JPH01139786A - Electrode structure - Google Patents

Electrode structure

Info

Publication number
JPH01139786A
JPH01139786A JP62297674A JP29767487A JPH01139786A JP H01139786 A JPH01139786 A JP H01139786A JP 62297674 A JP62297674 A JP 62297674A JP 29767487 A JP29767487 A JP 29767487A JP H01139786 A JPH01139786 A JP H01139786A
Authority
JP
Japan
Prior art keywords
lead dioxide
electrode structure
exchange membrane
layer
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62297674A
Other languages
Japanese (ja)
Other versions
JPH0581678B2 (en
Inventor
Yoshinori Nishiki
善則 錦
Hideji Nakamatsu
中松 秀司
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP62297674A priority Critical patent/JPH01139786A/en
Priority to KR1019880015546A priority patent/KR910001950B1/en
Priority to US07/276,732 priority patent/US4935110A/en
Priority to EP19880830506 priority patent/EP0318442A3/en
Publication of JPH01139786A publication Critical patent/JPH01139786A/en
Publication of JPH0581678B2 publication Critical patent/JPH0581678B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide the title electrolytic electrode structure having prescribed thickness And activity by interposing a deposit layer contg. the fine particles contg. beta-lead dioxide powder between a fluorine-based ion-exchange membrane and a lead dioxide electrodeposition coating layer at the time of forming the coating layer on the membrane. CONSTITUTION:The deposit layer contg. the fine particles contg.-lead dioxide powder is formed on one surface of the fluorine-based ion-exchange membrane as the solid electrolyte. The lead dioxide electrodeposition coating layer is then formed on the surface of the deposit layer, and a solid electrolyte-type electrolytic electrode structure is obtained. Since the deposit layer contg. the fine particles contg. beta-lead dioxide powder is interposed between the ion- exchange membrane and the lead dioxide electrodeposition coating layer, and an active substance is not infiltrated into the ion-exchange membrane. In addition, a side reaction is not caused, the current efficiency can be increased, and further the conventional hot pressing which exercises unfavorable influence on the membrane can be dispensed with.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一般に電解用電極構造体に関し、より詳細に
は水電解によるオゾン製造、水溶液電解による過酸化物
の製造及び有機電解酸化等の特に高電位における電解酸
化反応に使用する電解用電極構造体に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention generally relates to an electrode structure for electrolysis, and more specifically to ozone production by water electrolysis, peroxide production by aqueous solution electrolysis, organic electrolytic oxidation, etc. In particular, the present invention relates to an electrode structure for electrolysis used in electrolytic oxidation reactions at high potentials.

(従来技術とその問題点) 近年における電解工業においては、カーボンに代表され
る溶性電極に換わって陽分極条件で極めて安定なチタン
やチタン合金を基材としその表面に電極活性物質特に白
金族金属の酸化物を被覆した電極が使用されている。該
電極は寸法安定性陽極(DSA)又は寸法安定性電極(
D S E)と呼ばれ、その優れた電解特性及び耐久性
から例えば水電解による酸素ガス発生や金属ハロゲン化
物水溶液の電解によるハロゲンや水酸化アルカリの生成
をはじめとする大多数の工業電解プロセスで使用されて
いる。
(Prior art and its problems) In recent years, in the electrolytic industry, instead of soluble electrodes such as carbon, titanium or titanium alloys, which are extremely stable under anodic polarization conditions, are used as base materials and electrode active substances, especially platinum group metals, are used on the surface. Electrodes coated with oxides are used. The electrode is a dimensionally stable anode (DSA) or a dimensionally stable electrode (
Due to its excellent electrolytic properties and durability, it is used in most industrial electrolytic processes, such as the generation of oxygen gas by water electrolysis and the generation of halogens and alkali hydroxides by electrolysis of metal halide aqueous solutions. It is used.

一方陽極電解酸化反応を利用するオゾンガス製造や過酸
化物製造又は有機電解等の電解においても陽極物質は重
要な役割を果たすが、該オゾンガス製造用等の電解反応
は電位が高(前記DSAを使用してもより電位の低い電
解反応が優先的に起こるため、前記オゾンガス等の電解
的製造には前記DSAは不向きであり、僅かに白金被覆
したチタン電極が一部利用されているにすぎない。
On the other hand, anode materials also play an important role in electrolysis such as ozone gas production, peroxide production, and organic electrolysis that utilize anodic electrolytic oxidation reactions. However, since an electrolytic reaction with a lower potential occurs preferentially, the DSA is not suitable for the electrolytic production of ozone gas, etc., and titanium electrodes slightly coated with platinum are only partially used.

該オゾンガス製造用等の電解においても、DSAに換わ
る陽極活性物質の探究や運転の効率化が不可欠であり従
来から電極物質だけでなくその構造体や槽構造に関する
種々の工夫がなされ、電極物質として鉛や酸化鉛及びカ
ーボン等が使用されている。
In electrolysis for the production of ozone gas, it is essential to search for anode active materials to replace DSA and to improve operational efficiency. Lead, lead oxide, carbon, etc. are used.

通常このような陽極酸化プロセスにおいては陰極での還
元を防止するため隔膜を使用し陰極液と陽極液を分離し
て電解を行うようにしている。しかしこの方法では、陽
極と陰極との間に存在する電解液による電圧損が生ずる
、又電極面積を十分大きく取り難いことから電流密度を
大きく出来ないなどの問題点を有している。該問題点を
解消するために最近では隔膜をイオン交換膜としその表
面を電極活性物質で被覆して電解液によるオーム損を実
質的になくした所謂S P E (Solid Pol
ymerElectrolyte)法が行われている。
Normally, in such an anodizing process, a diaphragm is used to separate the catholyte and anolyte to prevent reduction at the cathode and perform electrolysis. However, this method has problems such as a voltage loss occurring due to the electrolyte present between the anode and the cathode, and the current density not being able to be increased because it is difficult to provide a sufficiently large electrode area. In order to solve this problem, recently the so-called SPE (Solid Pol
ymerElectrolyte) method is being carried out.

上述のオゾン製造や過酸化物の製造にも該SPE法を適
用することが可能であり、上記した鉛、酸化鉛又はカー
ボン等を電極活性物質としたspE法電解装置を製造す
ることができる。しかし従来のSPHの製造方法をその
まま二酸化鉛等を電極活性物質とするSPEの製造に適
用すると次のような不都合が生ずる。つまり微粒子をホ
ットプレス法でイオン交換膜等に強固に付着させる場合
には350℃程度の温度が必要でありこの温度では二酸
化鉛が一部分解する恐れがある。又電極活性物質の粒子
を電着させる方法も知られているが、該方法によると十
分な厚さの被覆を得にくく又前記電極活性物質がイオン
交換膜の内部に不均一に入り込み副反応の要因となる恐
れがある等の欠点がある。更に無電解メツキ法によると
、メツキ自体の制御が困難でありかつメツキに長時間を
要するという問題がある。
The SPE method can also be applied to the above-mentioned ozone production and peroxide production, and it is possible to produce an spE electrolysis device using the above-mentioned lead, lead oxide, carbon, or the like as an electrode active material. However, if the conventional method for producing SPH is applied as is to producing SPE using lead dioxide or the like as an electrode active material, the following disadvantages will occur. In other words, when fine particles are firmly attached to an ion exchange membrane or the like by a hot press method, a temperature of about 350° C. is required, and at this temperature there is a risk that lead dioxide may partially decompose. A method of electrodepositing particles of an electrode active material is also known, but with this method, it is difficult to obtain a coating of sufficient thickness, and the electrode active material may unevenly enter the inside of the ion exchange membrane, causing side reactions. There are drawbacks such as the possibility that it may become a factor. Furthermore, the electroless plating method has the problem that it is difficult to control the plating itself and that plating takes a long time.

これらのSPE製造方法の改良として、チタン焼結体を
基体としその表面に二酸化鉛を被覆して電極を製造し、
それをイオン交換膜に密着する方法が提案されているが
(J、 Elec、 Chew、 Sac、  第13
2巻(1985年)367頁〜)、チタン焼結体を得に
くい等生産性に関する問題点を残している。又米国特許
第4.416,747号には、陽イオン交換膜上に二酸
化鉛微粒子と有機バインダーから成る層を形成して上記
問題点の解決を図っているが、該方法は有機バインダー
の選択が適切であれば有効ではあるが、該バインダーに
よって活性物質である二酸化鉛微粒子が遮蔽されて活性
が不十分となるという問題点が残り、かつ接着性や耐久
性に優れたバインダーを選択することもかなりの困難を
伴う。
As an improvement to these SPE manufacturing methods, electrodes are manufactured by using a titanium sintered body as a base and coating the surface with lead dioxide.
A method of adhering it to an ion exchange membrane has been proposed (J. Elec, Chew, Sac, No. 13).
2 (1985), p. 367), there remain problems regarding productivity, such as difficulty in obtaining titanium sintered bodies. In addition, U.S. Pat. No. 4,416,747 attempts to solve the above problem by forming a layer consisting of lead dioxide fine particles and an organic binder on a cation exchange membrane, but this method does not require the selection of an organic binder. Although it is effective if the binder is appropriate, there remains the problem that the active substance, lead dioxide fine particles, is blocked and the activity is insufficient, and it is necessary to select a binder with excellent adhesiveness and durability. is also quite difficult.

(発明の目的) 本発明は、畝上の問題点、特に電着により二酸化鉛を主
とする電極活性物質層をイオン交換膜上に形成する際に
該電極活性物質が前記イオン交換膜中へ不均一に入り込
むことを解決し、所定の厚さの電極活性物質と所定の活
性を有するSPE型の電極構造体を提供することを目的
とする。
(Object of the Invention) The present invention solves the problem of ridges, particularly when an electrode active material layer mainly composed of lead dioxide is formed on an ion exchange membrane by electrodeposition, the electrode active material flows into the ion exchange membrane. It is an object of the present invention to provide an SPE type electrode structure that solves the problem of non-uniform penetration and has a predetermined thickness of electrode active material and a predetermined activity.

(問題点を解決するための手段) 本発明は、第1に固体電解質であるフッ素系イオン交換
膜の一方の表面にβ−二酸化鉛粉末を含む微粒子を含有
する付着層を形成し、該付着層の表面に二酸化鉛電着層
を形成したことを特徴とする固体電解質型電解用電極構
造体であり、第2に該電極構造体中の前記二酸化鉛電着
層中にβ−二酸化鉛粉末を含む微粒子を分散させたこと
を特徴とする電極構造体である。
(Means for Solving the Problems) The present invention firstly forms an adhesion layer containing fine particles containing β-lead dioxide powder on one surface of a fluorine-based ion exchange membrane, which is a solid electrolyte, and This is an electrode structure for solid electrolyte electrolysis, characterized in that a lead dioxide electrodeposition layer is formed on the surface of the layer, and secondly, β-lead dioxide powder is formed in the lead dioxide electrodeposition layer in the electrode structure. This is an electrode structure characterized by dispersing fine particles containing.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、固体電解質であるイオン交換膜の表面に二酸
化鉛電着層を形成する際に、該イオン交換膜と二酸化鉛
電着層の間にβ−二酸化鉛粉末を含む微粒子を含有する
付着層を介在させることにより、電着時に活性物質がイ
オン交換膜中へ不均一に入り込むことを防止して副反応
を回避するとともに電流効率を向上させ、しかも従来の
熱圧着のような膜への悪影響を及ぼす操作を無くしたこ
とを特徴とする。
When forming an electrodeposited lead dioxide layer on the surface of an ion exchange membrane, which is a solid electrolyte, the present invention provides an adhesion layer containing fine particles containing β-lead dioxide powder between the ion exchange membrane and the electrodeposited lead dioxide layer. By interposing the layer, it is possible to prevent the active substance from entering the ion-exchange membrane unevenly during electrodeposition, thereby avoiding side reactions and improving current efficiency. It is characterized by eliminating operations that have a negative effect.

固体電解質としてはフッ素系のイオン交換膜を使用する
。該イオン交換膜は耐久性があり又加工も容易であり、
該フッ素系イオン交換膜の種類は用途に応じて適宜選択
する。例えばオゾンの電解製造用にはパーフロロスルホ
ン酸型のイオン交換膜が好適である。
A fluorine-based ion exchange membrane is used as the solid electrolyte. The ion exchange membrane is durable and easy to process,
The type of fluorine-based ion exchange membrane is appropriately selected depending on the application. For example, perfluorosulfonic acid type ion exchange membranes are suitable for electrolytic production of ozone.

次いで該イオン交換膜の表面にβ−二酸化鉛粉末を含む
微粒子を含有する付着層を形成するが、該付着層の前記
イオン交換膜への付着性を向上させるために、イオン交
換膜の表面にヤスリ加工やイオンスパッタ等の前処理を
施して粗面化しておくことが好ましい。該β−二酸化鉛
粉末を含む付着層の形成方法は特に限定されず、例えば
予めβ−二酸化粉末を含むスラリーを調製しておき該ス
ラリーを前記前処理を行ったイオン交換膜表面に塗布し
常温又は加熱乾燥して付着させたり、β−二酸化鉛粉末
をホットプレスによりイオン交換膜上に固着させてもよ
い。
Next, an adhesive layer containing fine particles containing β-lead dioxide powder is formed on the surface of the ion exchange membrane.In order to improve the adhesion of the adhesive layer to the ion exchange membrane, It is preferable to roughen the surface by performing pretreatment such as sanding or ion sputtering. The method of forming the adhesion layer containing the β-lead dioxide powder is not particularly limited. For example, a slurry containing the β-lead dioxide powder is prepared in advance, the slurry is applied to the pretreated ion exchange membrane surface, and the layer is heated at room temperature. Alternatively, it may be attached by heating and drying, or the β-lead dioxide powder may be fixed on the ion exchange membrane by hot pressing.

該付着層はβ−二酸化鉛粉末単独で形成してもよいがそ
の用途に応じて電解助触媒を添加することができる。該
電解助触媒としては、オゾン製造用としては例えばフッ
素樹脂、パーフロロスルホン酸型イオン交換樹脂やフッ
化カーボンの粒子が好適であり、又過酸化物製造につい
てはチタン、ジルコニウム、ニオブ、タンタル等の酸化
物が好適であり、更に有機電解酸化用としては上記した
物質以外にカーボンが好適である。電解助触媒として上
記したフッ素樹脂やパーフロロスルホン酸イオン交換樹
脂を使用すると助触媒としての機能だけでなく前記イオ
ン交換膜との接合をより強固にするという働きが生じ、
更に該樹脂粒子はガス抜けを促進するという特徴も合わ
せ持つ。
The adhesion layer may be formed of β-lead dioxide powder alone, but an electrolytic promoter may be added depending on the application. As the electrolytic cocatalyst, for example, particles of fluororesin, perfluorosulfonic acid type ion exchange resin, or fluorinated carbon are suitable for ozone production, and titanium, zirconium, niobium, tantalum, etc. are suitable for peroxide production. In addition to the above-mentioned substances, carbon is suitable for organic electrolytic oxidation. When the above-mentioned fluororesin or perfluorosulfonic acid ion exchange resin is used as an electrolytic cocatalyst, it not only functions as a cocatalyst but also works to strengthen the bond with the ion exchange membrane.
Furthermore, the resin particles also have the characteristic of promoting gas release.

使用するβ−二酸化鉛粉末の粒径は用途に応じて選択す
ることができるが、100〜425メツシユであること
が望ましく、粒径が425メツシユより小さいと前記付
着層のガス抜けが若干悪くなり、又粒径が100メツシ
ユより大きいと付着性が低下する。
The particle size of the β-lead dioxide powder used can be selected depending on the application, but it is preferably 100 to 425 mesh; if the particle size is smaller than 425 mesh, gas release from the adhesion layer will be slightly impaired. Also, if the particle size is larger than 100 mesh, the adhesion will decrease.

このように形成された付着層を補強し、電解面積をより
大きくして実質的な三次元電極的なm能を有するように
するため、前記付着層の上に、電解により二酸化鉛電着
層を形成する。該電着層は二酸化鉛を主として含有し、
該二酸化鉛の形態は任意であるが導電性及び耐久性を考
慮するとβ−二酸化鉛であることが好ましい。該電着層
の形成は、例えば電解液として硝酸鉛水溶液を使用し酸
性条件下で、前記β−二酸化鉛粉末を含有する付着層を
形成したイオン交換膜を陽極とし、50〜70℃、0.
1〜IOA/dn+”の電流密度で行うことができ、こ
れにより前記硝酸鉛の電解により発生するβ−二酸化鉛
層が前記付着層上へ形成される。この場合、前記付着層
を有する部分のみに二酸化鉛が析出するようその周囲を
シールしておくことが望ましい。
In order to reinforce the adhesion layer formed in this way and make the electrolytic area larger and have a substantial three-dimensional electrode function, a lead dioxide electrodeposited layer is formed on the adhesion layer by electrolysis. form. The electrodeposition layer mainly contains lead dioxide,
Although the form of the lead dioxide is arbitrary, β-lead dioxide is preferable in consideration of conductivity and durability. The formation of the electrodeposited layer is carried out under acidic conditions using, for example, an aqueous lead nitrate solution as an electrolytic solution, using an ion exchange membrane on which a deposited layer containing the β-lead dioxide powder has been formed as an anode, at 50 to 70°C, 0. ..
This can be carried out at a current density of 1 to IOA/dn+", whereby a β-lead dioxide layer generated by electrolysis of the lead nitrate is formed on the adhesion layer. In this case, only the part with the adhesion layer is It is desirable to seal the area around it to prevent lead dioxide from precipitating.

該電着層形成時の電解液中にβ−二酸化鉛粉末を懸濁さ
せることにより形成される′電着層中にβ−二酸化鉛粒
子を含有させることができる。電着層中の該粒子は電解
面積を更に増大させ、かつ電着層を多孔質としてガス抜
けのより良好な電極構造体を提供する。前記懸濁粒子は
前記付着層中の成分と同じ成分であることが望ましいが
他の成分を使用しても差し支えなく、更に前記電解助触
媒微粒子を含有させてもよい。又該電着層中のこれらの
粒子の含有量は60体積%以下であることが望ましく、
これを越えると物理的強度の低下を招くことがある。
β-Lead dioxide particles can be contained in the electrodeposited layer, which is formed by suspending β-lead dioxide powder in the electrolytic solution at the time of forming the electrodeposited layer. The particles in the electrodeposited layer further increase the electrolytic area and make the electrodeposited layer porous to provide an electrode structure with better outgassing. The suspended particles preferably have the same components as those in the adhesion layer, but other components may be used, and the electrolytic promoter fine particles may also be included. Further, the content of these particles in the electrodeposited layer is preferably 60% by volume or less,
Exceeding this may lead to a decrease in physical strength.

該粒子を前記二酸化鉛電着層に含有させる方法としては
、上記した電解液中にβ−二酸化鉛粉末を懸濁させて電
着を行う所謂懸濁メツキ法の他に、二酸化鉛の電着と前
記粒子を含むペーストの塗布を交互に繰り返して行う方
法等がある。
As a method for incorporating the particles into the lead dioxide electrodeposition layer, in addition to the so-called suspension plating method in which β-lead dioxide powder is suspended in an electrolytic solution and electrodeposited, electrodeposition of lead dioxide can be used. There is a method of alternately repeating application of a paste containing the particles and a paste containing the particles.

このようにして製造された電極構造体は、イオン交換膜
上に形成した付着層が電着された二酸化鉛の該イオン交
換膜への不均一な浸入を防止するとともに、主要な電極
活性物質である電着層が三次元的な拡がりを有するガス
抜けの良好な電極構造体である。
In the electrode structure manufactured in this way, the adhesion layer formed on the ion exchange membrane prevents the electrodeposited lead dioxide from infiltrating unevenly into the ion exchange membrane, and also prevents the electrodeposited lead dioxide from infiltrating the ion exchange membrane as a main electrode active material. It is an electrode structure in which a certain electrodeposited layer has three-dimensional spread and has good gas release.

(実施例) 以下本発明に関わる電極構造体を実施例により詳細に説
明するが、該実施例は本発明を限定するものではない。
(Example) The electrode structure related to the present invention will be described in detail below using Examples, but the Examples are not intended to limit the present invention.

実施例1 市販のパーフロロスルホン酸型陽イオン交換膜(商品名
ナフィオン117)の表面を# 1000のエメリー紙
で粗面化した後、5重量%の硝酸水溶液に浸漬して上記
イオン交換膜のスルホン酸基をH型に変換しこれを2室
法電解槽の隔膜として組み込んだ。片側に5g/lの塩
化白金酸水溶液を、他方側に10g/lのヒドラジン水
溶液を満たして24時間放置し、膜の片面に白金層を形
成した。一方常法の電解法により調製したβ−二酸化鉛
をメノー製乳鉢で粉砕し、得られた250メツシュ全通
の微粒子をPTFE水懸濁液(三井フロロケミカル社製
30J)及びパーフロロイオン交換樹脂とともに混練し
ペースト状として前記イオン交換膜の白金を担持させた
面の反対面に刷毛により塗布し、室温にて放置し平滑化
した後160℃の温度で加熱プレスを行った。このよう
に作製した片側に白金、他方側にβ−二酸化鉛を付着さ
せたイオン交換膜を再度2室法電解槽に組み込み、前記
β−二酸化船側の室に400g/lの硝酸鉛水溶液を満
たし、前記イオン交換膜上の白金を陰極とし、前記β−
二酸化鉛付着層に接触させて設置したチタン板を陽極と
して60℃、2A/dm”で2時間電解を行った。
Example 1 The surface of a commercially available perfluorosulfonic acid type cation exchange membrane (trade name Nafion 117) was roughened with #1000 emery paper, and then immersed in a 5% by weight nitric acid aqueous solution to roughen the surface of the ion exchange membrane. The sulfonic acid group was converted to the H type, and this was incorporated as a diaphragm in a two-chamber electrolytic cell. One side was filled with a 5 g/l chloroplatinic acid aqueous solution and the other side was filled with a 10 g/l hydrazine aqueous solution and left for 24 hours to form a platinum layer on one side of the membrane. On the other hand, β-lead dioxide prepared by a conventional electrolytic method was pulverized in an agate mortar, and the resulting fine particles of 250 mesh were mixed into a PTFE water suspension (30J manufactured by Mitsui Fluorochemical Co., Ltd.) and perfluoro ion exchange resin. The mixture was kneaded together to form a paste, which was applied with a brush to the surface opposite to the platinum-supported surface of the ion exchange membrane, left at room temperature to smooth, and then heated and pressed at a temperature of 160.degree. The thus prepared ion exchange membrane with platinum attached on one side and β-lead dioxide on the other side was assembled again into a two-chamber electrolytic cell, and the chamber on the β-dioxide vessel side was filled with 400 g/l of lead nitrate aqueous solution. , platinum on the ion exchange membrane is used as a cathode, and the β-
Electrolysis was carried out at 60° C. and 2 A/dm for 2 hours using a titanium plate placed in contact with the lead dioxide adhesion layer as an anode.

集電体として、陰極側は表面に白金メツキを施した多孔
質ニッケルを、又陽極(二酸化鉛)側にはβ−二酸化鉛
を被覆したチタンメツシュをそれぞれ用いて前記電極構
造体に密着して設置し、脱イオン水を陽極側に満たして
電解を行った。20℃、100 A/dm2の電流密度
の条件で、14%のオゾンを含む酸素ガスを得ることが
できた。電解時の摺電圧は3.7■であった。
As current collectors, porous nickel with platinum plating on the surface is used on the cathode side, and titanium mesh coated with β-lead dioxide is used on the anode (lead dioxide) side, and these are installed in close contact with the electrode structure. Then, electrolysis was performed by filling the anode side with deionized water. Oxygen gas containing 14% ozone could be obtained under conditions of 20°C and a current density of 100 A/dm2. The sliding voltage during electrolysis was 3.7■.

実施例2 実施例1と同様にして片面に白金を付着させたイオン交
換膜を用意した。345メソシュ全通のβ−二酸化鉛を
エチルアルコールとともに混練してペーストとし、該ペ
ーストを前記イオン交換膜の白金を担持させたのと反対
面に塗布し、室温にて放置乾燥し平滑化した後160°
Cの温度で圧着した。
Example 2 An ion exchange membrane with platinum attached to one side was prepared in the same manner as in Example 1. After kneading β-lead dioxide of 345 mesh with ethyl alcohol to make a paste, applying the paste to the opposite side of the ion exchange membrane to which the platinum was supported, and leaving it to dry at room temperature to smooth it. 160°
Pressure bonding was carried out at a temperature of C.

更に実施例1と同様にして電解により二酸化鉛電着層を
形成した。このように作製した固体電解質片電極構造体
を実施例1と同じ電解槽に組み込み、陽極室に脱イオン
水を満たして電解を行った。20℃、100 A/dI
l+”の電流密度の条件で、12%のオゾンを含む酸素
ガスを得ることができた。電解時の摺電圧は4.2Vで
あった。
Furthermore, a lead dioxide electrodeposition layer was formed by electrolysis in the same manner as in Example 1. The solid electrolyte single electrode structure thus produced was assembled into the same electrolytic cell as in Example 1, and the anode chamber was filled with deionized water to perform electrolysis. 20℃, 100 A/dI
Oxygen gas containing 12% ozone could be obtained under the condition of a current density of 1+''. The sliding voltage during electrolysis was 4.2V.

実施例3 実施例1のイオン交換膜の表面をアルゴンイオンにより
スパッタして活性化した。該イオン交換膜を5重量%の
硝酸水溶液に浸漬してH型に変換し、これを2室法電解
槽の隔膜として組み込み、実施例1と同様にして片側に
白金被覆を形成した。
Example 3 The surface of the ion exchange membrane of Example 1 was activated by sputtering with argon ions. The ion exchange membrane was immersed in a 5% by weight aqueous nitric acid solution to convert it to H type, and this was incorporated as a diaphragm in a two-chamber electrolytic cell, and a platinum coating was formed on one side in the same manner as in Example 1.

電解により調製したβ−二酸化鉛微粒子と酸化チタン及
び酸化ジルコニウム粒子の混合物を真空中1100℃で
6時間処理して部分的に還元した微粒子をPTFE水懸
濁液と混練してペーストを調製し実施例1と同様にして
・イオン交換膜上に付着層を形成した。
A mixture of β-lead dioxide fine particles prepared by electrolysis, titanium oxide, and zirconium oxide particles was treated in vacuum at 1100°C for 6 hours, and the partially reduced fine particles were kneaded with a PTFE water suspension to prepare a paste. An adhesion layer was formed on the ion exchange membrane in the same manner as in Example 1.

該イオン交換膜を再度2室法電解槽に組み込み、β−二
酸化鉛層側に、上記ペーストと同成分の微粒子を懸濁さ
せた400g/lの硝酸鉛水溶液を満たし、65℃、2
A/dm”で前記β−二酸化鉛を含む付着層の表面に、
前記微粒子を含有するβ−二酸化鉛の電着層を形成し、
固体電解質型電極構造体とした。
The ion exchange membrane was assembled into a two-chamber electrolytic cell again, and the β-lead dioxide layer side was filled with a 400 g/l lead nitrate aqueous solution in which fine particles having the same components as the above paste were suspended, and heated at 65°C for 2 hours.
A/dm” on the surface of the adhesion layer containing β-lead dioxide,
forming an electrodeposited layer of β-lead dioxide containing the fine particles;
It was made into a solid electrolyte type electrode structure.

該電極構造体を実施例1と同様にして電解槽に組み込み
脱イオン水の電解を行った。20”C1100A/dI
11”の電流密度の条件で、陽極室から16%のオゾン
を含む酸素ガスを得ることができた。電解時の摺電圧は
3.6vであった。
The electrode structure was assembled into an electrolytic cell in the same manner as in Example 1, and deionized water was electrolyzed. 20”C1100A/dI
Under the condition of a current density of 11", oxygen gas containing 16% ozone could be obtained from the anode chamber. The sliding voltage during electrolysis was 3.6V.

(発明の効果) 本発明は、フッ素イオン系交換膜の一方の表面にβ−二
酸化鉛付着層を含む微粒子を含有する付着層を形成し、
該付着層の表面に更にβ−二酸化鉛粉末を含む微粒子を
分散させてもよい二酸化鉛電着層を形成して固体電解質
型電解用電極構造体を構成するようにしている。該β−
二酸化鉛粉末は電極活性物質としては白金族酸化物等よ
りも過電圧が高いため、本発明に関わる電極構造体は、
ハロゲン化アルカリの電解による水酸化アルカリの製造
や水電解による酸素及び水素と比較して電解電圧の高い
、例えば水電解によるオゾンの製造、水溶液電解による
過酸化物の製造及び有機電解酸化等の各種電解用として
有用である。
(Effects of the Invention) The present invention forms an adhesion layer containing fine particles including a β-lead dioxide adhesion layer on one surface of a fluorine ion exchange membrane,
A lead dioxide electrodeposition layer, in which fine particles containing β-lead dioxide powder may be further dispersed, is formed on the surface of the adhesion layer to constitute an electrode structure for solid electrolyte electrolysis. The β-
Since lead dioxide powder has a higher overvoltage as an electrode active material than platinum group oxides, etc., the electrode structure related to the present invention
Production of alkali hydroxide by electrolysis of alkali halides, production of ozone with a higher electrolytic voltage than oxygen and hydrogen by water electrolysis, production of peroxide by aqueous solution electrolysis, production of organic electrolytic oxidation, etc. Useful for electrolysis.

本発明は該構成を有するため、第1に電極活性物質であ
る前記電着層中の二酸化鉛が付着層により遮蔽され、電
着操作中にイオン交換膜中に不均一に浸入することが殆
どなくなる。これにより電着層−付着層−イオン交換股
間の密着性が向上し、かつ副反応を抑制できるとともに
電流効率の低下を防止して、イオン交換膜ひいてはシス
テム全体の寿命を大幅に延ばすことが可能である。
Since the present invention has this configuration, firstly, lead dioxide in the electrodeposited layer, which is an electrode active substance, is shielded by the adhesion layer, and it is almost impossible for it to non-uniformly infiltrate into the ion exchange membrane during the electrodeposition operation. It disappears. This improves the adhesion between the electrodeposited layer, the adhesion layer, and the ion exchange groin, suppresses side reactions, and prevents a decrease in current efficiency, making it possible to significantly extend the life of the ion exchange membrane and, ultimately, the entire system. It is.

第2に本発明の電極構造体の製造に際しては、イオン交
換膜への高温熱処理がないため、該イオン交換膜の熱に
よる劣化を防止し、より堅牢な構造体を提供することが
できる。
Second, in manufacturing the electrode structure of the present invention, since the ion exchange membrane is not subjected to high temperature heat treatment, deterioration of the ion exchange membrane due to heat can be prevented and a more robust structure can be provided.

第3に電着層が実質的に三次元的拡がりを有するので被
反応物と電極活性物質とが接触する機会が増大して電流
効率の向上及び摺電圧の低下に寄与することができる。
Thirdly, since the electrodeposited layer has a substantially three-dimensional spread, there is an increased chance of contact between the reactant and the electrode active material, contributing to an improvement in current efficiency and a reduction in sliding voltage.

第4に付着層と電着層の両者を存するため活性物質層を
より均一にすることが容易である。
Fourth, since both the adhesion layer and the electrodeposition layer are present, it is easier to make the active material layer more uniform.

第5に付着層及び/又は電着層に粒子を含有させること
により多孔度を調整しガス抜けの度合等を制御できるの
で用途により合致した装置を容易に製造することができ
る。
Fifth, by incorporating particles into the adhesion layer and/or the electrodeposition layer, the porosity can be adjusted and the degree of outgassing etc. can be controlled, making it possible to easily manufacture a device suited to the application.

Claims (8)

【特許請求の範囲】[Claims] (1)固体電解質であるフッ素系イオン交換膜の一方の
表面にβ−二酸化鉛粉末を含む微粒子を含有する付着層
を形成し、該付着層の表面に二酸化鉛電着層を形成した
ことを特徴とする固体電解質型電解用電極構造体。
(1) An adhesive layer containing fine particles containing β-lead dioxide powder was formed on one surface of a fluorine-based ion exchange membrane, which is a solid electrolyte, and a lead dioxide electrodeposited layer was formed on the surface of the adhesive layer. Characteristic solid electrolyte electrolysis electrode structure.
(2)付着層を構成する微粒子がβ−二酸化鉛と電解助
触媒の混合物である特許請求の範囲第1項に記載の電極
構造体。
(2) The electrode structure according to claim 1, wherein the fine particles constituting the adhesion layer are a mixture of β-lead dioxide and an electrolytic promoter.
(3)電解助触媒が、フッ素樹脂、パーフロロスルホン
酸型イオン交換樹脂、フッ化カーボン、カーボン並びに
チタン、ジルコニウム、ニオブ、タンタルの1種又は2
種以上の二酸化物から成る群から選択される1種又は2
種以上である特許請求の範囲第2項に記載の電極構造体
(3) The electrolytic promoter is one or two of fluororesin, perfluorosulfonic acid type ion exchange resin, fluorocarbon, carbon, and titanium, zirconium, niobium, and tantalum.
One or two selected from the group consisting of two or more types of dioxide
The electrode structure according to claim 2, which is more than one species.
(4)電解助触媒の量がβ−二酸化鉛の0.1〜20重
量%である特許請求の範囲第2項又は第3項に記載の電
極構造体。
(4) The electrode structure according to claim 2 or 3, wherein the amount of the electrolytic promoter is 0.1 to 20% by weight of β-lead dioxide.
(5)固体電解質であるフッ素系イオン交換膜の一方の
表面にβ−二酸化鉛粉末を含む微粒子を含有する付着層
を形成し、該付着層の表面に、β−二酸化鉛粉末を含む
微粒子を分散させた二酸化鉛電着層を形成したことを特
徴とする電極構造体。
(5) An adhesive layer containing fine particles containing β-lead dioxide powder is formed on one surface of the fluorine-based ion exchange membrane, which is a solid electrolyte, and fine particles containing β-lead dioxide powder are formed on the surface of the adhesive layer. An electrode structure comprising a dispersed electrodeposition layer of lead dioxide.
(6)付着層及び/又は電着層を構成する微粒子がβ−
二酸化鉛と電解助触媒の混合物である特許請求の範囲第
5項に記載の電極構造体。
(6) The fine particles constituting the adhesion layer and/or electrodeposition layer are β-
The electrode structure according to claim 5, which is a mixture of lead dioxide and an electrolytic promoter.
(7)電解助触媒が、フッ素樹脂、パーフロロスルホン
酸型イオン交換樹脂、フッ化カーボン、カーボン並びに
チタン、ジルコニウム、ニオブ、タンタルの1種又は2
種以上の二酸化物から成る群から選択される1種又は2
種以上である特許請求の範囲第6項に記載の電極構造体
(7) The electrolytic promoter is one or two of fluororesin, perfluorosulfonic acid type ion exchange resin, fluorocarbon, carbon, and titanium, zirconium, niobium, and tantalum.
One or two selected from the group consisting of two or more types of dioxide
The electrode structure according to claim 6, which is more than one species.
(8)電解助触媒の量がβ−二酸化鉛の0.1〜20重
量%である特許請求の範囲第6項又は第7項に記載の電
極構造体。
(8) The electrode structure according to claim 6 or 7, wherein the amount of the electrolytic promoter is 0.1 to 20% by weight of β-lead dioxide.
JP62297674A 1987-11-27 1987-11-27 Electrode structure Granted JPH01139786A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62297674A JPH01139786A (en) 1987-11-27 1987-11-27 Electrode structure
KR1019880015546A KR910001950B1 (en) 1987-11-27 1988-11-25 Electrode structure and process for fabricating the same
US07/276,732 US4935110A (en) 1987-11-27 1988-11-28 Electrode structure and process for fabricating the same
EP19880830506 EP0318442A3 (en) 1987-11-27 1988-11-28 Electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297674A JPH01139786A (en) 1987-11-27 1987-11-27 Electrode structure

Publications (2)

Publication Number Publication Date
JPH01139786A true JPH01139786A (en) 1989-06-01
JPH0581678B2 JPH0581678B2 (en) 1993-11-15

Family

ID=17849669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297674A Granted JPH01139786A (en) 1987-11-27 1987-11-27 Electrode structure

Country Status (1)

Country Link
JP (1) JPH01139786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250994A (en) * 1989-03-23 1990-10-08 Mitsubishi Heavy Ind Ltd Gas diffusion electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250994A (en) * 1989-03-23 1990-10-08 Mitsubishi Heavy Ind Ltd Gas diffusion electrode

Also Published As

Publication number Publication date
JPH0581678B2 (en) 1993-11-15

Similar Documents

Publication Publication Date Title
KR910001140B1 (en) Electrode and method for preparing thereof
US4118294A (en) Novel cathode and bipolar electrode incorporating the same
JPS6143436B2 (en)
US5015344A (en) Electrodes with dual porosity
US4935110A (en) Electrode structure and process for fabricating the same
US5407550A (en) Electrode structure for ozone production and process for producing the same
JPH0631457B2 (en) Multilayer structure for electrode-membrane assembly and electrolysis method using same
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
US3615862A (en) Fuel cell electrodes
US9163318B2 (en) Oxygen-consuming electrode and process for production thereof
US9118082B2 (en) Oxygen-consuming electrode and process for the production thereof
Wendt Preparation, morphology and effective electrocatalytic activity of gas evolving and gas consuming electrodes
JPS604915B2 (en) Anode for electrolyzer and its manufacturing method
JPH01139786A (en) Electrode structure
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP3078570B2 (en) Electrochemical electrode
JP2660284B2 (en) Catalytic electrode and method for producing the same
JP3420400B2 (en) Gas diffusion electrode for electrolysis and method for producing the same
RU2562457C1 (en) Method of making electrode-diaphragm unit for alkaline water electrolysis cell
JPH01139787A (en) Electrode structure and production thereof
JPH0625879A (en) Production of alkali hydroxide
KR20240031601A (en) Anodic electrode, water electrolysis device including the same and method for preparing the same
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JP2000119889A (en) Cathode structure and reactivation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees