JP3538271B2 - Hydrochloric acid electrolyzer - Google Patents

Hydrochloric acid electrolyzer

Info

Publication number
JP3538271B2
JP3538271B2 JP25922495A JP25922495A JP3538271B2 JP 3538271 B2 JP3538271 B2 JP 3538271B2 JP 25922495 A JP25922495 A JP 25922495A JP 25922495 A JP25922495 A JP 25922495A JP 3538271 B2 JP3538271 B2 JP 3538271B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
electrolysis
electrode
gas diffusion
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25922495A
Other languages
Japanese (ja)
Other versions
JPH0978279A (en
Inventor
孝之 島宗
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP25922495A priority Critical patent/JP3538271B2/en
Publication of JPH0978279A publication Critical patent/JPH0978279A/en
Application granted granted Critical
Publication of JP3538271B2 publication Critical patent/JP3538271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩酸を電解して塩素を
得るための電解槽に関し、より詳細には廃塩酸や副生塩
酸を電解して高分解率で塩素を得るための電解槽に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell for electrolyzing hydrochloric acid to obtain chlorine, and more particularly to an electrolytic cell for electrolyzing waste hydrochloric acid or by-product hydrochloric acid to obtain chlorine with a high decomposition rate. About.

【0002】[0002]

【従来技術とその問題点】化学合成プロセスではしばし
ば塩素を中間体として使用する。例えばフッ素樹脂は最
初ポリエチレンなどの有機樹脂を塩素化しておき次いで
その塩素をフッ素と置き換えることによって合成され
る。又染料の中間体としても多くの塩素が使用される。
これらの塩素は最終的には塩酸として取り出され製品中
には残らない場合も多い。このようにして生成した塩酸
は通常副生と呼ばれ、水処理その他で使用される。しか
しながら副生塩酸は、通常の塩酸と比較して純度が劣る
ために価格的に安くなり、しかも市場需要とは無関係に
生産されるため、在庫を増やすことにのみ繋がってしま
うこともある。
BACKGROUND OF THE INVENTION Chemical synthesis processes often use chlorine as an intermediate. For example, fluororesins are synthesized by first chlorinating an organic resin such as polyethylene and then replacing the chlorine with fluorine. Many chlorines are also used as dye intermediates.
These chlorines are ultimately extracted as hydrochloric acid and often do not remain in the product. The hydrochloric acid thus produced is usually called by-product and is used for water treatment and the like. However, by-product hydrochloric acid is inexpensive due to its lower purity than ordinary hydrochloric acid, and is produced irrespective of market demand, which may only lead to an increase in inventory.

【0003】この副生塩酸から塩素を再生できればこの
ような問題も解消する。又現在日本で行なっている食塩
電解における苛性ソーダと塩素の生産のアンバランスの
問題、即ち食塩電解で1:1の割合で生産される苛性ソ
ーダと塩素のうち実際の需要は塩素の方が遙かに大きく
苛性ソーダが余るという現象も回避可能であり、そのた
めに各種の試みが行なわれている。その代表が塩酸電解
による塩素製造である。該電解は古くから試みられ、該
電解に使用される電解槽も提案されかつ実用化されてい
るが、工業的使用には適さず実際には工業的規模では殆
ど使用されていないのが現状である。その原因の1つと
して、塩酸のような腐食性の強い電解液に対して十分な
耐久性を有する材料が少ないことが挙げられる。つまり
20%、60℃程度の塩酸水溶液中で陽極として使用するの
であればチタンを陽極材料とすることが可能であるが、
陰極としての耐久性を有する材料が殆どなく、炭素が使
用可能であるとしても金属材料は使用不能である。
If chlorine can be regenerated from this by-product hydrochloric acid, such a problem can be solved. In addition, the problem of imbalance in the production of caustic soda and chlorine in salt electrolysis currently being carried out in Japan, that is, the actual demand of caustic soda and chlorine produced at a ratio of 1: 1 by salt electrolysis is much higher for chlorine. The phenomenon of a large excess of caustic soda can also be avoided, and various attempts have been made for that purpose. A representative example is chlorine production by hydrochloric acid electrolysis. The electrolysis has been tried for a long time, and an electrolyzer used for the electrolysis has been proposed and put into practical use. However, it is not suitable for industrial use and is practically hardly used on an industrial scale. is there. One of the causes is that there are few materials having sufficient durability against a highly corrosive electrolytic solution such as hydrochloric acid. I mean
Titanium can be used as the anode material if it is used as the anode in a hydrochloric acid aqueous solution at about 20% and 60 ° C.
Few materials have durability as a cathode, and even if carbon can be used, metal materials cannot be used.

【0004】そのため過去に提案された電解槽の中には
電解槽全体を炭素材料で構成したものが存在したが、該
電解そのものに十分な経済性がないとともに設備が極め
て高価になりその償却が行ない難いという欠点があっ
た。本発明者らも塩酸中で使用できる陰極材料としてタ
ングステンを導電性芯材としその周囲を炭素で被覆した
ものを提案し(特開昭62−240778号、特開昭62−240779
号)、良好な結果が得られた。その他にいわゆるSPE
法つまりイオン交換膜を実質的な電解液とし、その両面
に陽極及び陰極を密着形成して電解槽を構成することに
より、金属電極の場合のような被腐食性の金属の使用を
避け、しかも電解電圧を最小にする方法が考案されてい
る(第4回ソーダ電解工業討論会要旨集)。しかしこの
方法でも、確かに材料的には問題は少なくなるものの陰
極側からは水素の発生があり、そのために電解電圧が高
くなり十分な経済性が得られないという問題点があっ
た。つまり通常塩素を得るためには食塩電解を行なうの
が最新の方法で、該食塩電解では電解電圧が約3ボルト
程度でしかも塩素とともに当量の苛性ソーダが得られ
る。これに対しSPE法による塩酸電解では、その理論
電解電圧が約1.4 ボルトで約0.8 ボルト低いものの電解
温度が食塩電解より低くなることなどから実際は2ボル
ト以上の電解電圧となり、苛性ソーダの生成がないこと
を考えると経済上問題がある。
[0004] For this reason, among the electrolyzers proposed in the past, there has been one in which the entire electrolyzer is made of a carbon material. However, the electrolysis itself does not have sufficient economical efficiency, and the equipment becomes extremely expensive, and the amortization of the equipment is extremely expensive. There was a drawback that it was difficult to do. The present inventors have also proposed, as a cathode material usable in hydrochloric acid, a material in which tungsten is used as a conductive core material and the periphery thereof is coated with carbon (JP-A-62-240778, JP-A-62-240779).
No.), good results were obtained. Other so-called SPE
In other words, by using the ion exchange membrane as a substantial electrolytic solution and forming an anode and a cathode in close contact on both surfaces to form an electrolytic cell, the use of corrosive metals as in the case of metal electrodes is avoided, and A method for minimizing the electrolysis voltage has been devised (Abstracts of the 4th Soda Electrolysis Industry Symposium). However, even with this method, although the problem is reduced in terms of material, there is a problem that hydrogen is generated from the cathode side, so that the electrolytic voltage is increased and sufficient economic efficiency cannot be obtained. That is, usually, the most recent method for obtaining chlorine is to perform salt electrolysis. In the salt electrolysis, an electrolysis voltage is about 3 volts and an equivalent amount of caustic soda is obtained together with chlorine. In contrast, in the hydrochloric acid electrolysis by the SPE method, although the theoretical electrolysis voltage is about 1.4 volts and about 0.8 volts lower, the electrolysis temperature is lower than that of salt electrolysis. Considering this, there is an economic problem.

【0005】水素ガスの生成を抑制するためには、陰極
として酸素ガス拡散電極を使用することが可能である。
該酸素ガス拡散電極を使用すると電解による発生ガスは
塩素のみとなるので、上述した陰極室と陽極室を分離し
た電解槽を使用する必要がなくなり、簡単ないわゆる1
室法電解槽の使用が可能になる〔電気化学57, 332 198
9) 〕。このタイプの電解槽の使用により確かに電解電
圧が低下し経済性が生ずるように思われるが、実際には
ガス拡散電極が強酸性の液中に曝されることにより該ガ
ス拡散電極の過電圧が予想以上に上昇してしまい、電流
密度30A/dm2 における理論電解電圧0.13Vが、実際には
1.4 V以上にまで達するという問題点がある。又通常塩
酸は濃度が35%以下の水溶液であり,副生塩酸はそれよ
りも希薄な水溶液である。この希薄な副生塩酸を陽極液
として電解を行なうと、電解の継続に従って塩酸が陽極
液から除去されて陽極液濃度が減少し従ってその導電性
が低下しかつ陽極液が希釈され、安定した電解が継続で
きなくなることもある。希釈された塩酸を再利用するた
めには水分を除去しなければならず、余分なエネルギー
が必要となり経済性に欠けてしまい、希薄化した塩酸の
廃棄は、その費用が嵩むとともに塩酸の利用率が悪くな
るという欠点があった。
In order to suppress the generation of hydrogen gas, an oxygen gas diffusion electrode can be used as a cathode.
When the oxygen gas diffusion electrode is used, the gas generated by electrolysis is only chlorine, so that it is not necessary to use the electrolytic cell in which the above-mentioned cathode chamber and anode chamber are separated, and a simple so-called 1-cell is used.
It is possible to use a chamber electrolyzer (Electrochemistry 57 , 332 198
9)]. Although it seems that the use of this type of electrolytic cell certainly lowers the electrolysis voltage and raises the economy, in practice, the gas diffusion electrode is exposed to a strongly acidic solution, so that the overvoltage of the gas diffusion electrode is reduced. The theoretical electrolysis voltage of 0.13 V at a current density of 30 A / dm 2 is actually higher than expected.
There is a problem that the voltage reaches 1.4 V or more. Usually, hydrochloric acid is an aqueous solution having a concentration of 35% or less, and by-product hydrochloric acid is a dilute aqueous solution. When electrolysis is carried out using the diluted by-product hydrochloric acid as an anolyte, hydrochloric acid is removed from the anolyte as the electrolysis is continued, the anolyte concentration is reduced, the conductivity of the anolyte is reduced, and the anolyte is diluted. May not be able to continue. In order to reuse the diluted hydrochloric acid, water must be removed, which requires extra energy and lacks economy, and disposal of diluted hydrochloric acid increases the cost and the utilization rate of hydrochloric acid. However, there was a drawback that it became worse.

【0006】[0006]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まり塩酸電解における経済性や分解率の悪さを克服し、
安定した運転条件で塩素を得ることのできる塩酸電解装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned problems of the prior art, namely, the poor economy and poor decomposition rate of hydrochloric acid electrolysis.
An object of the present invention is to provide a hydrochloric acid electrolyzer capable of obtaining chlorine under stable operating conditions.

【0007】[0007]

【問題点を解決するための手段】本発明は、陽イオン交
換膜により陽極室と陰極室に区画された電解槽の前記イ
オン交換膜の陰極室側に酸素ガス拡散電極を密着状態で
設置し、かつ陽極室側に陽極を設置し、陽極室側に塩酸
水溶液を、陰極室側に酸素含有ガスを供給しながら電解
を行なうことを特徴とする塩酸電解装置である。
According to the present invention, an oxygen gas diffusion electrode is provided in close contact with a cathode compartment side of the ion exchange membrane of an electrolytic cell partitioned by a cation exchange membrane into an anode compartment and a cathode compartment. A hydrochloric acid electrolysis apparatus characterized in that an anode is installed on the anode chamber side, and electrolysis is performed while supplying an aqueous hydrochloric acid solution to the anode chamber side and an oxygen-containing gas to the cathode chamber side.

【0008】以下本発明を詳細に説明する。本発明の特
徴は、従来のガス拡散電極による塩酸電解では使用され
ていなかった陽イオン交換膜を使用し、該イオン交換膜
により電解槽を陽極室と陰極室に区画した点にある。該
イオン交換膜の存在により、陽極室に供給される塩酸水
溶液が陽極室に留まり陰極室側に移行しないため、陰極
室に存在するガス拡散電極が腐食性の高い塩酸により劣
化することがなく長期間の運転が可能になる。又電解の
間に陽イオン交換膜を透過して水素イオンが陰極室側に
移行しそれに伴っていわゆる同伴水として陽極液中の水
分が移行し、供給塩酸水溶液中の水分による陽極液濃度
の低下が防止され高分解率の達成が可能になる。例えば
市販塩酸中で最も高濃度の塩酸は約35重量%であるが、
該塩酸中の塩化水素は1分子に対し約4分子の水を含ん
でいる。パーフロロスルフォン酸系の陽イオン交換膜を
使用する場合の移行水量は水素イオン1に対して約4で
あるものがあり、水分の蒸発を無視すれば100 %の分解
率達成が可能である。実際には生成ガスに伴ってかなり
の量の水分の蒸発が期待されるので20〜30重量%程度の
副生塩酸を原料として使用してもほぼ100 %の分解率が
達成される。
Hereinafter, the present invention will be described in detail. A feature of the present invention is that a cation exchange membrane that has not been used in hydrochloric acid electrolysis using a conventional gas diffusion electrode is used, and the electrolytic cell is divided into an anode chamber and a cathode chamber by the ion exchange membrane. Due to the presence of the ion-exchange membrane, the aqueous hydrochloric acid solution supplied to the anode chamber stays in the anode chamber and does not migrate to the cathode chamber side, so that the gas diffusion electrode existing in the cathode chamber is not deteriorated by highly corrosive hydrochloric acid and is long. Operation for a period is enabled. Also, during the electrolysis, hydrogen ions move through the cation exchange membrane to the cathode chamber side, and along with this, the water in the anolyte moves as so-called entrained water, and the anolyte concentration decreases due to the water in the aqueous hydrochloric acid solution And a high decomposition rate can be achieved. For example, the highest concentration of hydrochloric acid on the market is about 35% by weight,
Hydrogen chloride in the hydrochloric acid contains about 4 molecules of water per molecule. When a perfluorosulfonate-based cation exchange membrane is used, the amount of transferred water is about 4 per hydrogen ion, and a decomposition rate of 100% can be achieved if the evaporation of water is ignored. In practice, a considerable amount of water is expected to evaporate with the produced gas, so that a decomposition rate of about 100% can be achieved even when about 20 to 30% by weight of by-product hydrochloric acid is used as a raw material.

【0009】更に前記ガス拡散電極を陽イオン交換膜に
密着させることにより陽イオン交換膜の酸性基が電解質
として機能し安定した電解電圧が得られる。又前述の通
り陽イオン交換膜を透過する塩酸は零又は極く少量であ
るため、陰極室側に移行する水は中性又は弱酸性であ
り、このままあるいは簡単な処理で廃棄でき、又この水
はイオン交換膜を透過しているため再利用も可能であ
る。又従来の塩酸電解におけるガス拡散電極は、陰極液
中に溶解した物質を電解質として使用するため、ガス拡
散電極が陰極液中に浸漬されて劣化したり陰極液の抵抗
分だけ消費電力量が増大するという欠点があるが、本発
明では、前記イオン交換膜にガス拡散電極つまり酸素ガ
ス拡散陰極を密着させ前記イオン交換膜を電解質として
利用するため、陰極液なしで電解を進行でき従ってガス
拡散電極の劣化や抵抗の増大を回避できる。又陰極反応
は酸性で電位が最も貴になり、ガス拡散電極の反応に寄
与する部分もできるだけ強酸性の雰囲気におかれること
が望ましいが、前記ガス拡散電極を酸性基を有する陽イ
オン交換膜に密着することによりこの条件が満たされ
る。
Further, by bringing the gas diffusion electrode into close contact with the cation exchange membrane, the acidic group of the cation exchange membrane functions as an electrolyte, and a stable electrolysis voltage can be obtained. Also, as described above, the amount of hydrochloric acid that permeates the cation exchange membrane is zero or very small, so the water that migrates to the cathode compartment is neutral or weakly acidic, and can be discarded as it is or by simple treatment. Can be reused because it has passed through the ion exchange membrane. The gas diffusion electrode in conventional hydrochloric acid electrolysis uses a substance dissolved in the catholyte as the electrolyte, so the gas diffusion electrode is immersed in the catholyte and deteriorates, or the power consumption increases by the resistance of the catholyte. However, in the present invention, a gas diffusion electrode, that is, an oxygen gas diffusion cathode is adhered to the ion exchange membrane and the ion exchange membrane is used as an electrolyte. Degradation and increase in resistance can be avoided. In the cathode reaction, the potential is the most noble in an acidic state, and it is desirable that the part contributing to the reaction of the gas diffusion electrode is also placed in a strongly acidic atmosphere as much as possible. This condition is satisfied by the close contact.

【0010】本発明の陽極としては通常の塩素発生用の
不溶性金属電極やグラファイト等の炭素電極などが使用
できる。例えば前者の金属電極としては酸化ルテニウム
−酸化チタンの複合酸化物を被覆したチタン電極が好ま
しく使用できる。該電極は塩素発生用陽極として極めて
安定であり、陽極として使用される限り塩酸濃度が25%
以下温度が60℃以下であれば2年以上の寿命が達成でき
る。但し通電することなしに浸漬された場合には短時間
のうちに腐食することがある。炭素電極を使用する場合
には炭素自身の抵抗が大きいため触媒自体又は集電体の
構造や材質に考慮を払う必要がある。前述した通り、電
解電圧の低下による抵抗損の低減のために該陽極は前記
陽イオン交換膜に密着させることが望ましい。
As the anode of the present invention, an ordinary insoluble metal electrode for generating chlorine or a carbon electrode such as graphite can be used. For example, as the former metal electrode, a titanium electrode coated with a composite oxide of ruthenium oxide-titanium oxide can be preferably used. The electrode is extremely stable as an anode for chlorine generation and has a hydrochloric acid concentration of 25% as long as it is used as an anode.
If the temperature is below 60 ° C., a life of 2 years or more can be achieved. However, if immersed without energization, it may corrode in a short time. When a carbon electrode is used, it is necessary to pay attention to the structure and material of the catalyst itself or the current collector because the resistance of carbon itself is large. As described above, it is desirable that the anode be in close contact with the cation exchange membrane in order to reduce resistance loss due to a decrease in electrolysis voltage.

【0011】一方前記酸素ガス拡散電極も従来のガス拡
散電極をそのまま使用できるが、前述の通り陽イオン交
換膜に密着して使用するため、陽極側から移行する水分
とガス拡散電極内での反応により生ずる水分を背面側に
抜き出す構造であることが望ましい。つまり従来の半疎
水性のガス拡散電極ではガス室側への電解液の浸透がな
くそれが逆圧力となって陽極室側水分のイオン交換膜内
の透過を阻害することがある。従って本発明のガス拡散
電極としては半疎水性でなく、高分子固体電解質型燃料
電池に使用されるような液透過型電極が望ましい。透過
液は十分に速く電極部分から除去されることが望ましい
ため親水性と疎水性の混合し電極構造であり、しかも液
を透過しやすくするための貫通孔とガス拡散のための細
孔を組合せて有することが望ましい。
On the other hand, as the oxygen gas diffusion electrode, a conventional gas diffusion electrode can be used as it is. However, since the oxygen gas diffusion electrode is used in close contact with the cation exchange membrane as described above, the reaction between moisture moving from the anode side and the gas diffusion electrode. It is desirable to have a structure in which moisture generated by the above is extracted to the back side. That is, in the conventional semi-hydrophobic gas diffusion electrode, there is no permeation of the electrolytic solution into the gas chamber side, and the reverse pressure is generated, which may hinder the permeation of the water in the anode chamber side into the ion exchange membrane. Therefore, as the gas diffusion electrode of the present invention, a liquid-permeable electrode which is not semi-hydrophobic and is used in a solid polymer electrolyte fuel cell is desirable. Since it is desirable that the permeated liquid be removed from the electrode part sufficiently quickly, the electrode structure is a mixture of hydrophilicity and hydrophobicity, and a combination of through-holes to facilitate liquid permeation and pores for gas diffusion. It is desirable to have

【0012】このような電極としては、主として炭素繊
維とグラファイト系の炭素並びにフッ素樹脂から形成さ
れるE−TEK社の商品名ELATのような電極があ
り、この他にチタンなどの金属フォームや金属繊維の焼
結体、あるいは他の方法で作製された多孔体表面に電極
触媒物質を担持した電極等があり、前記目的に合致する
限り、金属と炭素のような組合せから成る電極の使用も
可能である。該電極には裏面から空気等の酸素含有ガス
を供給するが、この裏面側に従来の半疎水性電極で見ら
れるように疎水性保持のためにフッ素樹脂シートを装着
することは本発明では不要であり、該電極の裏面には集
電体を配置して該集電体を通して電極に通電する。
As such an electrode, there is an electrode such as ELAT (trade name of E-TEK) mainly formed of carbon fiber, graphite-based carbon, and fluororesin. There are electrodes such as a sintered body of fiber or an electrode with an electrocatalyst substance carried on the surface of a porous body produced by other methods, and an electrode composed of a combination of metal and carbon can be used as long as the above purpose is met. It is. Although an oxygen-containing gas such as air is supplied to the electrode from the back surface, it is unnecessary in the present invention to attach a fluororesin sheet to the back surface side to maintain hydrophobicity as seen with a conventional semi-hydrophobic electrode. And a current collector is arranged on the back surface of the electrode, and electricity is supplied to the electrode through the current collector.

【0013】このガス拡散電極の触媒は、僅かとはいえ
イオン交換膜を通して浸透する塩素イオンによる被毒が
あること、及び酸素と水素イオンの反応を十分に低い過
電圧で行なわせる必要があることを考慮して選択するこ
とが必要であり、例えば白金族金属酸化物、代表的には
酸化ルテニウムと酸化イリジウムがあり、この他にこれ
らの酸化物を組み合わせたもの、あるいはこれらの酸化
物に酸化タンタル、酸化チタン、酸化錫などの他の金属
酸化物を加えた酸化物などが使用される。更に従来から
触媒として使用されている白金に代表される白金族金属
も使用できる。更に他の条件では水の2電子反応による
過酸化水素生成を起こしてしまう炭素も本発明の条件で
は該過酸化水素生成を起こすことが殆どなく、その使用
が可能である。これらの触媒の担持方法は特に限定され
ず、担持すべき基体に応じて適宜選択すれば良い。
[0013] The catalyst of this gas diffusion electrode is, to a small extent, poisoned by chlorine ions penetrating through the ion exchange membrane and requires that the reaction between oxygen and hydrogen ions be carried out at a sufficiently low overvoltage. It is necessary to select in consideration of, for example, platinum group metal oxides, typically ruthenium oxide and iridium oxide, in addition to these oxides in combination, or tantalum oxide An oxide obtained by adding another metal oxide such as titanium oxide, tin oxide, or the like is used. Further, a platinum group metal represented by platinum conventionally used as a catalyst can also be used. Further, under the conditions of the present invention, carbon which generates hydrogen peroxide by a two-electron reaction under other conditions hardly causes the generation of hydrogen peroxide, and can be used. The method for supporting these catalysts is not particularly limited, and may be appropriately selected depending on the substrate to be supported.

【0014】この他に前記集電体や電極に金属を使用す
る場合の金属材料等は特に限定されないが、陰極の電位
が平衡電位として+1.22Vであり、過電圧を加味しても
正であるので、通常の陰極材料とは異なりむしろ通常は
陽極として使用される材料から選択することが好まし
い。例えば表面に導電性酸化物被覆を行なったチタンの
ような材料が望ましい。陰極へ供給する酸素含有ガスと
しては、純酸素、酸素富化空気及び空気等が使用でき、
純酸素を使用すると最小の過電圧で電解が進行する。し
かし経済性を考えると価格を考慮することも必要であ
り、この他に本発明では供給する塩酸濃度への配慮も行
なうことが望ましい。つまり陽極室へ供給する副生塩酸
等の中には濃度が低い水溶液があり、この場合には熱を
与えて水溶液の一部を蒸発させて濃度を上昇させること
が好ましい。その際には若干電解電圧を高くして熱を発
生させながら電解を行なうことが望ましくなり、このこ
とと前記した経済性を勘案した上で、使用する供給ガス
を決定する。
In addition, the metal material and the like when using a metal for the current collector and the electrode are not particularly limited, but the potential of the cathode is +1.22 V as an equilibrium potential, and is positive even when an overvoltage is added. Therefore, it is preferable to select from materials normally used as anodes, unlike ordinary cathode materials. For example, a material such as titanium having a surface coated with a conductive oxide is desirable. As the oxygen-containing gas to be supplied to the cathode, pure oxygen, oxygen-enriched air and air can be used,
When pure oxygen is used, electrolysis proceeds with a minimum overvoltage. However, in consideration of economy, it is necessary to consider the price. In addition, in the present invention, it is desirable to consider the concentration of the supplied hydrochloric acid. That is, there is an aqueous solution having a low concentration in by-product hydrochloric acid or the like supplied to the anode chamber. In this case, it is preferable to increase the concentration by applying heat to partially evaporate the aqueous solution. In this case, it is desirable to perform electrolysis while generating heat by slightly increasing the electrolysis voltage. In consideration of this and the above-described economic efficiency, the supply gas to be used is determined.

【0016】例えばPSA法によりほぼ純酸素近くまで
不純物を除去したガスを得るために必要な電力は電解電
圧で約0.2 Vに相当する。空気を使用する場合と該純酸
素を使用する場合では後者の方が電解電圧が約0.2 V低
下するため、この値の比較のみではPSA法による純酸
素を使用する場合と空気をそのまま使用する場合の差は
ない。しかし空気を使用し0.2 V過電圧が高い条件で電
解を行なうと、0.2 Vの過電圧は熱として発生し、この
熱量を水分蒸発に利用できる場合には空気を使用するこ
とが好ましくなる。これらの条件は使用するガスの種類
や純度、電極の種類等によって異なるので、実際の運転
条件に応じて決定するのが良い。なお空気を使用する場
合も電極部分が弱酸性又は中性に近いので、空気中の炭
酸ガスの除去は不要であり、空気を使用する場合でも供
給空気の精製を行なわなくても良い。
For example, the electric power required to obtain a gas from which impurities have been removed to almost pure oxygen by the PSA method is equivalent to about 0.2 V in electrolytic voltage. In the case of using air and the case of using pure oxygen, the latter has a lower electrolysis voltage of about 0.2 V. Therefore, comparing this value alone means the case of using pure oxygen by the PSA method and the case of using air as it is. There is no difference. However, when electrolysis is performed using air at a high overvoltage of 0.2 V, the overvoltage of 0.2 V is generated as heat, and if this amount of heat can be used for evaporating water, it is preferable to use air. Since these conditions vary depending on the type and purity of the gas used, the type of electrode, and the like, it is preferable to determine them according to actual operating conditions. When air is used, the electrode portion is weakly acidic or nearly neutral, so it is not necessary to remove carbon dioxide gas from the air. Even when air is used, the supply air need not be purified.

【0016】[0016]

【実施例】次に本発明に係わる塩酸電解槽及び該電解槽
を使用する塩酸電解の実施例を記載するが、該実施例は
本発明を限定するものではない。
EXAMPLES Next, examples of the hydrochloric acid electrolyzer according to the present invention and electrolysis of hydrochloric acid using the electrolyzer are described, but the examples do not limit the present invention.

【0017】[0017]

【実施例1】陽イオン交換膜としてデュポン社製の商品
名ナフィオン350 を隔膜とし、その片面に、二酸化ルテ
ニウムと二酸化チタンから成る陽極物質を表面に被覆し
た厚さ0.5 mmの多孔性のエクスパンドメッシュから成る
不溶性金属電極を、他面に、電極触媒を担持したガス拡
散電極(E−TEK社製の商品名ELAT)を対向して
設置した。前記不溶性金属電極及び前記ガス拡散電極の
それぞれの外側に厚さ1.5 mmのエクスパンドメッシュの
表面を焼成して酸化チタン層を形成した集電体を設置
し、前記不溶性金属電極及びガス拡散電極が互いに密着
するように電解槽を形成した。
Example 1 A 0.5 mm thick porous expanded mesh in which Nafion 350 (trade name, manufactured by DuPont) was used as a cation exchange membrane and an anode material composed of ruthenium dioxide and titanium dioxide was coated on one surface of the membrane. An insoluble metal electrode made of was placed on the other surface with a gas diffusion electrode (trade name: ELAT, manufactured by E-TEK) facing the electrode catalyst. A current collector having a titanium oxide layer formed by sintering the surface of a 1.5 mm-thick expanded mesh on the outside of each of the insoluble metal electrode and the gas diffusion electrode is provided, and the insoluble metal electrode and the gas diffusion electrode are separated from each other. An electrolytic cell was formed so as to be in close contact.

【0018】前記ガス拡散電極の電極触媒としては、
酸化ルテニウム粉末、白金、酸化イリジウムと酸化
タンタルの複合酸化物、酸化ルテニウムと酸化チタン
の複合酸化物、又は酸化ルテニウムと酸化錫の複合酸
化物を、それぞれの塩溶液から熱分解によって作製した
粉末を前記ガス拡散電極のイオン交換膜側にフッ素樹脂
液をバインダーとして250 ℃で焼き付けて担持した。陽
極液として濃度20重量%の塩酸を循環し電解槽外で塩酸
の消費に該当する量の塩酸を濃度30重量%の塩酸水溶液
として添加した。陰極供給ガスとしては、フィルターに
より固形物を除去した空気を理論量の2倍になるように
0.5 気圧の圧力を加えながら供給した。
As the electrode catalyst of the gas diffusion electrode,
Ruthenium oxide powder, platinum, a composite oxide of iridium oxide and tantalum oxide, a composite oxide of ruthenium oxide and titanium oxide, or a composite oxide of ruthenium oxide and tin oxide, prepared by pyrolysis of a salt solution from each salt solution. The fluororesin solution was baked at 250 ° C. as a binder and supported on the ion exchange membrane side of the gas diffusion electrode. Hydrochloric acid having a concentration of 20% by weight was circulated as an anolyte, and an amount of hydrochloric acid corresponding to consumption of hydrochloric acid was added as a 30% by weight aqueous hydrochloric acid solution outside the electrolytic cell. As the cathode supply gas, the air from which solid matter has been removed by a filter should be twice the theoretical amount.
It was supplied while applying a pressure of 0.5 atm.

【0019】温度60℃及び電流密度30A/dm2 の条件で電
解を行なった際の電解電圧及び陰極過電圧を表1に示し
た。いずれの陰極物質を使用した場合でも陽極液の濃度
が僅かずつ上昇する傾向があったため、電解液濃度維持
のため脱イオン水を加えながら電解を進行させた。一週
間連続運転を行なったが電解性能には全く異常は見られ
ず、塩酸水溶液の希薄化による廃棄を全く必要とせず安
定した電解が継続できた。
Table 1 shows the electrolysis voltage and the cathode overvoltage when electrolysis was performed at a temperature of 60 ° C. and a current density of 30 A / dm 2 . Regardless of which cathode material was used, the concentration of the anolyte tended to increase little by little. Therefore, electrolysis was advanced while adding deionized water to maintain the concentration of the electrolyte. After one week of continuous operation, no abnormality was observed in the electrolysis performance, and stable electrolysis could be continued without requiring any disposal by diluting the aqueous hydrochloric acid solution.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【比較例】イオン交換膜を使用せず陽極と陰極の間隔を
5mmとし通常のガス拡散電極を使用する塩酸電解槽とし
たこと以外は実施例1と同一条件で塩酸電解を行なっ
た。陰極触媒としては、実施例1の酸化イリジウムと
酸化タンタルの複合酸化物を使用した。なおガス拡散電
極をそのまま電解液中で使用できないため、ガス供給側
に多孔性のPTFE膜を張り付けて半疎水性電極となる
ようにした。この条件で電解を行なったところ、実施例
1と同じ20重量%の電解液濃度を保持するためには、実
施例1の約2倍の塩酸を添加し電解室から約50%に相当
する希薄の塩酸を除かなければ安定な運転はできなかっ
た。この条件では比較的安定な電解を行なえたものの、
電解電圧が実施例1より高かった。
[Comparative Example] Hydrochloric acid electrolysis was performed under the same conditions as in Example 1 except that an ion exchange membrane was not used, the distance between the anode and the cathode was 5 mm, and a hydrochloric acid electrolytic cell using a normal gas diffusion electrode was used. As the cathode catalyst, the composite oxide of iridium oxide and tantalum oxide of Example 1 was used. Since the gas diffusion electrode cannot be used as it is in the electrolytic solution, a porous PTFE film was attached to the gas supply side so as to be a semi-hydrophobic electrode. When electrolysis was performed under these conditions, in order to maintain the same electrolytic solution concentration of 20% by weight as in Example 1, about twice as much hydrochloric acid as in Example 1 was added, and a dilute solution corresponding to about 50% was obtained from the electrolytic chamber. Unless hydrochloric acid was removed, stable operation was not possible. Under these conditions, although relatively stable electrolysis was performed,
The electrolysis voltage was higher than in Example 1.

【0022】[0022]

【実施例2】陽極として表面に酸化ルテニウムを触媒と
して担持した平均粒径20μのグラファイト粉末を用い、
該粉末を商品名ナフィオン液をバインダーとして隔膜で
ある陽イオン交換膜の表面に焼き付けた。陰極として
は、チタン繊維を焼結した多孔質チタンを基体としその
表面に平均粒径15μのチタン粉末をルーズシンタリング
し、これに酸化ルテニウムを熱分解により被覆して多孔
性板を作製し、これにフッ素樹脂を薄く被覆して表面に
ある程度の撥水性を持たせたものを使用した。両電極を
イオン交換膜の両面に該イオン交換膜に密着するように
して設置して、実施例1に類似する電解槽を組み立て
た。
Example 2 A graphite powder having an average particle size of 20 μm with ruthenium oxide supported on the surface as a catalyst was used as an anode.
The powder was baked on the surface of a cation exchange membrane as a diaphragm using Nafion liquid as a binder. As the cathode, a porous titanium plate was prepared by loosely sintering titanium powder having an average particle size of 15 μm on the surface of porous titanium obtained by sintering titanium fibers, and then covering this with ruthenium oxide by thermal decomposition to produce a porous plate. This was used by thinly coating a fluororesin to give the surface a certain degree of water repellency. Both electrodes were installed on both surfaces of the ion exchange membrane so as to be in close contact with the ion exchange membrane, and an electrolytic cell similar to that of Example 1 was assembled.

【0023】陽極室に35%塩酸を供給し、陰極側にPS
Aにより酸素富化した空気を理論量の1.2 倍送りなが
ら、かつ陽極室の塩酸濃度を25%に保持するために脱イ
オン水を滴下しながら、温度65℃、電流密度30A/dm2
電解を行なった。電解電圧は1.15Vであり、1ヶ月の連
続運転後も性能は全く変化しなかった。発生塩素ガスの
濃度は99.3〜99.7%であった。なお陽極液に脱イオン水
を滴下しないと濃度上昇が見られ、100 %に近い塩酸の
分解率は得られなかった。
A 35% hydrochloric acid is supplied to the anode chamber, and PS is supplied to the cathode side.
Electrolysis at a temperature of 65 ° C. and a current density of 30 A / dm 2 while feeding oxygen-enriched air by A 1.2 times the theoretical amount and dropping deionized water to maintain the hydrochloric acid concentration in the anode chamber at 25%. Was performed. The electrolysis voltage was 1.15 V, and the performance did not change at all even after continuous operation for one month. The concentration of generated chlorine gas was 99.3 to 99.7%. Unless deionized water was added to the anolyte, the concentration increased, and a decomposition rate of hydrochloric acid close to 100% was not obtained.

【0024】[0024]

【発明の効果】本発明は、陽イオン交換膜により陽極室
と陰極室に区画された電解槽の前記イオン交換膜の陰極
室側に酸素ガス拡散電極を密着状態で設置し、かつ陽極
室側に陽極を設置し、陽極室側に塩酸水溶液を、陰極室
側に酸素含有ガスを供給しながら電解を行なうことを特
徴とする塩酸電解装置である。従来のガス拡散電極を使
用する塩酸電解と異なり、本発明では電解槽を陽イオン
交換膜により陽極室と陰極室に区画している。これによ
りガス拡散電極を劣化させやすい塩素イオンの陽極室か
ら陰極室への実質的な移行及び該塩素イオンによる電極
の被毒を阻止してガス拡散電極の寿命を延ばすことがで
きる。更に該イオン交換膜に陰極側の酸素ガス拡散電極
を密着させることにより、陽イオン交換膜の酸性基が陰
極側の電解質として機能し陰極液による抵抗損のない安
定した電解電圧が得られる。
According to the present invention, an oxygen gas diffusion electrode is provided in close contact with a cathode compartment side of the ion exchange membrane of an electrolytic cell partitioned into an anode compartment and a cathode compartment by a cation exchange membrane, and Is provided with an anode, and an electrolysis is performed while supplying an aqueous hydrochloric acid solution to the anode chamber side and an oxygen-containing gas to the cathode chamber side. Unlike hydrochloric acid electrolysis using a conventional gas diffusion electrode, in the present invention, the electrolytic cell is divided into an anode chamber and a cathode chamber by a cation exchange membrane. This can substantially prevent chlorine ions, which easily deteriorate the gas diffusion electrode, from moving from the anode chamber to the cathode chamber and prevent the electrode from being poisoned by the chlorine ions, thereby extending the life of the gas diffusion electrode. Further, by bringing the oxygen gas diffusion electrode on the cathode side into close contact with the ion exchange membrane, the acidic group of the cation exchange membrane functions as an electrolyte on the cathode side, and a stable electrolysis voltage without resistance loss due to the catholyte can be obtained.

【0025】更に電解槽の陽極室から陰極室への塩素イ
オンと水分の移行がイオン交換膜の存在により塩素イオ
ンとその水和水の割合にほぼ等しい約1:4の割合で一
定し、電解液中の塩酸分と水分のバランスの一定し、塩
酸の分解率をほぼ100 %に保持できる。更に陽極及び陰
極とも陽分極の状態になり、両極ともチタンなどの金属
材料の使用が可能になり、導電性の問題が解消されると
ともに比較的低コストで本発明の塩酸電解装置を得るこ
とができる。
Further, the transfer of chlorine ions and water from the anode compartment to the cathode compartment of the electrolytic cell is kept constant at a ratio of about 1: 4, which is substantially equal to the ratio of chlorine ions and the water of hydration due to the presence of the ion exchange membrane. The balance between hydrochloric acid content and water in the liquid is constant, and the decomposition rate of hydrochloric acid can be maintained at almost 100%. Furthermore, both the anode and the cathode are in a state of positive polarization, and both electrodes can use a metal material such as titanium, thereby solving the problem of conductivity and obtaining the hydrochloric acid electrolysis apparatus of the present invention at a relatively low cost. it can.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 9/00 C25B 1/26 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 9/00 C25B 1/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換膜により陽極室と陰極室に
区画された電解槽の前記イオン交換膜の陰極室側に酸素
ガス拡散電極を密着状態で設置し、かつ陽極室側に陽極
を設置し、陽極室側に塩酸水溶液を、陰極室側に酸素含
有ガスを供給しながら電解を行なうことを特徴とする塩
酸電解装置。
1. An oxygen gas diffusion electrode is installed in close contact with a cathode chamber side of an ion exchange membrane of an electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, and an anode is installed in an anode chamber side. An electrolysis apparatus for hydrochloric acid, wherein electrolysis is performed while supplying an aqueous hydrochloric acid solution to the anode chamber side and an oxygen-containing gas to the cathode chamber side.
【請求項2】 酸素ガス拡散電極が液透過機能を有して
いる請求項1に記載の塩酸電解装置。
2. The hydrochloric acid electrolysis apparatus according to claim 1, wherein the oxygen gas diffusion electrode has a liquid permeation function.
JP25922495A 1995-09-12 1995-09-12 Hydrochloric acid electrolyzer Expired - Fee Related JP3538271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25922495A JP3538271B2 (en) 1995-09-12 1995-09-12 Hydrochloric acid electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25922495A JP3538271B2 (en) 1995-09-12 1995-09-12 Hydrochloric acid electrolyzer

Publications (2)

Publication Number Publication Date
JPH0978279A JPH0978279A (en) 1997-03-25
JP3538271B2 true JP3538271B2 (en) 2004-06-14

Family

ID=17331134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25922495A Expired - Fee Related JP3538271B2 (en) 1995-09-12 1995-09-12 Hydrochloric acid electrolyzer

Country Status (1)

Country Link
JP (1) JP3538271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148600A1 (en) * 2001-10-02 2003-04-10 Bayer Ag Electrolyzer used for electrolyzing hydrochloric acid has gas diffusion electrodes fixed to current collector
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
DE102008015901A1 (en) * 2008-03-27 2009-10-01 Bayer Technology Services Gmbh Electrolysis cell for hydrogen chloride electrolysis
CN113388849B (en) * 2021-06-18 2024-02-13 蓝星(北京)化工机械有限公司 Hydrochloric acid electrolysis method by ion membrane method

Also Published As

Publication number Publication date
JPH0978279A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4210501A (en) Generation of halogens by electrolysis of hydrogen halides in a cell having catalytic electrodes bonded to a solid polymer electrolyte
US4191618A (en) Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US5411641A (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
US4209368A (en) Production of halogens by electrolysis of alkali metal halides in a cell having catalytic electrodes bonded to the surface of a porous membrane/separator
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4457824A (en) Method and device for evolution of oxygen with ternary electrocatalysts containing valve metals
US5437771A (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
GB2071157A (en) Catalytic electrode and combined catalytic electrode and electrolytic structure
US7211177B2 (en) Electrode for electrolysis in acidic media
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
JP3421021B2 (en) Electrolysis method of alkali chloride
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
US4772364A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
JP3538271B2 (en) Hydrochloric acid electrolyzer
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
US4360416A (en) Anode catalysts for electrolysis of brine
CN1165295A (en) Mcdified surface bipolar electrode
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees