 1987-12-07

Family

ID=13117625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059591A Granted JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS58176222A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2266868A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Method of producing membrane electrode units for pem fuel cells

Also Published As

Publication number Publication date
JPS58176222A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
US4364803A (en) Deposition of catalytic electrodes on ion-exchange membranes
KR910001140B1 (en) Electrode and method for preparing thereof
JPH0125836B2 (en)
JPS6016518B2 (en) Ion exchange membrane electrolyzer
JP5632780B2 (en) Electrolytic cell manufacturing method
JP4190026B2 (en) Gas diffusion electrode
EP0165466A1 (en) Cation exchange fluoropolymer membrane
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
US4935110A (en) Electrode structure and process for fabricating the same
JPH0488182A (en) Electrode structure for ozone production and its production
US5227030A (en) Electrocatalytic cathodes and methods of preparation
JPH0586971B2 (en)
JP4290454B2 (en) Method for producing gas diffusion electrode, electrolytic cell and electrolysis method
JPS6258622B2 (en)
JPH0143026B2 (en)
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP2660284B2 (en) Catalytic electrode and method for producing the same
JPS6154116B2 (en)
JPS6255535B2 (en)
JPS631391B2 (en)
JPS6256184B2 (en)
JPS6125791B2 (en)
JPH01139786A (en) Electrode structure
JP2003147565A (en) Method of restoring performance of gas diffusion electrode
JPS6316420B2 (en)