JP3869350B2 - Performance recovery method of gas diffusion electrode - Google Patents

Performance recovery method of gas diffusion electrode Download PDF

Info

Publication number
JP3869350B2
JP3869350B2 JP2002326595A JP2002326595A JP3869350B2 JP 3869350 B2 JP3869350 B2 JP 3869350B2 JP 2002326595 A JP2002326595 A JP 2002326595A JP 2002326595 A JP2002326595 A JP 2002326595A JP 3869350 B2 JP3869350 B2 JP 3869350B2
Authority
JP
Japan
Prior art keywords
electrode
performance
gas diffusion
diffusion electrode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002326595A
Other languages
Japanese (ja)
Other versions
JP2004162086A (en
Inventor
幹人 杉山
幸治 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kaneka Corp
Osaka Soda Co Ltd
Asahi Kasei Chemicals Corp
Tokuyama Corp
Tosoh Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsui Chemicals Inc
Daiso Co Ltd
Toagosei Co Ltd
Kaneka Corp
Asahi Kasei Chemicals Corp
Tokuyama Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsui Chemicals Inc, Daiso Co Ltd, Toagosei Co Ltd, Kaneka Corp, Asahi Kasei Chemicals Corp, Tokuyama Corp, Tosoh Corp filed Critical Asahi Glass Co Ltd
Priority to JP2002326595A priority Critical patent/JP3869350B2/en
Publication of JP2004162086A publication Critical patent/JP2004162086A/en
Application granted granted Critical
Publication of JP3869350B2 publication Critical patent/JP3869350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電解に使用して性能が劣化したガス拡散電極、特にイオン交換膜食塩電解法の陰極として使用して性能が劣化したガス拡散電極の電極性能回復方法に関するものである。
【0002】
【従来の技術】
飽和食塩水を、ガス拡散電極、例えば酸素陰極を使用するイオン交換膜法で電解し、苛性ソーダを製造する方法は公知である。このイオン交換膜食塩電解方法は、概して、陽極を有し塩化ナトリウム水溶液を入れた陽極室と、陰極を有し水又は苛性ソーダ水溶液を入れた陰極室とを、陽イオン交換膜により区画し、両電極間に電流を供給して電解する際に、陰極として素材が多孔質体からなり酸素含有ガスが供給されつつ電解されるガス拡散電極(いわゆる酸素陰極)を用いて電解することにより、陰極室に苛性ソーダを得るものである。
【0003】
陰極にガス拡散電極を用いる電解方法は、陰極での水素ガスの発生が起こらないため、通常の水素発生型の電解方法に比べて、理論分解電圧が約1V低下でき、電力費用を約3割削減することが可能であるという利点を有している。
【0004】
しかして、これらのガス拡散電極を使用するイオン交換膜食塩電解法に関する開発においては、ガス拡散電極の製法や性能向上のみに注意が払われており、食塩電解により電極性能の低下したガス拡散電極の低下した電極性能の回復に関しては、殆ど考慮されていない。
このような観点から、本出願人は苛性ソーダ製造用電解に使用して電極性能の低下したガス拡散電極を洗浄して性能を回復させる方法を提案した(特願2001−342352号)。
【0005】
【発明が解決しようとする課題】
この方法自体、劣化したガス拡散電極の性能回復用として有用であるが、更に効率良くガス拡散電極の性能回復が達成できることが望ましいのは当然である。
従って、本発明は、電極性能の低下したガス拡散電極の劣化原因を明らかにしてその原因を除去して電極性能の低下を回復する方法、特に洗浄処理による性能回復方法と組合わせるとより有効となり得る電極性能の低下回復方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
食塩電解用等のガス拡散電極の劣化は、電極内部への濡れの進行(電解液である苛性ソーダ液等の浸入)が主原因であることは劣化電極の分析より既に明らかとなっている。
【0007】
この分析結果を基にして、濡れの原因である苛性ソーダ等をガス拡散電極から水溶液による洗浄により除去し電極性能を高性能時に回復させることが可能となっている。
【0008】
劣化電極の断面観察および細孔分布分析をおこなった結果、劣化電極は未使用電極に比べて電極内部のガス供給層において細孔が多く存在していることが認められた。また、劣化電極を水溶液により洗浄処理した電極は、劣化電極に比べて電極内部に存在する細孔が多く存在していることが認められた。これらの細孔の存在は電解液である苛性ソーダ等の電極内部への浸入(濡れの進行)により細孔容積が増大した結果であると推測される。
【0009】
更に、電極に多く存在する細孔により電極抵抗が増大することも劣化の原因に成り得ると想定し、前記細孔を塞ぎ又は潰すことにより電極性能を高性能時に回復させるべく鋭意研究を重ねた結果、本発明を完成するに至った。
【0010】
すなわち、本発明は、第1に電解に使用して電極性能の低下したガス拡散電極をプレス処理することにより、生成した細孔を潰して性能回復を行うガス拡散電極の性能回復方法であり、第2に電極性能の低下したガス拡散電極に対して洗浄処理とプレス処理を組合わせて行うガス拡散電極の性能回復方法である。
【0011】
本発明方法による性能回復の対象となるガス拡散電極は、主として2室型電解槽を使用する苛性ソーダ製造用の陰極として使用された電極とするが、これに限定されず、例えば有機物電解、オゾン電解及び3室型芒硝電解等に使用して性能が劣化したガス拡散陽極やガス拡散陰極が含まれる。
又このガス拡散電極は、触媒、親水性カーボン、疎水性カーボン及びポリテトラフルオロエチレン(PTFE)からなる反応層と疎水性カーボン及びPTFEからなるガス供給層を有する2層型構造であることが望ましく、この2層構造のガス拡散電極は、ガス供給層に集電体である銀製の網を充填し、更に反応層をガス供給層表面に塗布した後、ホットプレスして作製される。
【0012】
前記ガス供給層は、疎水性カーボンブラックとPTFEディスパージョンを分散、混合、ろ過後、シート化により作製される。又前記反応層は、銀微粒子、PTFEディスパージョン、親水性カーボンブラック、疎水性カーボンブラックを分散、混合、ろ過して作製される。
また、反応層及び/又はガス供給層の表面に触媒層を形成させたガス拡散電極を使用することも出来、この触媒層は、触媒微粒子を、0.005〜100μm程度のPTFE粉末及びナフサ等の溶剤と混合したペースト状物を表面に塗布し固着する方法、触媒金属の塩溶液を表面に塗布焼成する方法、又は、電気メッキする若しくは還元剤を用いて無電解メッキする等の方法により作製できる。
【0013】
本発明は、この反応層とガス供給層とを有する2層構造のガス拡散電極に好ましく適用できるが、これ以外のガス拡散電極、例えば、集電体上に触媒微粒子、PTFEディスパーション、カーボンブラックの分散体を形成して触媒を含む単一層から成るガス拡散電極にも使用できる。また、集電体上に触媒微粒子を含まず、PTFEディスパーション、カーボンブラックの分散体から形成される単一層から成るガス拡散電極表面に、前述と同様に触媒層を形成させたガス拡散電極を使用することも出来る。
【0014】
触媒としては白金、銅、銀、コバルト、及び鉛等の金属又はそれらの酸化物が好ましい。集電体として、耐食性を有するチタン、ニオブ、タンタル、ステンレス、ニッケル、ジルコニウム、カーボン及び銀等の金属や合金製の金網、該金属や合金の粉末から成る焼成体、金属又は合金の繊維焼成体及び発泡体等を用いることも出来る。
【0015】
これらのガス拡散電極は、通常食塩電解槽、特にイオン交換膜法食塩電解槽の陰極として使用される。イオン交換膜としてはフッ素樹脂系の耐食性膜の使用が好ましい。
【0016】
陽極として、DSE(登録商標、ペルメレック電極(株)製)と称されるチタン基体にRuO2/TiOを主体とする貴金属酸化物を担持した多孔性電極の使用が好ましい。この陽極は、前記イオン交換膜と密着状態で使用することが好ましい。
【0017】
前記ガス拡散電極を、例えば食塩電解による苛性ソーダ製造用イオン交換膜電解槽に陰極として組み入れ、陰極室の苛性ソーダの濃度が例えば25〜40%になるように通電すると、単一層構造のガス拡散電極層、又2層構造のガス拡散電極の場合は特にガス供給層の濡れが進行し、ガス供給層中の酸素ガス拡散が阻害され、ガス拡散電極の過電圧が上昇し、電極性能は低下する。
【0018】
電解を継続すると、このようにガス拡散電極が徐々に劣化するが、通常、過電圧が初期値より0.20V以上上昇した際にガス拡散電極の電極性能が低下したと認定する。電極性能を示す電極の過電圧はカレントインターラプター法等により測定できる。
電極性能が低下したとき、イオン交換膜食塩用等の電解槽を解体し、電極性能の低下したガス拡散電極を電解槽から取り外し本発明に従って電極性能回復処理を施すことができる。
【0019】
本発明による電極性能回復方法では、電極性能の低下したガス拡散電極をプレス機等に設置し、一定条件にて一定時間プレスする。
つまり抵抗値の上昇等により電極性能が低下したと判断した場合、前記イオン交換膜食塩電解槽を解体し、電極性能の低下したガス拡散電極を電解槽から取り外しプレス処理を施す。或いは洗浄処理後にプレス処理を行い、又はプレス処理後に洗浄処理を施して、性能回復を図っても良い。
プレス処理を行うと、電解によりその内部に細孔が生成したガス拡散電極の前記細孔が塞がれ又は潰されて、密度が電解開始時の値に近づき更に抵抗値も下がって電解開始時の値に近づく。従ってプレス処理によりガス拡散電極が電解開始時の状態に近い状態に復元されて電極性能が回復すると推測できる。
【0020】
電極性能回復処理のためのプレスの条件や使用するプレス機は特に限定されないが、前記プレス機は加熱機能を有していることが好ましい。プレス条件として、圧力は、通常0.1MPa〜60MPaの範囲、特に1MPa〜10MPaの範囲が好ましい。温度は、通常10℃〜500℃の範囲、特に200℃〜400℃の範囲が好ましい。プレス処理の時間は、通常1秒〜1時間の範囲で設定され、特に1分〜30分が好ましい。
【0021】
又本発明者らは、食塩電解後のガス拡散電極に存在する苛性ソーダの電極内部への進行度合い(濡れの進行)を電極断面のナトリウム分布分析により調べた結果、電極性能に変化の無い電極に比べて、電極性能の低下した電極ではナトリウムが反応層より内部のガス供給層にもかなり浸入していることが判った。この結果から、ガス供給層中の濡れが電極内部へ広がる程、苛性ソーダ液により占められる範囲が広がり、ガス供給層中の酸素ガス拡散が阻害され電極の性能が低下するため、これらのガス拡散を阻害する要素を洗浄により除去することが有効であることを見出した。
【0022】
そして本発明方法では、前述した通り、プレス処理単独の他に、プレスと洗浄を組み合わせた処理を行うことにより、更に回復率の高いガス拡散電極の性能回復方法を提供できる。
つまり電極性能の低下したガス拡散電極、特に2層構造のガス拡散電極は、プレス処理の前に洗浄処理することにより電極性能はほぼ劣化前の性能に回復できる。この洗浄処理はその両面から水及び/又は酸で洗浄処理することが好ましく、ガス供給層のみからの洗浄の効果はさほど高くない。その理由は、ガス供給層は撥水性が高い構造となっており、電極内部への水溶液の進行を阻害するためであると推測できる。
【0023】
酸を使用するのは、洗浄能力が高いことと、陰極室で生成することの多い苛性ソーダ等のアルカリが浸透して電極性能が低下したガス拡散電極を酸で処理してpHが7〜0になるまで洗浄し、苛性ソーダ等を効率的に除去するためである。
使用可能な酸は、塩酸、硝酸、硫酸、リン酸及び酢酸等であるが特に限定されない。濃度は、0.01〜10Mol/Lの範囲で使用されるが、特に0.1〜10Mol/Lが好ましい。温度は、10℃〜100℃で行われるが、好ましくは20℃〜80℃の範囲である。具体的な洗浄手段としては、水や酸水溶液中へのガス拡散電極の浸漬があり、この浸漬は攪拌を伴っても伴わなくても良い。この浸漬以外に水や酸水溶液の噴霧等がある。
【0024】
上記浸漬による電極性能回復方法の一例として、ガラス製ビーカーに電極性能の低下したガス拡散電極を入れ、更にそのガス拡散電極がビーカー底部に沈むまで蒸留水を入れた後、水を攪拌して、2週間〜3週間程度の時間を掛けて電極内部に存在する苛性ソーダに起因するアルカリ分を洗浄除去する方法がある。上記の電極性能回復方法における洗浄除去時間は、酸を添加しながら電極洗浄する方法により短縮できる。酸による電極洗浄は、蒸留水を攪拌しながら、酸を滴下し、中和反応指示薬であるフェノールフタレインが紫色から無色に変色するまでアルカリ分を中和除去する方法である。この酸洗浄により1週間程度洗浄除去時間を短縮できる。
【0025】
また、洗浄除去時間を短縮できる方法として、蒸留水を温水として使用する方法がある。温水と酸による電極洗浄により必要な洗浄除去時間は1日以内となり、電極性能回復方法として最も好適である。乾燥処理は、洗浄処理後のガス拡散電極を120〜200℃、12〜24時間で行うことが好ましい。
【0026】
プレス処理と洗浄処理を併用する場合、洗浄を先に行って細孔内の苛性ソーダ等を除去した後、プレス処理を行って細孔を塞ぐことが望ましいが、プレス処理を行った後に洗浄処理を行っても良い。特に洗浄処理後にプレス処理を行うと、劣化電極の性能はほぼ100%回復され得る。
【0027】
上記の電極性能回復処理をおこなったガス拡散電極について再度イオン交換膜食塩電解槽等を用いて電解をおこない、電極の性能の回復を確認することができる。
【0028】
【発明の実施の形態】
次に一般的なガス拡散電極を用いるイオン交換膜食塩電解用電解槽の概略を図1に基づいて説明する。
この電解槽1はイオン交換膜2により多孔板状の陽極3を有する陽極室4と陰極室6に区画され、ガス拡散電極5を陰極として使用し、このガス拡散電極5によりイオン交換膜側の溶液室6と反対側のガス室7とに区画された3室型電解槽である。前記ガス拡散電極5は、溶液室6側の反応層5Aと、ガス室7側のガス供給層5Bを貼り合わせた2層構造になっている。
【0029】
ガス拡散電極5にはそのガス供給層5Bの背面に密着した多孔性給電体8により給電され、かつ背面側に設置された酸素ガス供給管9から酸素ガスが供給される。供給された酸素ガスは該電極5のガス供給層5Bを透過し、水及び陽極室4からイオン交換膜2を通って移行してくるナトリウムイオンと反応層5A内に存在する電極触媒上で反応して苛性ソーダを生成する。
【0030】
図1の例では、ガス拡散電極5をイオン交換膜2から離して設置したが、このガス拡散電極5はイオン交換膜2に密着させて2室型電解槽とし、電解液に起因する抵抗損を最小限に抑えるように設置しても良い。
このような電解槽1を使用して長期間食塩電解を行うと、過電圧が上昇して電極性能が劣化する。この状態に達した場合には、電解槽1を解体してガス拡散電極5を取り出し、プレス処理単独、又は洗浄とプレス処理を組み合わせて行うことによりガス拡散電極5の性能が回復する。性能回復したこのガス拡散電極を再度電解槽1に装着して通電を再開すると、過電圧が低下した効率の良い状態での電解を継続できる。
【0031】
[実施例]
以下、実施例により本発明を具体的に説明する。ただし、本発明はこの実施例のみに限定されるものではない。
【0032】
(実施例1)
陰極用のガス拡散電極は次のようにして作製した。
つまりPTFEディスパージョン(ダイキン工業製D−1)と疎水性カーボンブラック(電気化学工業製AB−6、平均粒径50nm)を重量比で4:6の割合で混合したものを、界面活性剤(トライトンX−100)20重量%を含有する水溶液100重量部中に分散、混合し、ろ過してガス供給層用泥奬を得た。この泥奬をロール掛けして厚さ1mmのガス供給層シートを作成し、シート内にシートの大きさよりも大きな銀製の網を埋め込んで集電体付きガス供給層とした。
【0033】
銀微粒子(田中貴金属工業製、平均粒径1μm)とPTFEディスパージョン(ダイキン工業製D−1)、親水性カーボンブラック(電気化学工業製AB−11、平均粒径40nm)、疎水性カーボンブラック(電気化学工業製AB−6、平均粒径50nm)を重量比で20:1:1:1の割合で混合したものを、界面活性剤(トライトンX−100)20重量%を含有する水溶液100重量部中に分散、混合し、ろ過して反応層用泥奬を得た。この泥奬をガス供給層表面に100μmの厚さで塗布してガス供給層と反応層の2層構造を得た。
次いで、エタノールで、界面活性剤を抽出した後に、380℃、4.9MPa、60秒間の条件でホットプレスすることによりガス拡散陰極を作製した。
【0034】
陽極として、ペルメレック電極製DSE(登録商標)を使用し、イオン交換膜として、旭化成製のAF−4202を使用した。
上述したガス拡散陰極、陽極及びイオン交換膜を使用して図1に示すような電解面積33cm2である食塩電解槽を構成した。
【0035】
食塩電解は、電流密度0.3A/cm2、陽極室、陰極室(溶液室)並びにガス室温度88℃、苛性ソーダ濃度32wt%、酸素ガス流量52.5Ncc/min(酸素濃度93%)の条件にて、約1年間おこなった。
【0036】
カレントインターラプター法により電極性能を示す電極過電圧を測定した結果、食塩電解実験初期のガス拡散陰極の過電圧は0.5Vであり、約100日後に0.45Vに下がったのに対し約1年後には0.62Vと上昇し、また、抵抗は0.58Vから0.75Vに上昇したため電極性能の低下と判断し電解を終了した。
次いで、イオン交換膜食塩電解用電解槽を解体し、電極性能の低下したガス拡散陰極を取り外した。
【0037】
電極性能回復方法として、電極性能の低下したガス拡散陰極をプレス機(RIKEN SEIKI CO.LTD製 RIKEN P−1B)に設置し、プレス圧力5MPa、温度加熱なしの20℃、プレス時間10分のプレス条件で劣化陰極をプレスした。
【0038】
上記の電極性能回復処理をおこなったガス拡散陰極を、イオン交換膜食塩電解用電解槽を用いて再度食塩電解をおこなった結果、過電圧は0.50Vまで低下し、抵抗も0.60Vまで低下した。プレス処理により電極性能(過電圧及び抵抗)はほぼ80%回復した。その後電解を約100日継続したが、ガス拡散陰極は安定した性能を維持した。この1年余りの電解操作における運転日数と過電圧及び抵抗損との関係を図2のグラフに示した。
【0039】
(実施例2)
実施例1と同様の電極、イオン交換膜食塩電解用電解槽を用いて、電流密度0.3A/cm2、陽極室、陰極室並びにガス室温度88℃、苛性ソーダ濃度32wt%、酸素濃度15%(酸素ガス流量52.5Ncc/min及び窒素ガス流量210Ncc/min)の加速条件にて、食塩電解を約20日間おこなった。
【0040】
カレントインターラプター法により電極性能を示す電極過電圧を測定した結果、食塩電解実験初期のガス拡散陰極の過電圧は0.52Vであり、80日後に0.44Vに下がったのに対し約20日後には0.94Vと上昇し、また、抵抗は0.60Vから0.68Vに上昇したため電極性能の低下と判断し電解を終了した。
次いで、イオン交換膜食塩電解用電解槽を解体し、電極性能の低下したガス拡散陰極を取り外した。
【0041】
電極性能の低下した陰極の洗浄処理を次のように行った。つまり、ガラス製ビーカーに電極性能の低下したガス拡散陰極を入れ、更にそのガス拡散陰極がビーカー底部に沈むまで蒸留水を入れた後、ビーカーを加熱することによりビーカー内温度を70℃の温水として保持しながら、常温且つ0.1mol/Lの塩酸を24時間かけてビーカー内に1cc滴下し、温水中の電極内部に存在する苛性ソーダに起因するアルカリ分を中和除去した。この酸洗浄は、中和反応指示薬であるフェノールフタレインが紫色から無色に変色するまでおこなった。
【0042】
更に、塩酸洗浄後のガス拡散陰極を120℃、24時間の乾燥処理をおこない電極内部の水分を除去した。
上記の酸洗浄処理をおこなったガス拡散陰極を、プレス機(RIKEN SEIKI CO.LTD製 RIKEN P−1B)に設置し、プレス圧力5MPa、温度280℃、プレス時間5分のプレス条件でプレス処理した。
【0043】
上記の電極性能回復処理をおこなったガス拡散陰極を、イオン交換膜食塩電解用電解槽を用いて再度、電流密度0.3A/cm2、陽極室、陰極室並びにガス室温度88℃、苛性ソーダ濃度32wt%、酸素ガス流量52.5Ncc/min(酸素濃度93%)の条件にて食塩電解をおこなった結果、過電圧は0.46Vまで低下し、抵抗も0.60Vまで低下した。酸洗浄及びプレス処理により電極性能(過電圧及び抵抗損)は100%回復した。その後電解を約20日継続したが、ガス拡散陰極は安定した性能を維持した。この約40日間の電解操作における運転日数と過電圧及び抵抗損との関係を図3のグラフに示した。
【0044】
【発明の効果】
本発明は、電解に使用して電極性能の低下したガス拡散電極をプレス処理して生成した細孔を潰して性能回復を行い、又は洗浄とプレスの組合わせ処理を行うガス拡散電極の性能回復方法である。
本発明方法によると、電解により苛性ソーダ等が電極内部に浸入することにより形成され、抵抗増大等の性能劣化の原因となる細孔がプレス処理により塞がれあるいは潰されて電解開始時に近い状態に復帰する。
更にこのプレス処理の前後いずれかで、特にプレス処理の前に水や酸を使用してガス拡散電極の洗浄を行うと、苛性ソーダ等に起因するアルカリ分や他の不純物を洗浄除去でき、洗浄とプレスの組合せ効果により、低下前の性能、つまり運転開始当初の過電圧に対しほぼ100%に近い電極性能回復が可能となる。
【図面の簡単な説明】
【図1】本発明に使用できるイオン交換膜食塩電解槽を説明する概略図である。
【図2】本発明の実施例1の電極性能の推移を示すグラフである。
【図3】本発明の実施例2の電極性能の推移を示すグラフである。
【符号の説明】
1……電解槽、2……イオン交換膜、3……陽極、4……陽極室、5……酸素ガス陰極、5A……反応層、5B……ガス供給層、6……陰極室、7……ガス室、8……多孔体給電体、9……酸素ガス供給管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering the electrode performance of a gas diffusion electrode whose performance has deteriorated when used for electrolysis, particularly a gas diffusion electrode whose performance has deteriorated when used as a cathode in an ion exchange membrane salt electrolysis method.
[0002]
[Prior art]
A method for producing caustic soda by electrolyzing saturated saline by an ion exchange membrane method using a gas diffusion electrode, for example, an oxygen cathode, is known. In this ion exchange membrane salt electrolysis method, generally, an anode chamber having an anode and containing a sodium chloride aqueous solution and a cathode chamber having a cathode and containing water or a sodium hydroxide aqueous solution are partitioned by a cation exchange membrane. When electrolysis is performed by supplying a current between the electrodes, the cathode chamber is formed by electrolysis using a gas diffusion electrode (so-called oxygen cathode) which is made of a porous material as a cathode and is electrolyzed while supplying an oxygen-containing gas. To obtain caustic soda.
[0003]
In the electrolysis method using a gas diffusion electrode as the cathode, hydrogen gas is not generated at the cathode, so the theoretical decomposition voltage can be reduced by about 1 V compared with a normal hydrogen generation type electrolysis method, and the power cost is about 30%. It has the advantage that it can be reduced.
[0004]
In the development of ion exchange membrane salt electrolysis using these gas diffusion electrodes, attention has been paid only to the production method and performance improvement of the gas diffusion electrode. There has been little consideration regarding the recovery of electrode performance that has decreased.
From this point of view, the present applicant has proposed a method for recovering the performance by washing a gas diffusion electrode whose electrode performance has been lowered by using it for electrolysis for producing caustic soda (Japanese Patent Application No. 2001-342352).
[0005]
[Problems to be solved by the invention]
Although this method itself is useful for recovering the performance of a deteriorated gas diffusion electrode, it is naturally desirable that the performance recovery of the gas diffusion electrode can be achieved more efficiently.
Therefore, the present invention is more effective when combined with a method for recovering the deterioration of the electrode performance by clarifying the cause of the deterioration of the gas diffusion electrode whose electrode performance has deteriorated and removing the cause, particularly by a performance recovery method by cleaning treatment. It is an object of the present invention to provide a method for recovering deterioration in electrode performance.
[0006]
[Means for Solving the Problems]
It has already become clear from the analysis of the deteriorated electrode that the deterioration of the gas diffusion electrode for salt electrolysis and the like is mainly caused by the progress of wetting inside the electrode (infiltration of caustic soda solution or the like as the electrolyte).
[0007]
Based on this analysis result, it is possible to remove caustic soda or the like that causes wetting from the gas diffusion electrode by washing with an aqueous solution, and to recover the electrode performance at a high performance.
[0008]
As a result of cross-sectional observation and pore distribution analysis of the deteriorated electrode, it was confirmed that the deteriorated electrode had more pores in the gas supply layer inside the electrode than the unused electrode. Moreover, it was recognized that the electrode which cleaned the deterioration electrode with aqueous solution has many pores which exist in an inside of an electrode compared with a deterioration electrode. The existence of these pores is presumed to be a result of the pore volume being increased by the penetration of the electrolyte such as caustic soda into the electrode (progress of wetting).
[0009]
Furthermore, assuming that electrode resistance may increase due to the large number of pores present in the electrode, it may also cause deterioration, and intensive research was conducted to restore the electrode performance at high performance by closing or crushing the pores. As a result, the present invention has been completed.
[0010]
That is, the present invention is a method for recovering the performance of a gas diffusion electrode that recovers performance by crushing generated pores by first pressing a gas diffusion electrode that has been used for electrolysis and having reduced electrode performance, Second, there is a method for recovering the performance of the gas diffusion electrode, which is performed by combining the cleaning treatment and the press treatment on the gas diffusion electrode whose electrode performance has deteriorated.
[0011]
The gas diffusion electrode subject to performance recovery by the method of the present invention is an electrode used as a cathode for caustic soda production mainly using a two-chamber electrolytic cell, but is not limited to this. For example, organic electrolysis, ozone electrolysis In addition, gas diffusion anodes and gas diffusion cathodes whose performance is deteriorated by use in three-chamber type electrolysis and the like are included.
The gas diffusion electrode preferably has a two-layer structure having a reaction layer made of a catalyst, hydrophilic carbon, hydrophobic carbon and polytetrafluoroethylene (PTFE) and a gas supply layer made of hydrophobic carbon and PTFE. The gas diffusion electrode having a two-layer structure is manufactured by filling a gas supply layer with a silver mesh as a current collector, further applying a reaction layer on the surface of the gas supply layer, and then hot pressing.
[0012]
The gas supply layer is produced by dispersing, mixing and filtering hydrophobic carbon black and PTFE dispersion and forming a sheet. The reaction layer is prepared by dispersing, mixing, and filtering silver fine particles, PTFE dispersion, hydrophilic carbon black, and hydrophobic carbon black.
In addition, a gas diffusion electrode in which a catalyst layer is formed on the surface of the reaction layer and / or the gas supply layer can be used. This catalyst layer contains catalyst fine particles, PTFE powder of about 0.005 to 100 μm, naphtha, etc. It is produced by a method of applying and fixing a paste-like material mixed with the above solvent on the surface, a method of applying a catalyst metal salt solution to the surface and baking, or a method of electroplating or electroless plating using a reducing agent. it can.
[0013]
The present invention can be preferably applied to a gas diffusion electrode having a two-layer structure having the reaction layer and the gas supply layer, but other gas diffusion electrodes such as catalyst fine particles, PTFE dispersion, carbon black on a current collector. Can be used for a gas diffusion electrode comprising a single layer containing a catalyst. In addition, a gas diffusion electrode in which a catalyst layer is formed in the same manner as described above on the surface of a gas diffusion electrode composed of a single layer formed from a PTFE dispersion and a carbon black dispersion without containing catalyst fine particles on the current collector. Can also be used.
[0014]
As a catalyst, metals, such as platinum, copper, silver, cobalt, and lead, or those oxides are preferable. As a current collector, corrosion-resistant titanium, niobium, tantalum, stainless steel, nickel, zirconium, carbon and silver metal or alloy wire mesh, fired body made of the metal or alloy powder, metal or alloy fiber fired body Also, a foam or the like can be used.
[0015]
These gas diffusion electrodes are usually used as the cathode of a salt electrolytic cell, particularly an ion exchange membrane salt electrolytic cell. As the ion exchange membrane, it is preferable to use a fluororesin-based corrosion resistant membrane.
[0016]
As the anode, it is preferable to use a porous electrode in which a noble metal oxide mainly composed of RuO 2 / TiO is supported on a titanium base called DSE (registered trademark, manufactured by Permelec Electrode Co., Ltd.). This anode is preferably used in close contact with the ion exchange membrane.
[0017]
When the gas diffusion electrode is incorporated as an anode in, for example, an ion exchange membrane electrolytic cell for producing caustic soda by salt electrolysis and energized so that the concentration of caustic soda in the cathode chamber is, for example, 25 to 40%, a gas diffusion electrode layer having a single layer structure In the case of a gas diffusion electrode having a two-layer structure, wetting of the gas supply layer proceeds, oxygen gas diffusion in the gas supply layer is inhibited, the overvoltage of the gas diffusion electrode increases, and the electrode performance decreases.
[0018]
If the electrolysis is continued, the gas diffusion electrode gradually deteriorates as described above, but it is usually recognized that the electrode performance of the gas diffusion electrode is lowered when the overvoltage is increased by 0.20 V or more from the initial value. The overvoltage of the electrode showing the electrode performance can be measured by a current interrupter method or the like.
When the electrode performance deteriorates, the electrolytic cell for ion exchange membrane salt and the like can be disassembled, and the gas diffusion electrode with the reduced electrode performance can be removed from the electrolytic cell and subjected to the electrode performance recovery treatment according to the present invention.
[0019]
In the electrode performance recovery method according to the present invention, a gas diffusion electrode whose electrode performance has deteriorated is placed in a press machine or the like and pressed under a certain condition for a certain time.
That is, when it is determined that the electrode performance has been lowered due to an increase in the resistance value or the like, the ion exchange membrane salt electrolytic cell is disassembled, and the gas diffusion electrode having the lowered electrode performance is removed from the electrolytic cell and subjected to press treatment. Alternatively, the performance may be recovered by performing a press process after the cleaning process or by performing a cleaning process after the pressing process.
When the press treatment is performed, the pores of the gas diffusion electrode in which pores are generated by electrolysis are blocked or crushed, the density approaches the value at the start of electrolysis and the resistance value further decreases, and at the start of electrolysis Approaches the value of. Therefore, it can be estimated that the electrode performance is restored by restoring the gas diffusion electrode to a state close to the state at the start of electrolysis by the press treatment.
[0020]
The press conditions for the electrode performance recovery process and the press machine to be used are not particularly limited, but the press machine preferably has a heating function. As pressing conditions, the pressure is usually in the range of 0.1 MPa to 60 MPa, and particularly preferably in the range of 1 MPa to 10 MPa. The temperature is usually preferably in the range of 10 ° C to 500 ° C, particularly in the range of 200 ° C to 400 ° C. The time for the press treatment is usually set in the range of 1 second to 1 hour, and preferably 1 minute to 30 minutes.
[0021]
In addition, as a result of investigating the progress of caustic soda present in the gas diffusion electrode after salt electrolysis into the electrode (progress of wetting) by sodium distribution analysis of the electrode cross section, the present inventors found that the electrode performance did not change. In comparison, it was found that sodium penetrated considerably into the gas supply layer inside the reaction layer in the electrode with poor electrode performance. From this result, as the wetting in the gas supply layer spreads inside the electrode, the range occupied by the caustic soda solution increases, and the oxygen gas diffusion in the gas supply layer is inhibited and the performance of the electrode is reduced. It has been found that it is effective to remove the inhibiting elements by washing.
[0022]
In the method of the present invention, as described above, a method for recovering the performance of the gas diffusion electrode with a higher recovery rate can be provided by performing a combination of pressing and cleaning in addition to the pressing process alone.
In other words, a gas diffusion electrode having deteriorated electrode performance, in particular, a gas diffusion electrode having a two-layer structure, can be restored to the performance before deterioration by performing a cleaning treatment before the press treatment. This cleaning process is preferably performed with water and / or acid from both sides, and the cleaning effect from the gas supply layer alone is not so high. The reason for this can be assumed that the gas supply layer has a structure with high water repellency and inhibits the progress of the aqueous solution into the electrode.
[0023]
The acid is used because of the high cleaning ability and the gas diffusion electrode whose electrode performance is deteriorated due to permeation of alkali such as caustic soda which is often generated in the cathode chamber, and the pH is adjusted to 7-0 by acid treatment. This is for the purpose of efficiently removing caustic soda and the like.
Acids that can be used include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and acetic acid, but are not particularly limited. The concentration is used in the range of 0.01 to 10 mol / L, but 0.1 to 10 mol / L is particularly preferable. The temperature is from 10 ° C to 100 ° C, preferably in the range of 20 ° C to 80 ° C. As a specific cleaning means, there is immersion of the gas diffusion electrode in water or an acid aqueous solution, and this immersion may or may not be accompanied by stirring. In addition to this immersion, there are sprays of water and aqueous acid solutions.
[0024]
As an example of the electrode performance recovery method by the above immersion, put a gas diffusion electrode with reduced electrode performance into a glass beaker, and after adding distilled water until the gas diffusion electrode sinks to the bottom of the beaker, stir the water, There is a method of washing and removing alkali components caused by caustic soda present in the electrode over a period of about 2 to 3 weeks. The cleaning removal time in the above electrode performance recovery method can be shortened by a method of cleaning the electrode while adding an acid. Electrode cleaning with an acid is a method in which acid is dropped while stirring distilled water, and the alkali content is neutralized and removed until the phenolphthalein, which is a neutralization reaction indicator, turns from purple to colorless. This acid cleaning can shorten the cleaning removal time for about one week.
[0025]
Further, as a method that can shorten the washing and removing time, there is a method that uses distilled water as hot water. The cleaning removal time required by electrode cleaning with warm water and acid is within one day, which is most suitable as a method for recovering electrode performance. The drying treatment is preferably performed on the gas diffusion electrode after the washing treatment at 120 to 200 ° C. for 12 to 24 hours.
[0026]
When using both press treatment and washing treatment, it is desirable to remove the caustic soda in the pores after washing first, and then close the pores by pressing treatment. You can go. In particular, when the press treatment is performed after the cleaning treatment, the performance of the deteriorated electrode can be recovered almost 100%.
[0027]
The gas diffusion electrode subjected to the above-described electrode performance recovery treatment can be electrolyzed again using an ion exchange membrane salt electrolytic cell or the like to confirm the recovery of the electrode performance.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Next, an outline of an electrolytic cell for ion exchange membrane salt electrolysis using a general gas diffusion electrode will be described with reference to FIG.
The electrolytic cell 1 is divided into an anode chamber 4 having a porous plate-like anode 3 and a cathode chamber 6 by an ion exchange membrane 2, and a gas diffusion electrode 5 is used as a cathode. This is a three-chamber electrolytic cell partitioned into a solution chamber 6 and a gas chamber 7 on the opposite side. The gas diffusion electrode 5 has a two-layer structure in which a reaction layer 5A on the solution chamber 6 side and a gas supply layer 5B on the gas chamber 7 side are bonded together.
[0029]
The gas diffusion electrode 5 is supplied with power by a porous power supply 8 in close contact with the back surface of the gas supply layer 5B, and oxygen gas is supplied from an oxygen gas supply pipe 9 installed on the back surface side. The supplied oxygen gas permeates through the gas supply layer 5B of the electrode 5 and reacts with water and sodium ions transferred from the anode chamber 4 through the ion exchange membrane 2 on the electrode catalyst existing in the reaction layer 5A. To produce caustic soda.
[0030]
In the example of FIG. 1, the gas diffusion electrode 5 is disposed away from the ion exchange membrane 2, but this gas diffusion electrode 5 is in close contact with the ion exchange membrane 2 to form a two-chamber electrolytic cell, and resistance loss caused by the electrolytic solution It may be installed to minimize this.
When salt electrolysis is performed for a long time using such an electrolytic cell 1, the overvoltage rises and the electrode performance deteriorates. When this state is reached, the electrolytic cell 1 is disassembled, the gas diffusion electrode 5 is taken out, and the performance of the gas diffusion electrode 5 is recovered by performing the press treatment alone or combining the washing and the press treatment. When the gas diffusion electrode whose performance has been restored is attached to the electrolytic cell 1 again and energization is resumed, electrolysis in an efficient state with reduced overvoltage can be continued.
[0031]
[Example]
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to this example.
[0032]
Example 1
The gas diffusion electrode for the cathode was produced as follows.
In other words, a mixture of PTFE dispersion (D-1 manufactured by Daikin Industries, Ltd.) and hydrophobic carbon black (AB-6, manufactured by Denki Kagaku Kogyo Co., Ltd., in an average particle size of 50 nm) at a weight ratio of 4: 6 was used as a surfactant ( Triton X-100) was dispersed and mixed in 100 parts by weight of an aqueous solution containing 20% by weight, and filtered to obtain a gas supply layer mud. This mud was rolled to prepare a gas supply layer sheet having a thickness of 1 mm, and a silver net larger than the size of the sheet was embedded in the sheet to obtain a gas supply layer with a current collector.
[0033]
Silver fine particles (Tanaka Kikinzoku Kogyo, average particle size 1 μm) and PTFE dispersion (Daikin Kogyo D-1), hydrophilic carbon black (Electrochemical Industry AB-11, average particle size 40 nm), hydrophobic carbon black ( 100% by weight of an aqueous solution containing 20% by weight of a surfactant (Triton X-100) obtained by mixing AB-6 manufactured by Denki Kagaku Kogyo Co., Ltd. (average particle size 50 nm) at a weight ratio of 20: 1: 1: 1. The mixture was dispersed, mixed, and filtered to obtain a reaction layer mud. This mud was applied to the surface of the gas supply layer with a thickness of 100 μm to obtain a two-layer structure of the gas supply layer and the reaction layer.
Next, after extracting the surfactant with ethanol, a gas diffusion cathode was prepared by hot pressing under conditions of 380 ° C., 4.9 MPa, and 60 seconds.
[0034]
As an anode, DME (registered trademark) manufactured by Permelec Electrode was used, and as an ion exchange membrane, AF-4202 manufactured by Asahi Kasei was used.
A salt electrolytic cell having an electrolytic area of 33 cm 2 as shown in FIG. 1 was constructed using the gas diffusion cathode, anode and ion exchange membrane described above.
[0035]
Salt electrolysis is performed under the conditions of a current density of 0.3 A / cm 2 , an anode chamber, a cathode chamber (solution chamber), a gas chamber temperature of 88 ° C., a caustic soda concentration of 32 wt%, and an oxygen gas flow rate of 52.5 Ncc / min (oxygen concentration of 93%). In about one year.
[0036]
As a result of measuring the electrode overvoltage showing the electrode performance by the current interrupter method, the overvoltage of the gas diffusion cathode at the beginning of the salt electrolysis experiment was 0.5 V, and after about 100 days, it decreased to 0.45 V after about one year. Increased to 0.62 V, and the resistance increased from 0.58 V to 0.75 V. Therefore, it was determined that the electrode performance was reduced, and the electrolysis was terminated.
Subsequently, the electrolytic cell for ion exchange membrane salt electrolysis was disassembled, and the gas diffusion cathode whose electrode performance was lowered was removed.
[0037]
As a method for recovering the electrode performance, a gas diffusion cathode with reduced electrode performance was placed in a press machine (RIKEN P-1B manufactured by RIKEN SEIKI CO. LTD), press pressure of 5 MPa, 20 ° C. without temperature heating, press time of 10 minutes The deteriorated cathode was pressed under conditions.
[0038]
As a result of performing salt electrolysis again on the gas diffusion cathode subjected to the above electrode performance recovery treatment using an electrolytic cell for ion exchange membrane salt electrolysis, the overvoltage was reduced to 0.50 V and the resistance was also reduced to 0.60 V. . The electrode performance (overvoltage and resistance) recovered almost 80% by the press treatment. Thereafter, electrolysis was continued for about 100 days, but the gas diffusion cathode maintained stable performance. The relationship between the number of operating days, overvoltage, and resistance loss in the electrolysis operation over the past year is shown in the graph of FIG.
[0039]
(Example 2)
Using the same electrode as in Example 1 and an electrolytic cell for ion exchange membrane salt electrolysis, current density 0.3 A / cm 2 , anode chamber, cathode chamber and gas chamber temperature 88 ° C., caustic soda concentration 32 wt%, oxygen concentration 15% Salt electrolysis was performed for about 20 days under acceleration conditions (oxygen gas flow rate 52.5 Ncc / min and nitrogen gas flow rate 210 Ncc / min).
[0040]
As a result of measuring the electrode overvoltage indicating the electrode performance by the current interrupter method, the overvoltage of the gas diffusion cathode at the initial stage of the salt electrolysis experiment was 0.52 V, and after about 80 days, it decreased to 0.44 V after 80 days. The voltage rose to 0.94 V, and the resistance rose from 0.60 V to 0.68 V. Therefore, it was judged that the electrode performance was lowered, and electrolysis was terminated.
Subsequently, the electrolytic cell for ion exchange membrane salt electrolysis was disassembled, and the gas diffusion cathode whose electrode performance was lowered was removed.
[0041]
The cathode having a deteriorated electrode performance was washed as follows. In other words, a gas diffusion cathode with reduced electrode performance is placed in a glass beaker, and distilled water is added until the gas diffusion cathode sinks to the bottom of the beaker, and then the beaker is heated to bring the internal temperature of the beaker to 70 ° C. While holding, 1 cc of hydrochloric acid at room temperature and 0.1 mol / L was dropped into a beaker over 24 hours to neutralize and remove the alkali content caused by caustic soda present in the electrode in warm water. This acid washing was performed until the phenolphthalein, which is a neutralization reaction indicator, turned from purple to colorless.
[0042]
Further, the gas diffusion cathode after washing with hydrochloric acid was dried at 120 ° C. for 24 hours to remove moisture inside the electrode.
The gas diffusion cathode subjected to the above acid cleaning treatment was installed in a press machine (RIKEN P-1B manufactured by RIKEN SEIKI CO. LTD), and pressed under the press conditions of a press pressure of 5 MPa, a temperature of 280 ° C., and a press time of 5 minutes. .
[0043]
The gas diffusion cathode subjected to the above electrode performance recovery treatment is again used with an electrolytic cell for ion exchange membrane salt electrolysis, current density 0.3 A / cm 2 , anode chamber, cathode chamber and gas chamber temperature 88 ° C., caustic soda concentration. As a result of performing salt electrolysis under the conditions of 32 wt% and an oxygen gas flow rate of 52.5 Ncc / min (oxygen concentration 93%), the overvoltage decreased to 0.46 V and the resistance also decreased to 0.60 V. The electrode performance (overvoltage and resistance loss) recovered 100% by the acid cleaning and press treatment. Thereafter, electrolysis was continued for about 20 days, but the gas diffusion cathode maintained stable performance. The relationship between the number of operating days, overvoltage, and resistance loss in the electrolysis operation for about 40 days is shown in the graph of FIG.
[0044]
【The invention's effect】
The present invention recovers the performance of a gas diffusion electrode which is used for electrolysis and recovers performance by crushing the pores generated by pressing the gas diffusion electrode which has deteriorated electrode performance, or by combining cleaning and pressing. Is the method.
According to the method of the present invention, caustic soda or the like is infiltrated into the electrode by electrolysis, and the pores that cause performance deterioration such as resistance increase are blocked or crushed by the press treatment so that they are close to the start of electrolysis. Return.
Furthermore, if the gas diffusion electrode is cleaned using water or acid before or after the pressing process, alkali and other impurities caused by caustic soda can be cleaned and removed. Due to the combined effect of the press, it is possible to recover the performance before the decrease, that is, the electrode performance close to 100% with respect to the overvoltage at the start of operation.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view illustrating an ion exchange membrane salt electrolyzer that can be used in the present invention.
FIG. 2 is a graph showing transition of electrode performance in Example 1 of the present invention.
FIG. 3 is a graph showing transition of electrode performance in Example 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell, 2 ... Ion exchange membrane, 3 ... Anode, 4 ... Anode chamber, 5 ... Oxygen gas cathode, 5A ... Reaction layer, 5B ... Gas supply layer, 6 ... Cathode chamber, 7: Gas chamber, 8: Porous power feeder, 9: Oxygen gas supply pipe.

Claims (9)

電解に使用して電極性能の低下したガス拡散電極をプレス処理することにより、生成した細孔を潰して性能回復を行うことを特徴とするガス拡散電極の性能回復方法。A method for recovering the performance of a gas diffusion electrode, characterized in that the performance is recovered by crushing the generated pores by pressing a gas diffusion electrode that has been used for electrolysis and whose electrode performance has deteriorated. 電解に使用して電極性能の低下したガス拡散電極を洗浄した後、プレス処理することにより、生成した細孔を潰して性能回復を行うことを特徴とするガス拡散電極の性能回復方法。A method for recovering the performance of a gas diffusion electrode, comprising: cleaning a gas diffusion electrode having deteriorated electrode performance used for electrolysis, and then performing press treatment to recover the performance by crushing the generated pores . 電解に使用して電極性能の低下したガス拡散電極をプレス処理することにより、生成した細孔を潰した後、洗浄することを特徴とするガス拡散電極の性能回復方法。A method for recovering the performance of a gas diffusion electrode, comprising: pressing a gas diffusion electrode that has been used for electrolysis and having the electrode performance deteriorated to crush the generated pores , and then cleaning. 電解反応が食塩電解による苛性ソーダ生成反応であり、洗浄によりガス拡散電極内部の苛性ソーダに起因するアルカリ分を除去する請求項2又は3に記載の性能回復方法。The performance recovery method according to claim 2 or 3, wherein the electrolytic reaction is a caustic soda generation reaction by salt electrolysis, and alkali content caused by caustic soda inside the gas diffusion electrode is removed by washing. ガス拡散電極が反応層及びガス供給層からなる2層構造を有する電極である請求項1〜4のいずれか1項に記載の性能回復方法。Performance recovery method according to any one of claims 1 to 4 gas diffusion electrode is an electrode having a two-layer structure consisting of the reaction layer and gas supply layer. プレス処理として加熱プレスを使用する請求項1〜5のいずれか1項に記載の性能回復方法。Performance recovery method according to any one of claims 1 to 5 using a heated press as a press processing. 洗浄を、水及び/又は酸を使用してガス拡散電極の両面から行うようにした請求項2〜5のいずれか1項に記載の性能回復方法。Washed, performance recovery method according to any one of claims 2 to 5 using water and / or acid to perform from both sides of the gas diffusion electrode. 電極性能の低下したガス拡散電極及び水を入れた容器に酸を添加してpHが7〜0になるまで洗浄して性能回復を行うようにした請求項2〜4及び7のいずれか1項に記載の性能回復方法。Any one of claims 2-4 and 7 pH by adding an acid to a vessel containing the reduced gas diffusion electrode and the water electrode performance is to perform the performance recovery is washed until 7-0 The performance recovery method described in 1. 電極性能の低下したガス拡散電極を洗浄処理した後、乾燥処理を施すようにした請求項2〜4、7及び8のいずれか1項に記載の性能回復方法。After cleaning the reduced gas diffusion electrode of the electrode performance, performance recovery method according to any one of claims 2~4,7 and 8 were as subjected to drying treatment.
JP2002326595A 2002-11-11 2002-11-11 Performance recovery method of gas diffusion electrode Expired - Fee Related JP3869350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326595A JP3869350B2 (en) 2002-11-11 2002-11-11 Performance recovery method of gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326595A JP3869350B2 (en) 2002-11-11 2002-11-11 Performance recovery method of gas diffusion electrode

Publications (2)

Publication Number Publication Date
JP2004162086A JP2004162086A (en) 2004-06-10
JP3869350B2 true JP3869350B2 (en) 2007-01-17

Family

ID=32805480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326595A Expired - Fee Related JP3869350B2 (en) 2002-11-11 2002-11-11 Performance recovery method of gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP3869350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120048741A1 (en) 2006-11-28 2012-03-01 Miox Corporation Electrolytic On-Site Generator

Also Published As

Publication number Publication date
JP2004162086A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4927006B2 (en) Cathode for hydrogen generation
US7232509B2 (en) Hydrogen evolving cathode
JP4142191B2 (en) Method for producing activated cathode
CN102766882B (en) A kind of preparation method analysing chlorine DSA electro catalytic electrode of three-dimensional structure
JP2006515389A5 (en)
JP4673628B2 (en) Cathode for hydrogen generation
EP2004879A2 (en) Gas-diffusion electrode for electrolyte-percolating cells
US7211177B2 (en) Electrode for electrolysis in acidic media
US5015344A (en) Electrodes with dual porosity
JP5632780B2 (en) Electrolytic cell manufacturing method
JP5042389B2 (en) Active cathode for hydrogen generation
JP3869350B2 (en) Performance recovery method of gas diffusion electrode
CN113699540B (en) Preparation method of disinfectant
JP3769492B2 (en) Performance recovery method of gas diffusion electrode
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
NO861978L (en) CATALYTIC COMPOSITION MATERIALS, SPECIFICALLY FOR ELECTROLYSE ELECTRODES, AND MANUFACTURING METHOD.
JP6438744B2 (en) Method for activating electrolysis cathode
JP2012077381A (en) Method for manufacturing transport- and storage-stable oxygen-consuming electrode
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JP5271429B2 (en) Cathode for hydrogen generation
JP2019210541A (en) Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure
JP3875808B2 (en) Electrode for producing hydrogen peroxide and method for producing the same
JP2015017324A (en) Method of producing transportation- and storage-stable oxygen consumption electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350