JP3264535B2 - Gas electrode structure and electrolysis method using the gas electrode structure - Google Patents

Gas electrode structure and electrolysis method using the gas electrode structure

Info

Publication number
JP3264535B2
JP3264535B2 JP35263292A JP35263292A JP3264535B2 JP 3264535 B2 JP3264535 B2 JP 3264535B2 JP 35263292 A JP35263292 A JP 35263292A JP 35263292 A JP35263292 A JP 35263292A JP 3264535 B2 JP3264535 B2 JP 3264535B2
Authority
JP
Japan
Prior art keywords
exchange membrane
gas
thin layer
electrode structure
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35263292A
Other languages
Japanese (ja)
Other versions
JPH06173061A (en
Inventor
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP35263292A priority Critical patent/JP3264535B2/en
Publication of JPH06173061A publication Critical patent/JPH06173061A/en
Application granted granted Critical
Publication of JP3264535B2 publication Critical patent/JP3264535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学プロセスに使
用する省電力型ガス電極構造体及び該ガス電極構造体を
使用する電解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power-saving gas electrode structure used in an electrochemical process and an electrolysis method using the gas electrode structure.

【0002】[0002]

【従来技術とその問題点】電気化学プロセス用電極とし
て旧来は、電極として使用されたときに十分に耐久性を
有する導電性物質が使用されてきた。即ち陰極としては
陰分極時に安定で入手しやすい鉄やニッケル等が使用さ
れ、陽極としては溶解してしまう通常の金属ではなくグ
ラファイト質の炭素が使用されてきた。又チタン等の弁
金属がそのままでは不働態化してしまうが陽分極に対し
極めて安定である性質を利用して電極基体としての前記
弁金属上に該弁金属の不働態化防止用及び電極物質とし
て機能する白金族金属やその酸化物を被覆して調製され
る電極が使用されてきている。この他に導電性酸化物で
ある酸化鉛や酸化マンガンもそれ自身では物理的強度や
導電性が不十分であるが、チタン等の基体上に前記物質
を被覆することにより電極として実用化されている。
2. Description of the Related Art Conventionally, as an electrode for an electrochemical process, a conductive material having sufficient durability when used as an electrode has been used. That is, iron or nickel which is stable and easily available at the time of negative polarization is used as a cathode, and graphite carbon is used as an anode instead of a usual metal which dissolves. In addition, a valve metal such as titanium is passivated as it is, but is extremely stable against anodic polarization, and is used on the valve metal as an electrode substrate to prevent passivation of the valve metal and as an electrode material. Electrodes prepared by coating a functional platinum group metal or its oxide have been used. In addition, lead oxide and manganese oxide, which are conductive oxides, themselves have insufficient physical strength and conductivity, but have been put into practical use as electrodes by coating the above substance on a substrate such as titanium. I have.

【0003】これらの電極では陰極で水素が発生し陽極
では酸素やハロゲンを発生しながら電解液中に電流を流
しかつ目的とする電解反応を進行させたり、電解塩分離
を行ったりしている。これらの陽極や陰極では発生ガス
が目的の製品でないことが多く、このガス発生に必要と
するエネルギーが極めて大きくエネルギーロスになって
しまうという問題点がある。この欠点を解消するために
例えば陰極室に酸素含有ガスを供給して該陰極室で発生
する水素と反応させて水素ガス発生に要するエネルギー
の浪費を回避してエネルギー消費量を減少させあるいは
エネルギー回収を行いながら電解したり、あるいは陰極
室で発生する水素を陽極室に循環させて陽極室で発生す
る酸素と反応させて同様にエネルギー消費を減少させな
がら電解するいわゆるガス電極が知られている。
[0003] In these electrodes, a current is caused to flow in an electrolytic solution while generating hydrogen at the cathode and oxygen and halogen are generated at the anode, and a desired electrolytic reaction proceeds or electrolytic salt separation is performed. In these anodes and cathodes, the generated gas is often not a target product, and there is a problem in that the energy required for generating the gas is extremely large, resulting in energy loss. In order to solve this drawback, for example, an oxygen-containing gas is supplied to the cathode chamber and reacted with hydrogen generated in the cathode chamber to avoid wasting energy required for hydrogen gas generation, thereby reducing energy consumption or recovering energy. There is known a so-called gas electrode for performing electrolysis while performing hydrogenation, or circulating hydrogen generated in a cathode chamber to react with oxygen generated in the anode chamber to similarly perform electrolysis while reducing energy consumption.

【0004】このガス電極は通常炭素を主とする導電性
物質から成る多孔質構造であり、一方面を疎水性(撥水
性)として電解液の浸透を防止するとともにガス供給が
全面に渡って有効に行えるようにし、他面を電極触媒を
担持した親水性層とし、前記疎水性を浸透してきたガス
と電解液中の電解質が前記親水層面上で反応して減極を
行い、少ない電力で電解を行うようにしている。この電
極では電解実験のような不純物の少ない理想的な電解条
件の場合には問題がないが、工業的に使用される場合に
は、通常電解液中に不純物が含まれこの不純物が電極触
媒を被毒し、又使用される電解液自身に腐食性があると
電極触媒を消耗させるという問題点がある。従来から工
業的な食塩電解つまりクロルアルカリ電解で水素発生な
しに食塩と苛性ソーダを得て電解電圧の低下を図る方法
が提案されているが実用までには至っていない。これは
電極触媒が現在のイオン交換膜法の陰極室での条件つま
り90℃以上の30〜35%の苛性ソーダ中で十分な耐久性が
ないためと考えられており、このような腐食性に対する
耐性と触媒としての活性を合わせ持ち、しかも数年以上
の性能の保持が可能な電極を製造することは現在の技術
をもってしても極めて困難と言わざるを得ない。
The gas electrode has a porous structure which is usually made of a conductive material mainly composed of carbon, and has one surface made hydrophobic (water repellent) to prevent the permeation of the electrolytic solution and to effectively supply the gas over the entire surface. The other surface is a hydrophilic layer carrying an electrode catalyst, and the gas infiltrating the hydrophobicity and the electrolyte in the electrolyte react on the surface of the hydrophilic layer to depolarize, and the electrolysis is performed with a small amount of power. To do. This electrode has no problem under ideal electrolysis conditions with few impurities as in electrolysis experiments, but when it is used industrially, impurities are usually contained in the electrolytic solution and these impurities form the electrode catalyst. If the electrolyte used is poisoned or corrosive, the electrode catalyst is consumed. Conventionally, there has been proposed a method of obtaining salt and caustic soda without generating hydrogen by industrial salt electrolysis, that is, chloralkali electrolysis, to lower the electrolysis voltage, but it has not been put to practical use. This is thought to be due to the fact that the electrode catalyst does not have sufficient durability in the conditions of the current ion exchange membrane method in the cathode chamber, that is, in 30 to 35% caustic soda at 90 ° C or higher. It has to be said that it is extremely difficult to produce an electrode having both the activity as a catalyst and the performance that can be maintained for several years or more even with the current technology.

【0005】[0005]

【発明の目的】本発明は、叙上の問題点を解決し電解液
が腐食性であっても長期間の工業的使用に十分耐え得る
ガス電極構造体及び該ガス電極構造体を使用する電解方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a gas electrode structure capable of sufficiently withstanding long-term industrial use even if the electrolyte is corrosive, and an electrolytic solution using the gas electrode structure. The aim is to provide a method.

【0006】[0006]

【問題点を解決するための手段】本発明に係わるガス電
極構造体は、イオン交換膜基体、該イオン交換膜基体の
片面に形成された白金族金属又はその酸化物を電極触媒
として担持させた導電性炭素薄層、及び該薄層の前記イ
オン交換膜金属との反対面に密着して配置された多孔性
集電体を含んで成ることを特徴とするガス電極構造体本
発明方法は該ガス電極構造体を陽極又は陰極あるいは陽
極及び陰極の両極として使用する電解方法である。以下
本発明を詳細に説明する。
The gas electrode structure according to the present invention has an ion exchange membrane substrate and a platinum group metal or an oxide thereof formed on one surface of the ion exchange membrane substrate as an electrode catalyst. A gas electrode structure according to the present invention, comprising: a conductive carbon thin layer; and a porous current collector disposed in close contact with the surface of the thin layer opposite to the ion exchange membrane metal. This is an electrolysis method in which the gas electrode structure is used as an anode or a cathode or as both an anode and a cathode. Hereinafter, the present invention will be described in detail.

【0007】本発明におけるガス電極の特徴は、前述の
従来のガス電極と異なり基体としてイオン交換膜基体を
使用し該イオン交換膜基体を電解液と接触する側に設置
し、電極触媒を有する導電性炭素薄層と電解液の間を実
質的に液不透過性で導電性を有するイオン交換膜で遮断
した点にある。基体としてこのイオン交換膜基体でなく
従来の多孔性基体を使用すると従来の通り電解液が電極
触媒を有する導電性炭素薄層まで到達して該電解液の腐
食性や該電解液に含まれる不純物による電極触媒の消耗
や劣化を招来する。しかしガス電極を使用する電解反応
では電解液が電極触媒と接触する必要はなく、電解液中
の電解質及び該電解質とは別個に供給されるガスとが電
極触媒に接触し所定のイオンが形成されさえすれば十分
である。つまり陽極室ではH2 →2H+ +2e- の式に
従って水素イオンが発生し陰極室ではO2 +2H2 0+
4e- →4OH- の式に従って水酸イオンがそれぞれ発
生すれば十分である。
A feature of the gas electrode in the present invention is that, unlike the above-mentioned conventional gas electrode, an ion exchange membrane substrate is used as a substrate, and the ion exchange membrane substrate is placed on the side in contact with an electrolyte, and a conductive electrode having an electrode catalyst is provided. The point is that the conductive carbon thin layer and the electrolytic solution are blocked by a substantially liquid-impermeable and conductive ion exchange membrane. When a conventional porous substrate is used as the substrate instead of the ion exchange membrane substrate, the electrolytic solution reaches the conductive carbon thin layer having the electrode catalyst as in the conventional case, and the corrosiveness of the electrolytic solution and impurities contained in the electrolytic solution are used. This leads to consumption and deterioration of the electrode catalyst. However, in the electrolytic reaction using a gas electrode, the electrolytic solution does not need to contact the electrode catalyst, and the electrolyte in the electrolytic solution and the gas supplied separately from the electrolyte contact the electrode catalyst to form predetermined ions. All you need is enough. In other words, hydrogen ions are generated in the anode chamber according to the formula H 2 → 2H + + 2e and O 2 + 2H 2 0+ in the cathode chamber.
It is sufficient that hydroxyl ions are generated according to the formula of 4e → 4OH .

【0008】そして本発明のガス電極構造体では基体と
して実質的に液不透過性で導電性を有するイオン交換膜
基体を使用しているため、該ガス電極構造体により陽極
室及び/又は陰極室が電解液室とガス室に区画され、電
解液室側の電解液中のイオン交換膜基体を透過できる所
望の電解質のみが該基体を透過して導電性炭素薄層に達
し電極触媒によりガスと反応して所望の電解反応が行わ
れ、かつ生成物は電場により再度前記イオン交換膜基体
を通して電解液室に戻る。従って本発明に係わるガス電
極構造体では導電性炭素薄層中の電極物質は原則として
ガス状の水(水蒸気)、水素及び酸素ガス(又は空気)
のみと接触し、電解液中の腐食性物質や不純物がイオン
交換膜基体を透過して導電性炭素薄層に到達して電極触
媒を劣化させることが殆どなくなり、十分な減極を行っ
て電解電圧の低下を達成できかつ長寿命のガス電極を提
供することができる。一方イオン交換膜基体の使用によ
り抵抗損が生じてその分電圧や電力消費量が大きくなる
ことが考えられるが、該イオン交換膜基体は主として電
解液の拡散を防止する目的であり、陽極室側ではプロト
ン(H+ )の流れのみで殆ど抵抗がなく、又陰極室側で
は水酸イオンの流れのためイオン交換膜基体のイオン交
換膜の種類にもよるが3〜400 mVの電圧上昇はある
が、全体の消費電力の数分の1であり、この程度であれ
ば従来法における発生ガスの過電圧の存在を考慮すると
さほど大きいとはいえず効果として十分である。
In the gas electrode structure of the present invention, since a substantially liquid-impermeable and conductive ion-exchange membrane substrate is used as the substrate, the gas electrode structure allows the anode chamber and / or the cathode chamber to be used. Is divided into an electrolyte solution chamber and a gas chamber, and only a desired electrolyte that can permeate the ion exchange membrane substrate in the electrolyte solution on the electrolyte solution side penetrates the substrate to reach the conductive carbon thin layer, and the gas is generated by the electrode catalyst. The desired electrolytic reaction is performed by the reaction, and the product returns to the electrolyte chamber through the ion exchange membrane substrate again by the electric field. Therefore, in the gas electrode structure according to the present invention, the electrode material in the conductive carbon thin layer is basically gaseous water (steam), hydrogen and oxygen gas (or air).
And the corrosive substances and impurities in the electrolyte rarely permeate through the ion exchange membrane substrate and reach the conductive carbon thin layer to deteriorate the electrode catalyst. A voltage drop can be achieved, and a long-life gas electrode can be provided. On the other hand, it is conceivable that the use of the ion exchange membrane substrate causes a resistance loss and accordingly increases the voltage and power consumption. However, the ion exchange membrane substrate is mainly for the purpose of preventing the diffusion of the electrolyte, In this case, there is almost no resistance due to only the flow of protons (H + ), and there is a voltage rise of 3 to 400 mV depending on the type of the ion exchange membrane of the ion exchange membrane base due to the flow of hydroxyl ions on the cathode chamber side. However, this is only a fraction of the total power consumption, and this level is not so large considering the presence of the overvoltage of the generated gas in the conventional method, and is sufficient as an effect.

【0009】本発明に係わるガス電極構造体は陽極及び
陰極のいずれの極としても使用することができ、本発明
に係わるガス電極構造体のイオン交換膜基体の種類はい
ずれの極で使用するかにより適宜選択すればよく、陽極
として使用する場合には陽イオン交換膜を、陰極として
使用する場合には陰イオン交換膜をそれぞれ使用するこ
とが好ましい。しかし陽極としての使用の場合にはプロ
トンの透過の点からはプロトンのサイズが小さくイオン
交換膜の種類によらず自由に透過しやすいため陽イオン
交換膜でも陰イオン交換膜でもよく、比較的サイズの大
きい陽イオンの浸透を排除したい場合には陰イオン交換
膜を使用することが望ましいが、他の場合には一般に抵
抗の小さい陽イオン交換膜を使用する。この陽イオン交
換膜により陰イオンの浸透が抑制されることは勿論、電
解中に生ずるプロトンとこれに伴う移行水を前記膜から
電解液中へ移行させる力により他のイオンの導電性炭素
薄層方向への移行が阻害されて、実質的に陽イオンが電
極触媒を担持した導電性炭素薄層へ移行することが阻止
され、これにより前述の通り電極触媒を劣化させること
が殆どなくなる。
The gas electrode structure according to the present invention can be used as either an anode or a cathode, and the type of the ion exchange membrane substrate used in the gas electrode structure according to the present invention is It is preferable to use a cation exchange membrane when used as an anode, and to use an anion exchange membrane when used as a cathode. However, when used as an anode, protons are small in terms of proton permeation and easily penetrate freely regardless of the type of ion exchange membrane. Therefore, either a cation exchange membrane or an anion exchange membrane may be used. It is desirable to use an anion exchange membrane when it is desired to eliminate the permeation of a cation having a large value, but in other cases, a cation exchange membrane having a low resistance is generally used. The cation exchange membrane not only suppresses the permeation of anions, but also the protons generated during electrolysis and the accompanying water that migrates from the membrane into the electrolytic solution by the force of the conductive carbon thin layer of other ions. The transfer in the direction is hindered, and the cations are substantially prevented from transferring to the thin conductive carbon layer supporting the electrocatalyst, whereby the electrocatalyst is hardly deteriorated as described above.

【0010】一方前記ガス電極構造体を陰極として使用
する場合にはイオン交換膜基体を通って水酸イオンが電
解液中に供給されなければならないためイオン交換膜基
体として陰イオン交換膜を使用することが必要である。
該陰イオン交換膜の材質は電解液等の電解条件に応じて
適宜選択すればよいが、クロルアルカリ電解に使用する
場合には30〜35%の苛性ソーダ水溶液に耐性のあるイオ
ン交換膜を選択する必要があり、通常の電気透析に使用
されるハイドロカーボン系ではなくフッ素樹脂系のイオ
ン交換膜を選択することが望ましい。これらのイオン交
換膜基体のイオン交換膜のイオン交換容量は特に限定さ
れないが、陰イオン交換膜は電気抵抗が大きいため、電
気抵抗の小さいイオン交換膜を選択することが望まし
い。通常陰イオン交換膜を使用すると電流効率が低下す
ることが指摘されているが、電場が掛かること及び該陰
イオン交換膜の一方面にガス層が形成されることから、
殆ど問題にならない。このイオン交換膜基体の片面に形
成される導電性炭素薄層は、該薄層上に担持される電極
触媒上でガスがイオンに変換されるため適当な湿分と十
分なガスとの接触表面積を有することが必要である。該
薄層は別個に調製して前記イオン交換膜基体に接着等を
行っても良いが、該イオン交換膜基体表面積に直接形成
することが望ましい。該薄層の材質は導電性を有する任
意の炭素系材料とし、該材料としては高表面積と高電気
伝導度の点からグラファイト質の炭素が望ましく、その
厚さは30〜100 μmとすることが好ましい。これは100
μmを越えると導電性の低下が生ずる恐れがあり、30μ
m未満では十分な表面積を確保できなくなる恐れがある
からである。この導電性炭素薄層の材質や形成方法は陽
極用及び陰極用の場合に同一でも変えてもよい。この導
電性炭素薄層の形成方法は特に限定されず、例えばグラ
ファイトの微粉好ましくはサブミクロンサイズを含む微
粉末やピッチ系炭素繊維をフッ素樹脂とともに混練して
前記イオン交換膜基体に焼付けあるいは化学蒸着(CV
D)法や吹付塗装法等でグラファイト微粉末を付着させ
ることができるが、比較的低温で形成できるCVD法が
望ましい。該CVD法の操作条件も特に限定されない
が、従来法を本発明のガス電極構造体製造用に修正して
実施することができる。例えば、イオン交換膜基体表面
を予め紙やすりやPVD法で粗面化し清浄化した後、10
0 〜200 ℃に保持し若干のアルゴンを流しながらメタン
やメチルアルコールを700 ℃程度に加熱し分解しながら
分解した炭素を付着させ前記イオン交換膜基体上に前記
導電性炭素薄層を形成することができる。なお該導電性
炭素薄層中にはバインダーとしてフッ素樹脂を含ませて
も良い。
On the other hand, when the above-mentioned gas electrode structure is used as a cathode, an anion exchange membrane is used as the ion exchange membrane substrate since hydroxyl ions must be supplied to the electrolyte through the ion exchange membrane substrate. It is necessary.
The material of the anion exchange membrane may be appropriately selected according to electrolysis conditions such as an electrolytic solution. When the material is used for chloralkali electrolysis, an ion exchange membrane that is resistant to a 30 to 35% aqueous solution of caustic soda is selected. It is necessary to select a fluororesin-based ion exchange membrane instead of a hydrocarbon-based ion exchange membrane used for ordinary electrodialysis. Although the ion exchange capacity of the ion exchange membrane of these ion exchange membrane substrates is not particularly limited, since the anion exchange membrane has a large electric resistance, it is desirable to select an ion exchange membrane having a small electric resistance. It has been pointed out that the use of an anion exchange membrane usually lowers the current efficiency, but since an electric field is applied and a gas layer is formed on one surface of the anion exchange membrane,
Almost no problem. The conductive carbon thin layer formed on one side of the ion exchange membrane substrate has a contact surface area between a suitable moisture and a sufficient gas because gas is converted into ions on an electrode catalyst supported on the thin layer. It is necessary to have The thin layer may be separately prepared and adhered to the ion exchange membrane substrate, but is preferably formed directly on the surface area of the ion exchange membrane substrate. The material of the thin layer is any carbon-based material having conductivity, and the material is desirably graphite carbon from the viewpoint of high surface area and high electrical conductivity, and the thickness thereof is preferably 30 to 100 μm. preferable. This is 100
If the thickness exceeds 30 μm, the conductivity may decrease.
If it is less than m, a sufficient surface area may not be able to be secured. The material and forming method of the conductive carbon thin layer may be the same or different for the anode and the cathode. The method of forming the conductive carbon thin layer is not particularly limited. For example, graphite fine powder, preferably fine powder containing submicron size, or pitch-based carbon fiber is kneaded with a fluororesin and baked or chemically vapor-deposited on the ion exchange membrane substrate. (CV
The fine graphite powder can be attached by a method D) or a spray coating method, but a CVD method which can be formed at a relatively low temperature is desirable. Although the operating conditions of the CVD method are not particularly limited, the conventional method can be modified and implemented for producing the gas electrode structure of the present invention. For example, after the surface of the ion exchange membrane substrate is roughened and sanded in advance by sanding or PVD,
Heating the methane or methyl alcohol to about 700 ° C. while maintaining a temperature of 0 to 200 ° C. and flowing a little argon to adhere the decomposed carbon while decomposing to form the conductive carbon thin layer on the ion exchange membrane substrate. Can be. The conductive carbon thin layer may contain a fluorine resin as a binder.

【0012】次いでこの導電性炭素薄層に電極触媒を担
持させる。電極触媒としては陽極用としても陰極用とし
ても白金族金属やその酸化物を使用し、特に白金黒やル
テニウム黒が有効であり、更に酸化ルテニウムや酸化イ
リジウムは陽極物質としては特に有効である。これらの
電極触媒成分は反応の種類、経済性及び調製の容易性を
考慮して選択すればよい。例えば白金を担持させるため
には、前記導電性炭素薄層の表面を活性化した後、塩化
白金酸等の白金族金属化合物の水溶液、アルコール溶液
又は希塩酸水溶液を前記導電性炭素薄層表面に塗布し、
200 〜300 ℃で加熱分解するか、前記白金族金属化合物
の水溶液を導電性炭素薄層上に塗布し乾燥後、ヒドラジ
ン等の還元剤水溶液を塗布し100 ℃程度に加熱しその後
適宜水洗及び乾燥等を行えば良い。
Next, an electrode catalyst is supported on the conductive carbon thin layer. As the electrode catalyst, a platinum group metal or an oxide thereof is used for both the anode and the cathode. Platinum black and ruthenium black are particularly effective, and ruthenium oxide and iridium oxide are particularly effective as the anode material. These electrocatalyst components may be selected in consideration of the type of reaction, economy, and ease of preparation. For example, in order to carry platinum, after activating the surface of the conductive carbon thin layer, an aqueous solution of a platinum group metal compound such as chloroplatinic acid, an alcohol solution or a dilute hydrochloric acid aqueous solution is applied to the conductive carbon thin layer surface. And
Decompose by heating at 200 to 300 ° C, or apply the aqueous solution of the platinum group metal compound on a conductive carbon thin layer and dry.Apply an aqueous solution of a reducing agent such as hydrazine, heat to about 100 ° C, and then wash and dry as appropriate. And so on.

【0013】このように調製された電極触媒が担持され
たガス電極構造体はこのまま使用しても良いが、湿潤ガ
スに曝されることにより結果的に全体が水層で覆われて
供給ガスとの接触が完全でなくなるとともに耐久性も不
十分になる可能性がある。そのためには前記ガス電極構
造体の表面にある程度の疎水性を与えておくことが好ま
しく、ガス電極構造体の表面に水 状のフッ素樹脂液や
フッ素樹脂系イオン交換樹脂液てあるナフィオン(商品
名)液を塗布し乾燥して余分を液を除去することにより
電極表面の疎水化を達成することができる。特にナフィ
オン液は親水的面も有し保護作用が大であるため特に望
ましい。この後に必要に応じて100 〜250 ℃程度の温度
で熱処理を行ってもよい。このナフィオン液の被覆によ
り表面積が小さくなるが、被反応物は気体であり触媒と
接触してイオンとなりイオン交換膜基体を透過し電解液
とともに速やかに除去されるため実際上は殆ど問題がな
い。
The gas electrode structure carrying the electrode catalyst prepared as described above may be used as it is. However, when the gas electrode structure is exposed to a wet gas, the entire gas electrode structure is eventually covered with a water layer and the supply gas and the supply gas are removed. Contact may not be perfect and durability may be insufficient. For this purpose, it is preferable to impart a certain degree of hydrophobicity to the surface of the gas electrode structure. Hydrophobicity of the electrode surface can be achieved by applying and drying a fluororesin liquid or a Nafion (trade name) liquid which is a fluororesin-based ion exchange resin liquid. In particular, Nafion liquid is particularly desirable because it has a hydrophilic surface and a large protective effect. Thereafter, heat treatment may be performed at a temperature of about 100 to 250 ° C., if necessary. Although the surface area is reduced by the coating with the Nafion solution, the reactant is a gas, becomes an ion upon contact with the catalyst, passes through the ion exchange membrane substrate, and is quickly removed together with the electrolytic solution, so that there is practically no problem.

【0014】このように調製されたガス電極構造体の前
記導電性炭素薄層側に集電体を接続する。該集電体とし
ては金属製の微細孔を有するメッシュや多孔板等の多孔
体とする。その材質は、陰極側で使用する場合にはある
程度陰分極されるので負側で耐食性のある鉄、ニッケル
及びステンレススチールが望ましく、又陽極側で使用す
る場合にはプロトンが存在する酸性条件でありかつ殆ど
電位が掛からないため安定な金属導電体が少なく、通常
はチタン、タンタル、ジルコニウム、ニオブ等の弁金属
が使用されるが必ずしも満足できるものでなく、ニオブ
やタンタル又はこれらの基合金はそのまま使用できる
が、チタンやジルコニウムの場合にはその表面に白金等
のメッキを行っておくことが望ましい。特にチタンの場
合には酸中での耐久性が十分でないため表面に白金や金
のメッキを行う必要がある。陰分極されるので負側で耐
食性のある鉄、ニッケル及びステンレススチールが望
[0014] A current collector is connected to the conductive carbon thin layer side of the gas electrode structure thus prepared. The current collector may be a porous body such as a mesh having metal fine holes or a perforated plate. The material is desirably negatively polarized when used on the cathode side, so iron, nickel and stainless steel, which are corrosion-resistant on the negative side, are desirable. And since little potential is applied, there are few stable metal conductors, and valve metals such as titanium, tantalum, zirconium, and niobium are usually used, but they are not always satisfactory, and niobium, tantalum, or their base alloys are used as they are. Although it can be used, in the case of titanium or zirconium, it is desirable that its surface be plated with platinum or the like. In particular, in the case of titanium, the durability in acid is not sufficient, so that it is necessary to perform platinum or gold plating on the surface. Iron, nickel and stainless steel with negative polarity and corrosion resistance

【0015】次に添付図面に基づいて本発明のガス電極
構造体を説明する。図1は本発明に係わるガス電極構造
体を陽極として電解槽に組み込んだ状態を示す概略縦断
面図である。箱型電解槽1はイオン交換膜2により陽極
室3と陰極室4とに区画され、該陽極室3はガス電極構
造体5により更に電解液室6とガス室7に区画されてい
る。前記ガス電極構造体5は前記イオン交換膜2側か
ら、下端が電解槽底板8に接触するパーフロロスルホン
酸系イオン交換膜基体9−白金族金属やその酸化物から
成る電極触媒が担持されたグラファイト等から成る導電
性炭素薄層10−集電体11の順に積層されて成り、前記イ
オン交換膜基体9により電解液室6内の電解液がガス室
7内に移行することが防止されている。又陰極室4内に
は電解液に浸漬したニッケル板等から成る陰極12が配設
されている。
Next, the gas electrode structure of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic vertical sectional view showing a state in which a gas electrode structure according to the present invention is incorporated in an electrolytic cell as an anode. The box-type electrolytic cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and the anode chamber 3 is further divided by a gas electrode structure 5 into an electrolyte chamber 6 and a gas chamber 7. The gas electrode structure 5 carries, from the side of the ion exchange membrane 2, a perfluorosulfonic acid-based ion exchange membrane base 9 whose lower end is in contact with the electrolytic cell bottom plate 8-an electrode catalyst comprising a platinum group metal or an oxide thereof. The conductive carbon thin layer 10 made of graphite or the like and the current collector 11 are laminated in this order, and the ion exchange membrane substrate 9 prevents the electrolyte in the electrolyte chamber 6 from migrating into the gas chamber 7. I have. In the cathode chamber 4, a cathode 12 made of a nickel plate or the like immersed in an electrolytic solution is provided.

【0016】このガス電極構造体5を有する電解槽1を
芒硝電解陽として使用する場合には、陽極室3の電解液
室6と陰極室4に芒硝水溶液を、又陽極室3のガス室7
に水素ガスをそれそれ供給しながら集電体11を通して通
電する。電解液室6内の水はイオン交換樹脂薄層9を浸
透して電極触媒が担持された導電性炭素薄層10に達し、
電解されて酸素イオンを発生する。この酸素イオンは供
給される水素ガスと反応して水に変換されるため、ガス
発生に要するエネルギー分だけ低いエネルギーでつまり
低電解電圧で電解を進行させることができる。そしてこ
の電解では電解液室6内の電解液に含まれる硫酸イオン
や他の不純物の透過がイオン交換膜基体9により抑制さ
れ電極触媒を劣化させる恐れのあるこれらの物質が前記
電極触媒を有する導電性炭素薄層10に達しないため電極
触媒の劣化が抑制され電極触媒の長寿命化を図ることが
できる。
When the electrolytic cell 1 having the gas electrode structure 5 is used as a sodium sulfate electrolytic cell, an aqueous solution of sodium sulfate is used in the electrolyte chamber 6 and the cathode chamber 4 of the anode chamber 3 and the gas chamber 7 of the anode chamber 3 is used.
Is supplied with electricity through the current collector 11 while supplying hydrogen gas. The water in the electrolyte chamber 6 permeates the ion exchange resin thin layer 9 and reaches the conductive carbon thin layer 10 supporting the electrode catalyst,
Electrolyzed to generate oxygen ions. Since the oxygen ions react with the supplied hydrogen gas and are converted into water, the electrolysis can be advanced with energy lower than that required for gas generation, that is, at a low electrolysis voltage. In this electrolysis, the permeation of sulfate ions and other impurities contained in the electrolytic solution in the electrolytic solution chamber 6 is suppressed by the ion-exchange membrane substrate 9, and these substances which may deteriorate the electrode catalyst are converted into conductive materials having the electrode catalyst. Since the electrode catalyst does not reach the thin carbon layer 10, deterioration of the electrode catalyst is suppressed, and the life of the electrode catalyst can be extended.

【0017】[0017]

【実施例】次に本発明のガス電極構造体を芒硝電解に適
用した実施例を記載するが、本発明のガス電極構造体及
び本発明の電解方法はこれらに限定されるものではな
い。
EXAMPLES Next, examples in which the gas electrode structure of the present invention is applied to Glauber's salt electrolysis will be described, but the gas electrode structure of the present invention and the electrolysis method of the present invention are not limited thereto.

【実施例1】パーフロロスルホン酸型陽イオン交換膜で
あるナフィオン117 の表面をガラスビーズでブラスト処
理した後、40℃の5%苛性ソーダ水溶液に24時間浸漬し
た。更にこの表面に、メタン10重量%及びメチルアルコ
ール90重量%の混合ガスを使用し、700 ℃程度で分解し
て生成する炭素粉末を付着させる化学蒸着法により導電
性炭素薄層を形成した。成膜速度は5μm/分とし、前
記薄層の厚さが40μmになるまで処理を行った。
Example 1 The surface of Nafion 117, which is a perfluorosulfonic acid type cation exchange membrane, was blasted with glass beads and then immersed in a 5% aqueous solution of caustic soda at 40 ° C. for 24 hours. Further, a thin conductive carbon layer was formed on the surface by a chemical vapor deposition method using a mixed gas of 10% by weight of methane and 90% by weight of methyl alcohol and adhering carbon powder generated by decomposition at about 700 ° C. The film formation rate was 5 μm / min, and the treatment was performed until the thickness of the thin layer became 40 μm.

【0018】この導電性炭素薄層を形成したイオン交換
膜基体を電極として塩化白金酸水溶液中で交流を交えた
直流で処理し約10g/m2 の割合で白金黒を被覆した。
このイオン交換膜基体を洗浄乾燥後、水で希釈した市販
のナフィオン液を前記導電性炭素薄層に塗布し150 ℃で
15分間保持して焼付けた。再び水洗して4×2mmで厚
さ0.2 mmのエキスパンドメッシュを集電体として取付
け、本実施例のガス電極とした。理論量の20%増の水素
ガスを水層を通した後に陽イオン交換膜によって仕切ら
れかつ前記ガス電極を設置した2室法電解槽の陽極室に
供給しながら陽極室に陽極液として20%の硫酸ナトリウ
ム(芒硝)水溶液を供給して温度70℃、電流密度20A/
dm2 で電解し、陽極室で硫酸と芒硝の混合水溶液を、陰
極室で15%の苛性ソーダ水溶液を得た。槽電圧は1.9 V
であり、電流効率は88%であり、又陽極部分の電位は0.
3 Vであった。
The ion exchange membrane substrate on which the conductive carbon thin layer was formed was used as an electrode in a chloroplatinic acid aqueous solution and treated with a direct current with an alternating current to coat platinum black at a rate of about 10 g / m 2 .
After washing and drying the ion-exchange membrane substrate, a commercially available Nafion solution diluted with water was applied to the conductive carbon thin layer, and the solution was heated at 150 ° C.
Bake for 15 minutes. After washing with water again, an expanded mesh having a size of 4 × 2 mm and a thickness of 0.2 mm was attached as a current collector to obtain a gas electrode of this example. 20% of the theoretical amount of hydrogen gas is passed through the aqueous layer and then separated by a cation exchange membrane and supplied to the anode chamber of a two-chamber electrolytic cell provided with the gas electrode while supplying 20% of anolyte to the anode chamber. Of sodium sulfate (Glauber's salt) solution at a temperature of 70 ° C and a current density of
Electrolysis was performed at dm 2 to obtain a mixed aqueous solution of sulfuric acid and sodium sulfate in the anode chamber, and a 15% aqueous solution of caustic soda in the cathode chamber. Tank voltage is 1.9 V
And the current efficiency is 88%, and the potential of the anode part is 0.
3 V.

【0019】[0019]

【比較例1】実施例1のガス電極の代わりに、従来の酸
素発生用陽極であるチタン基体表面に酸化イリジウムと
酸化タンタルの複合酸化物を形成したものを使用したこ
と以外は、実施例1と同一条件で芒硝電解を行ったとこ
ろ陽極電位は1.55Vで、槽電圧は3.2 Vであった。
COMPARATIVE EXAMPLE 1 The procedure of Example 1 was repeated except that the gas electrode of Example 1 was replaced with a conventional oxygen-generating anode formed of a composite oxide of iridium oxide and tantalum oxide on the surface of a titanium substrate. When the Glauber's salt electrolysis was performed under the same conditions as those described above, the anode potential was 1.55 V and the cell voltage was 3.2 V.

【0020】[0020]

【実施例2】イオン交換膜基体として東ソー株式会社製
トフレックスIE−SA−48を使用したこと以外は実施
例1と同一条件で導電性炭素薄層及び電極触媒の担持を
行い、更に厚さ0.2 mmで直径2mmの孔を2.5 mmピ
ッチで千鳥状に穿設したニッケル多孔板を取り付けた。
この集電体付きイオン交換膜基体を苛性アルカリ電解用
イオン交換膜電解槽の陰極室に陰極として設置した。電
流密度3kA/m2 、温度90℃、陽極液を200g/リッ
トルの塩化ナトリウムとして電解を行ったところ、陰極
室で33%の苛性ソーダが得られ、槽電圧は2.4 Vであっ
た。
Example 2 A conductive carbon thin layer and an electrode catalyst were supported under the same conditions as in Example 1 except that Toflex IE-SA-48 manufactured by Tosoh Corporation was used as the ion exchange membrane substrate. A nickel porous plate in which holes having a diameter of 2 mm and a diameter of 2 mm were staggered at a pitch of 2.5 mm was attached.
This ion exchange membrane substrate with a current collector was installed as a cathode in the cathode chamber of an ion exchange membrane electrolytic cell for caustic alkali electrolysis. Electrolysis was performed with a current density of 3 kA / m 2 , a temperature of 90 ° C., and an anolyte solution of 200 g / liter of sodium chloride. As a result, 33% of sodium hydroxide was obtained in the cathode chamber, and the cell voltage was 2.4 V.

【0021】[0021]

【比較例2】実施例2のイオン交換膜基体の代わりに通
常の活性化陰極としてラネーニッケルを表面に被覆した
厚さ1mmのニッケルエキスパンドメッシュを使用して
陰極室で水素を発生させながら電解を行ったこと以外は
実施例2と同一条件で芒硝電解を行ったところ、槽電圧
は3.0 Vであり、実施例2のガス電極を使用した方が60
0 mVの電圧低下が見られた。陽極側にガス電極を使用
した場合(実施例1及び比較例1)と比較して電圧低下
が小さいのは、陰イオン交換膜の抵抗が大きいこと並び
にガス電極の過電圧が大きいためと考えられる。
Comparative Example 2 Instead of the ion-exchange membrane substrate of Example 2, electrolysis was carried out while generating hydrogen in the cathode chamber using a 1 mm thick nickel expanded mesh coated with Raney nickel as a normal activated cathode. When the sodium sulfate electrolysis was performed under the same conditions as in Example 2 except that the cell voltage was 3.0 V, it was 60% when the gas electrode of Example 2 was used.
A voltage drop of 0 mV was observed. It is considered that the reason why the voltage drop is smaller than when the gas electrode is used on the anode side (Example 1 and Comparative Example 1) is that the resistance of the anion exchange membrane is large and the overvoltage of the gas electrode is large.

【0022】[0022]

【発明の効果】本発明に係わるガス電極構造体は、イオ
ン交換膜基体、該イオン交換膜基体の片面に形成された
白金族金属又はその酸化物を電極触媒として担持させた
導電性炭素薄層、及び該薄層の前記イオン交換膜金属と
の反対面に密着して配置された多孔性集電体を含んで成
ることを特徴とするガス電極構造体である。このような
構成から成る本発明のガス電極構造体では電極触媒が担
持された導電性炭素薄層より電解液側にイオン交換膜基
体が設置されているため、該イオン交換膜基体により陽
極室及び/又は陰極室が電解液室とガス室に区画され、
電解液室側の電解液中の前記イオン交換膜基体を透過で
きる所望の電解質のみが該基体を透過して導電性炭素薄
層に達し電極触媒によりガスと反応して所望の電解反応
が行われ、かつ生成物は電場により再度前記基体を通し
て電解液室に戻る。従って電解液中の腐食性物質や不純
物がイオン交換膜基体を透過して導電性炭素薄層に到達
して電極触媒を劣化させることが殆どなくなり、十分な
減極を行って電解電圧の低下を達成できかつ長寿命をの
ガス電極を提供することができる。
The gas electrode structure according to the present invention comprises an ion-exchange membrane substrate, a thin conductive carbon layer formed on one surface of the ion-exchange membrane substrate and carrying a platinum group metal or an oxide thereof as an electrode catalyst. And a porous current collector disposed in close contact with a surface of the thin layer opposite to the metal of the ion exchange membrane. In the gas electrode structure of the present invention having such a configuration, the ion exchange membrane substrate is provided on the electrolyte side from the conductive carbon thin layer supporting the electrode catalyst. And / or the cathode compartment is divided into an electrolyte compartment and a gas compartment,
Only the desired electrolyte that can permeate the ion-exchange membrane substrate in the electrolyte on the electrolyte solution chamber side penetrates the substrate, reaches the conductive carbon thin layer, reacts with the gas by the electrode catalyst, and the desired electrolytic reaction is performed. And the product returns to the electrolyte chamber through the substrate again by the electric field. Therefore, corrosive substances and impurities in the electrolyte rarely permeate through the ion exchange membrane substrate and reach the conductive carbon thin layer to deteriorate the electrode catalyst. A gas electrode that can be achieved and has a long life can be provided.

【0023】本発明のガス電極は陽極としても陰極とし
ても使用することができ、その調製に際しては電極触媒
そして必要に応じてイオン交換膜基体のイオン交換樹脂
の種類を適宜選択する以外は同一プロセスで調製するこ
とができる。イオン交換膜基体表面の導電性炭素薄層は
化学蒸着により形成されたグラファイト質多孔体である
ことが好ましく、化学蒸着によると複雑な形状のイオン
交換膜基体でもその所定面全面に高表面積と高電気伝導
度を有するグラファイトを形成することができる。
The gas electrode of the present invention can be used both as an anode and a cathode. The preparation is carried out in the same process except that the type of the electrode catalyst and, if necessary, the ion exchange resin of the ion exchange membrane substrate are appropriately selected. Can be prepared. The thin conductive carbon layer on the surface of the ion exchange membrane substrate is preferably a graphite porous body formed by chemical vapor deposition. According to the chemical vapor deposition, even if the ion exchange membrane substrate has a complicated shape, a high surface area and a high Graphite having electrical conductivity can be formed.

【0024】又導電性炭素薄層は十分な表面積を確保し
かつ導電性の低下を防止するためにその厚さは30〜100
μmとすることが望ましくい。又本発明方法は、前述の
ガス電極を陽極及び/又は陰極として使用して各種電解
を行う方法であり、前述のガス電極の場合と同様に、電
解液中の腐食性物質や不純物がイオン交換膜基体を透過
して導電性炭素薄層に到達して電極触媒を劣化させるこ
とが殆どなくなり、十分な減極を行って電解電圧の低下
を達成できる。
The conductive carbon thin layer has a thickness of 30 to 100 to secure a sufficient surface area and to prevent a decrease in conductivity.
μm is desirable. The method of the present invention is a method for performing various electrolysis using the above-mentioned gas electrode as an anode and / or a cathode. As in the case of the above-mentioned gas electrode, corrosive substances and impurities in the electrolytic solution are ion-exchanged. There is almost no deterioration of the electrode catalyst after reaching the conductive carbon thin layer through the membrane substrate, and sufficient depolarization can be performed to reduce the electrolysis voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるガス電極構造体を陽極として電
解槽に組み込んだ状態を示す概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view showing a state in which a gas electrode structure according to the present invention is incorporated in an electrolytic cell as an anode.

【符号の説明】[Explanation of symbols]

1・・・電解槽 2・・・イオン交換膜 3・・・陽極
室 4・・・陰極室 5・・・ガス電極 6・・・電解液室 7・・・ガス室
8・・・底板 9・・・イオン交換膜基体 10・・・
導電性炭素薄層 11・・・集電体 12・・・陰極
DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber 5 ... Gas electrode 6 ... Electrolyte chamber 7 ... Gas chamber 8 ... Bottom plate 9 ... Ion exchange membrane substrate 10 ...
Conductive carbon thin layer 11 ・ ・ ・ Current collector 12 ・ ・ ・ Cathode

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換膜基体、該イオン交換膜基体
の片面に形成された白金族金属又はその酸化物を電極触
媒として担持させた導電性炭素薄層、及び該薄層の前記
イオン交換膜金属との反対面に密着して配置された多孔
性集電体を含んで成ることを特徴とするガス電極構造
体。
1. An ion-exchange membrane substrate, a conductive carbon thin layer formed on one surface of the ion-exchange membrane substrate and carrying a platinum group metal or an oxide thereof as an electrode catalyst, and the ion-exchange membrane of the thin layer A gas electrode structure comprising a porous current collector disposed in close contact with a surface opposite to a metal.
【請求項2】 導電性炭素薄層が化学蒸着により形成さ
れたグラファイト質多孔体である請求項1に記載のガス
電極構造体。
2. The gas electrode structure according to claim 1, wherein the conductive carbon thin layer is a graphite porous body formed by chemical vapor deposition.
【請求項3】 導電性炭素薄層の厚さが30〜100 μmで
ある請求項1に記載のガス電極構造体。
3. The gas electrode structure according to claim 1, wherein the conductive carbon thin layer has a thickness of 30 to 100 μm.
【請求項4】 イオン交換膜により陽極室及び陰極室に
区画された電解槽の前記陽極室に、イオン交換膜基体の
片面に白金族金属又はその酸化物を電極触媒として担持
させた導電性炭素薄層を形成し該薄層の前記イオン交換
膜基体との反対面に多孔性集電体を密着して配置して成
るガス電極構造体を陽極として設置し、前記集電体側か
ら水素ガスを供給しながら該集電体に陽電位を印加し電
解を行うことを特徴とする電解方法。
4. A conductive carbon in which a platinum group metal or its oxide is supported as an electrode catalyst on one surface of an ion exchange membrane substrate in the anode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane. A gas electrode structure formed by forming a thin layer and placing a porous current collector in close contact with the surface of the thin layer opposite to the ion exchange membrane substrate is provided as an anode, and hydrogen gas is supplied from the current collector side. An electrolysis method, wherein a positive potential is applied to the current collector while being supplied to perform electrolysis.
【請求項5】 イオン交換膜により陽極室及び陰極室に
区画された電解槽の前記陰極室に、陰イオン交換膜基体
の片面に白金族金属又はその酸化物を電極触媒として担
持させた導電性炭素薄層を形成し該薄層の前記イオン交
換膜基体との反対面に多孔性集電体を密着して配置して
成るガス電極構造体を陰極として設置し、前記集電体側
から湿潤酸素含有ガスを供給しながら該集電体に陰電位
を印加し電解を行うことを特徴とする電解方法。
5. A conductive material in which a platinum group metal or an oxide thereof is supported as an electrode catalyst on one surface of an anion exchange membrane substrate in the cathode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane. A gas electrode structure formed by forming a thin carbon layer and closely contacting a porous current collector on the surface of the thin layer opposite to the ion-exchange membrane substrate is provided as a cathode, and wet oxygen is supplied from the current collector side. An electrolysis method comprising applying a negative potential to the current collector while supplying a contained gas to perform electrolysis.
JP35263292A 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the gas electrode structure Expired - Fee Related JP3264535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35263292A JP3264535B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the gas electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35263292A JP3264535B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the gas electrode structure

Publications (2)

Publication Number Publication Date
JPH06173061A JPH06173061A (en) 1994-06-21
JP3264535B2 true JP3264535B2 (en) 2002-03-11

Family

ID=18425375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35263292A Expired - Fee Related JP3264535B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the gas electrode structure

Country Status (1)

Country Link
JP (1) JP3264535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365571B1 (en) 1998-04-30 2002-04-02 Noda Institute For Scientific Research FGF inhibitor, angiogenesis inhibitor and antitumor agent containing complestatin or its derivative as effective ingredient
WO2015026061A1 (en) * 2013-08-21 2015-02-26 한국지질자원연구원 Integrated electrolysis leaching device for leaching refractory rare metal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024599C2 (en) * 1989-08-16 1996-08-14 Siemens Ag High-frequency antenna of an MRI scanner
JP2003221691A (en) * 2002-01-31 2003-08-08 Permelec Electrode Ltd Electrolytic cathode and electrolytic cell using this
CN114990603B (en) * 2014-01-15 2024-02-06 蒂森克虏伯新纪元氯氢有限公司 Ion exchange membrane electrolyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365571B1 (en) 1998-04-30 2002-04-02 Noda Institute For Scientific Research FGF inhibitor, angiogenesis inhibitor and antitumor agent containing complestatin or its derivative as effective ingredient
WO2015026061A1 (en) * 2013-08-21 2015-02-26 한국지질자원연구원 Integrated electrolysis leaching device for leaching refractory rare metal

Also Published As

Publication number Publication date
JPH06173061A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US7232509B2 (en) Hydrogen evolving cathode
EP0031660A1 (en) Electrolysis apparatus using a diaphragm of a solid polymer electrolyte, and a method for the production of the same
US20040247978A1 (en) Bipolar plate for fuel cell and method for production thereof
JPH0581677B2 (en)
JPH11315390A (en) Catalyst for gas diffusion electrode
US7211177B2 (en) Electrode for electrolysis in acidic media
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
US4935110A (en) Electrode structure and process for fabricating the same
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
US3945907A (en) Electrolytic cell having rhenium coated cathodes
JP3010496B2 (en) Electrode for water electrolysis and method for producing the same
JP3949299B2 (en) Electrode for oxygen reduction and method for producing hydrogen peroxide using the electrode
JP3538271B2 (en) Hydrochloric acid electrolyzer
JPH11172484A (en) Gas diffusion electrode structural body and its production
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure
CA1337806C (en) Process for the production of alkali dichromates and chromic acid
JP3769492B2 (en) Performance recovery method of gas diffusion electrode
JP3921300B2 (en) Hydrogen generator
US6165333A (en) Cathode assembly and method of reactivation
US20080044720A1 (en) Membrane electrode assembly having porous electrode layers, manufacturing method thereof, and electrochemical cell comprising the same
JP3869350B2 (en) Performance recovery method of gas diffusion electrode
JP3875808B2 (en) Electrode for producing hydrogen peroxide and method for producing the same
JP3167054B2 (en) Electrolytic cell
JP3539701B2 (en) Method for producing hydrohalic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees