JP3264534B2 - Gas electrode structure and electrolysis method using the structure - Google Patents

Gas electrode structure and electrolysis method using the structure

Info

Publication number
JP3264534B2
JP3264534B2 JP35263192A JP35263192A JP3264534B2 JP 3264534 B2 JP3264534 B2 JP 3264534B2 JP 35263192 A JP35263192 A JP 35263192A JP 35263192 A JP35263192 A JP 35263192A JP 3264534 B2 JP3264534 B2 JP 3264534B2
Authority
JP
Japan
Prior art keywords
gas
electrode
exchange resin
porous substrate
gas electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35263192A
Other languages
Japanese (ja)
Other versions
JPH06173060A (en
Inventor
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP35263192A priority Critical patent/JP3264534B2/en
Publication of JPH06173060A publication Critical patent/JPH06173060A/en
Application granted granted Critical
Publication of JP3264534B2 publication Critical patent/JP3264534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学プロセスに使
用する省電力型ガス電極構造体及び該構造体を使用する
電解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power-saving gas electrode structure used in an electrochemical process and an electrolysis method using the structure.

【0002】[0002]

【従来技術とその問題点】電気化学プロセス用電極とし
て旧来は、電極として使用されたときに十分に耐久性を
有する導電性物質が使用されてきた。即ち陰極としては
陰分極時に安定で入手しやすい鉄やニッケル等が使用さ
れ、陽極としては溶解してしまう通常の金属ではなくグ
ラファイト質の炭素が使用されてきた。又チタン等の弁
金属がそのままでは不働態化してしまうが陽分極に対し
極めて安定である性質を利用して電極基体としての前記
弁金属上に該弁金属の不働態化防止用及び電極物質とし
て機能する白金族金属やその酸化物を被覆して調製され
る電極が使用されてきている。この他に導電性酸化物で
ある酸化鉛や酸化マンガンもそれ自身では物理的強度や
導電性が不十分であるが、チタン等の基体上に前記物質
を被覆することにより電極として実用化されている。
2. Description of the Related Art Conventionally, as an electrode for an electrochemical process, a conductive material having sufficient durability when used as an electrode has been used. That is, iron or nickel which is stable and easily available at the time of negative polarization is used as a cathode, and graphite carbon is used as an anode instead of a usual metal which dissolves. In addition, a valve metal such as titanium is passivated as it is, but is extremely stable against anodic polarization, and is used on the valve metal as an electrode substrate to prevent passivation of the valve metal and as an electrode material. Electrodes prepared by coating a functional platinum group metal or its oxide have been used. In addition, lead oxide and manganese oxide, which are conductive oxides, themselves have insufficient physical strength and conductivity, but have been put into practical use as electrodes by coating the above substance on a substrate such as titanium. I have.

【0003】これらの電極では陰極で水素が発生し陽極
では酸素やハロゲンを発生しながら電解液中に電流を流
しかつ目的とする電解反応を進行させたり、電解塩分離
を行ったりしている。これらの陽極や陰極では発生ガス
が目的の製品でないことが多く、このガス発生に必要と
するエネルギーが極めて大きくエネルギーロスになって
しまうという問題点がある。この欠点を解消するために
例えば陰極室に酸素含有ガスを供給して該陰極室で発生
する水素と反応させて水素ガス発生に要するエネルギー
の浪費を回避してエネルギー消費量を減少させあるいは
エネルギー回収を行いながら電解したり、あるいは陰極
室で発生する水素を陽極室に循環させて陽極室で発生す
る酸素と反応させて同様にエネルギー消費を減少させな
がら電解するいわゆるガス電極が知られている。
[0003] In these electrodes, a current is caused to flow in an electrolytic solution while generating hydrogen at the cathode and oxygen and halogen are generated at the anode, and a desired electrolytic reaction proceeds or electrolytic salt separation is performed. In these anodes and cathodes, the generated gas is often not a target product, and there is a problem in that the energy required for generating the gas is extremely large, resulting in energy loss. In order to solve this drawback, for example, an oxygen-containing gas is supplied to the cathode chamber and reacted with hydrogen generated in the cathode chamber to avoid wasting energy required for hydrogen gas generation, thereby reducing energy consumption or recovering energy. There is known a so-called gas electrode for performing electrolysis while performing hydrogenation, or circulating hydrogen generated in a cathode chamber to react with oxygen generated in the anode chamber to similarly perform electrolysis while reducing energy consumption.

【0004】このガス電極は通常炭素を主とする導電性
物質から成る多孔質構造であり、一方面を疎水性(撥水
性)として電解液の浸透を防止するとともにガス供給が
全面に渡って有効に行えるようにし、他面を電極触媒を
担持した親水性層とし、前記疎水性を浸透してきたガス
と電解液中の電解質が前記親水層面上で反応して減極を
行い、少ない電力で電解を行うようにしている。この電
極では電解実験のような不純物の少ない理想的な電解条
件の場合には問題がないが、工業的に使用される場合に
は、通常電解液中に不純物が含まれこの不純物が電極触
媒を被毒し、又使用される電解液自身に腐食性があると
電極触媒を消耗させるという問題点がある。従来から工
業的な食塩電解つまりクロルアルカリ電解で水素発生な
しに食塩と苛性ソーダを得て電解電圧の低下を図る方法
が提案されているが実用までには至っていない。これは
電極触媒が現在のイオン交換膜法の陰極室での条件つま
り90℃以上の30〜35%の苛性ソーダ中で十分な耐久性が
ないためと考えられており、このような腐食性に対する
耐性と触媒としての活性を合わせ持ち、しかも数年以上
の性能の保持が可能な電極を製造することは現在の技術
をもってしても極めて困難と言わざるを得ない。
The gas electrode has a porous structure which is usually made of a conductive material mainly composed of carbon, and has one surface made hydrophobic (water repellent) to prevent the permeation of the electrolytic solution and to effectively supply the gas over the entire surface. The other surface is a hydrophilic layer carrying an electrode catalyst, and the gas infiltrating the hydrophobicity and the electrolyte in the electrolyte react on the surface of the hydrophilic layer to depolarize, and the electrolysis is performed with a small amount of power. To do. This electrode has no problem under ideal electrolysis conditions with few impurities as in electrolysis experiments, but when it is used industrially, impurities are usually contained in the electrolytic solution and these impurities form the electrode catalyst. If the electrolyte used is poisoned or corrosive, the electrode catalyst is consumed. Conventionally, there has been proposed a method of obtaining salt and caustic soda without generating hydrogen by industrial salt electrolysis, that is, chloralkali electrolysis, to lower the electrolysis voltage, but it has not been put to practical use. This is thought to be due to the fact that the electrode catalyst does not have sufficient durability in the conditions of the current ion exchange membrane method in the cathode chamber, that is, in 30 to 35% caustic soda at 90 ° C or higher. It has to be said that it is extremely difficult to produce an electrode having both the activity as a catalyst and the performance that can be maintained for several years or more even with the current technology.

【0005】[0005]

【発明の目的】本発明は、叙上の問題点を解決し電解液
が腐食性であっても長期間の工業的使用に十分耐え得る
ガス電極構造体及び該構造体を使用する電解方法を提供
することを目的とする。
An object of the present invention is to provide a gas electrode structure which solves the above-mentioned problems and which can sufficiently withstand long-term industrial use even if the electrolyte is corrosive, and an electrolysis method using the structure. The purpose is to provide.

【0006】[0006]

【問題点を解決するための手段】本発明に係わるガス電
極構造体は、耐食性の多孔性基体、該多孔性基体の片面
に形成されたイオン交換樹脂を含む薄層及び該薄層表面
に形成された触媒を担持した炭素質層を含んで成ること
を特徴とするガス電極構造体であり、本発明方法は該ガ
ス電極構造体を陽極又は陰極あるいは陽極及び陰極の両
極として使用する電解方法である。以下本発明を詳細に
説明する。
A gas electrode structure according to the present invention comprises a corrosion-resistant porous substrate, a thin layer containing an ion exchange resin formed on one surface of the porous substrate, and a thin layer formed on the surface of the thin layer. A gaseous electrode structure comprising a carbonaceous layer supporting a catalyst, wherein the gaseous electrode structure is used as an anode or a cathode or as both an anode and a cathode. is there. Hereinafter, the present invention will be described in detail.

【0007】本発明におけるガス電極の特徴は、前述の
従来のガス電極と異なり電解液と接触する側の電極面と
電極触媒を有する炭素質層の間に実質的に液不透過性で
導電性を有するイオン交換樹脂の薄層を設置した点にあ
る。このイオン交換樹脂薄層を設置しないと従来の通り
電解液が電極触媒を有する炭素質層まで到達して該電解
液の腐食性や該電解液に含まれる不純物による電極触媒
の消耗や劣化を招来する。しかしガス電極を使用する電
解反応では電解液が電極触媒と接触する必要はなく、電
解液中の電解質及び該電解質とは別個に供給されるガス
とが電極触媒に接触し所定のイオンが形成されさえすれ
ば十分である。つまり陽極室ではH2 →2H+ +2e-
の式に従って水素イオンが発生し陰極室ではO2 +2H
2 0+4e- →4OH- の式に従って水酸イオンがそれ
ぞれ発生すれば十分である。
A feature of the gas electrode according to the present invention is that, unlike the above-mentioned conventional gas electrode, the liquid electrode is substantially impermeable and conductive between the electrode surface in contact with the electrolyte and the carbonaceous layer having the electrode catalyst. In that a thin layer of ion exchange resin having If the thin layer of the ion exchange resin is not provided, the electrolytic solution reaches the carbonaceous layer having the electrode catalyst as in the related art, causing the corrosiveness of the electrolytic solution and the consumption and deterioration of the electrode catalyst due to impurities contained in the electrolytic solution. I do. However, in the electrolytic reaction using a gas electrode, the electrolytic solution does not need to contact the electrode catalyst, and the electrolyte in the electrolytic solution and the gas supplied separately from the electrolyte contact the electrode catalyst to form predetermined ions. All you need is enough. In other words, in the anode chamber, H 2 → 2H + + 2e
Hydrogen ions are generated according to the following equation, and O 2 + 2H is generated in the cathode chamber.
It is sufficient that hydroxyl ions are respectively generated according to the formula : 20 + 4e → 4OH .

【0008】そして本発明のガス電極では多孔性基体と
電極触媒が担持された炭素質層間にイオン交換樹脂薄層
を設置しているため、該ガス電極により陽極室及び/又
は陰極室が電解液室とガス室に区画され、電解液室側の
電解液中のイオン交換樹脂薄層を透過できる所望の電解
質のみが該薄層を透過して炭素質層に達し電極触媒によ
りガスと反応して所望の電解反応が行われ、かつ生成物
は電場により再度前記薄層を通して電解液室に戻る。従
って電解液中の腐食性物質や不純物がイオン交換樹脂薄
層を透過して炭素質層に到達して電極触媒を劣化させる
ことが殆どなくなり、十分な減極を行って電解電圧の低
下を達成できかつ長寿命のガス電極を提供することがで
きる。
In the gas electrode of the present invention, since the ion exchange resin thin layer is provided between the porous substrate and the carbonaceous layer supporting the electrode catalyst, the anode chamber and / or the cathode chamber are formed by the gas electrode. Only a desired electrolyte that is divided into a chamber and a gas chamber and that can permeate the thin layer of the ion exchange resin in the electrolyte on the electrolyte chamber side reaches the carbonaceous layer through the thin layer and reacts with the gas by the electrode catalyst. The desired electrolytic reaction takes place, and the product is again returned by the electric field through the thin layer to the electrolyte chamber. Therefore, corrosive substances and impurities in the electrolytic solution hardly permeate the ion exchange resin thin layer and reach the carbonaceous layer to deteriorate the electrode catalyst. It is possible to provide a gas electrode which can be used and has a long life.

【0009】本発明に係わるガス電極は陽極及び陰極の
いずれの極としても使用することができ、本発明に係わ
るガス電極の構成部材である前記多孔性基体の材質は使
用する極の特性に応じて適宜選択すれば良く、例えば陽
極としての使用では、強酸性電解液の場合には濾布及び
ガラスフィルター等のセラミクス多孔体や、親水化処理
を行ったポリテトラフルオロエチレン(PTFE)系不
織布やPTFEシート等が望ましく、アルカリ性の場合
には前述の濾布やガラスフィルター等のセラミクスはそ
れ自身が腐食されやすいため使用しないことが好まし
く、親水化処理したPTFE系不織布やPTFEシート
又はポリエチレン等の耐食性を有する樹脂布が望まし
い。特に70℃以上での温度で使用することを考慮すると
フッ素樹脂製とすることが望ましい。陰極として使用す
る場合は電解液が殆ど強アルカリ性であるためフッ素樹
脂系の多孔性材料を使用することが望ましい。
The gas electrode according to the present invention can be used as either an anode or a cathode, and the material of the porous substrate, which is a constituent member of the gas electrode according to the present invention, depends on the characteristics of the pole used. For example, in the case of use as an anode, in the case of a strongly acidic electrolyte, a porous ceramic body such as a filter cloth and a glass filter, a polytetrafluoroethylene (PTFE) -based nonwoven fabric subjected to a hydrophilic treatment, or the like may be used. It is preferable to use a PTFE sheet or the like. In the case of alkaline, it is preferable not to use the ceramics such as the above-mentioned filter cloth and glass filter because the ceramic itself is easily corroded. Corrosion resistance such as a hydrophilicized PTFE-based nonwoven fabric, a PTFE sheet or polyethylene Is preferred. In particular, considering use at a temperature of 70 ° C. or more, it is preferable to use a fluororesin. When used as a cathode, it is desirable to use a fluororesin-based porous material because the electrolyte is almost strongly alkaline.

【0010】この多孔性基体上に被覆形成されるイオン
交換樹脂薄層は、前記ガス電極を陽極として使用する場
合には陽イオン交換樹脂とし、陰極として使用する場合
には陰イオン交換樹脂とすることが望ましい。陽イオン
交換樹脂としては例えばナフィオン(商品名)液と称せ
られる陽イオン交換樹脂液があり、この液を前述のPT
FE系等の多孔性基体に塗布し乾燥又は焼成することに
よりイオン交換樹脂薄層を形成することができ、この薄
層により電極の親水性を保持しながらイオン交換作用を
付与することが可能になる。又陰イオン交換樹脂として
は三アンモニウム系又は四アンモニウム塩系のイオン交
換樹脂があり、この微粉末をフッ素樹脂懸濁液とともに
前記多孔性基体に塗布し焼き付けることにより前記基体
上に被覆することができる。前述の通り陽極として使用
する場合には陽イオン交換樹脂を使用することが好まし
く、特に電位的に電解液より貴であるため陽イオン交換
樹脂を使用しても陽イオンがイオン交換樹脂薄層を通っ
て電極触媒を被毒する可能性は殆どなく支障を来すこと
はないが、陽極にて陰イオン交換樹脂を、陰極に陽イオ
ン交換樹脂を使用することも可能である。
The ion exchange resin thin layer formed on the porous substrate is a cation exchange resin when the gas electrode is used as an anode and an anion exchange resin when the gas electrode is used as a cathode. It is desirable. As the cation exchange resin, there is, for example, a cation exchange resin liquid called Nafion (trade name) liquid.
An ion-exchange resin thin layer can be formed by applying it to a porous substrate such as FE and drying or baking it, and this thin layer can impart an ion-exchange effect while maintaining the hydrophilicity of the electrode. Become. Further, as an anion exchange resin, there is a triammonium or tetraammonium salt ion exchange resin, and this fine powder can be coated on the porous substrate together with a fluororesin suspension by coating and baking to coat the substrate. it can. As described above, when used as an anode, it is preferable to use a cation exchange resin, and in particular, even if a cation exchange resin is used, the cations can form a thin layer of the ion exchange resin because the potential is more noble than the electrolytic solution. Although there is almost no possibility of poisoning the electrode catalyst and causing no problem, it is also possible to use an anion exchange resin at the anode and a cation exchange resin at the cathode.

【0011】このイオン交換樹脂薄層上に被覆される炭
素質層は導電性を有する任意の炭素系材料から形成さ
れ、該材料としてはグラファイト質の炭素が望ましく、
グラファイトの微粉好ましくはサブミクロンサイズを含
む微粉末やピッチ系炭素繊維をフッ素樹脂とともに混練
して前記イオン交換樹脂薄層に焼付けあるいは化学蒸着
法や吹付塗装法等でグラファイト微粉末を付着させると
ともに前記フッ素樹脂をバインダーとして固定して炭素
質層を形成する。
The carbonaceous layer coated on the ion exchange resin thin layer is formed of any conductive carbonaceous material, and the material is desirably graphite carbon.
Fine powder of graphite, preferably fine powder containing submicron size or pitch-based carbon fiber is kneaded with a fluororesin, and the graphite fine powder is attached to the thin layer of the ion exchange resin by baking or chemical vapor deposition or spray coating. A carbonaceous layer is formed by fixing a fluororesin as a binder.

【0012】次いでこの炭素質層に電極触媒を担持させ
る。電極触媒としては好ましくは白金族金属やその酸化
物を使用し、特に白金黒やルテニウム黒が有効であり、
更に酸化ルテニウムや酸化イリジウムも陽極物質として
は特に有効である。これらの電極触媒成分は反応の種
類、経済性及び調製の容易性を考慮して選択すればよ
い。例えば白金を担持させるためには、前記炭素質層の
表面を活性化した後、塩化白金酸等の白金族金属化合物
の水溶液、アルコール溶液又は希塩酸水溶液を塗布し、
200 〜300 ℃で加熱分解するか、前記白金族金属化合物
の水溶液を炭素質層上に塗布し乾燥後、ヒドラジン等の
還元剤水溶液を塗布し100 ℃程度に加熱しその後適宜水
洗及び乾燥等を行えば良い。
Next, an electrode catalyst is supported on the carbonaceous layer. As the electrode catalyst, a platinum group metal or its oxide is preferably used, and platinum black or ruthenium black is particularly effective.
Further, ruthenium oxide and iridium oxide are also particularly effective as anode materials. These electrocatalyst components may be selected in consideration of the type of reaction, economy, and ease of preparation. For example, in order to carry platinum, after activating the surface of the carbonaceous layer, an aqueous solution of a platinum group metal compound such as chloroplatinic acid, an alcohol solution or a diluted hydrochloric acid aqueous solution is applied,
Decompose by heating at 200 to 300 ° C, or apply the aqueous solution of the platinum group metal compound on the carbonaceous layer, dry, apply an aqueous solution of a reducing agent such as hydrazine, heat to about 100 ° C, and then wash with water and dry as appropriate. Just do it.

【0013】このように調製された電極触媒が担持され
たガス電極はこのまま使用しても良いが、湿潤ガスに曝
されることにより結果的に全体が水層で覆われて供給ガ
スとの接触が完全でなくなるとともに耐久性も不十分に
なる可能性がある。そのためには前記ガス電極の表面に
ある程度の疎水性を与えておくことが好ましく、ガス電
極の表面に水溶状のフッ素樹脂液やフッ素樹脂系イオン
交換樹脂液である前述のナフィオン液を塗布し乾燥して
余分を液を除去することにより電極表面の疎水化を達成
することができる。特にナフィオン液は親水的面も有し
保護作用が大であるため特に望ましい。このナフィオン
液の被覆により表面積が小さくなるが、被反応物は気体
であり触媒と接触してイオンとなりイオン交換樹脂薄層
を透過し電解液とともに速やかに除去されるため反応上
は殆ど問題がない。
The gas electrode carrying the electrode catalyst prepared in this manner may be used as it is, but as a result of being exposed to a humid gas, it is entirely covered with an aqueous layer and thus comes into contact with the supply gas. May not be perfect and durability may be insufficient. For this purpose, it is preferable to impart a certain degree of hydrophobicity to the surface of the gas electrode. The surface of the gas electrode is coated with the above-mentioned Nafion liquid, which is a water-soluble fluororesin liquid or a fluororesin-based ion exchange resin liquid, and dried. By removing excess liquid, the electrode surface can be made hydrophobic. In particular, Nafion liquid is particularly desirable because it has a hydrophilic surface and a large protective effect. Although the surface area is reduced due to the coating of the Nafion solution, the reactant is a gas, becomes an ion upon contact with the catalyst, passes through the thin layer of the ion exchange resin, and is quickly removed together with the electrolytic solution, so that there is almost no problem in the reaction. .

【0014】このように調製されたガス電極はそのまま
あるいは100 〜250 ℃で熱処理された後、集電体を接続
し所定用途の電極として使用される。該集電体は従来と
同様の材質及び形状のもの例えば金属の微細孔を有する
メッシュや多孔板を使用すればよい。このガス電極は陽
極と陰極のいずれとしても使用でき、前述の調製工程も
触媒を適宜選択すること以外は同一のプロセスで行うこ
とができる。
The gas electrode thus prepared is used as it is or after being heat-treated at 100 to 250 ° C., connected to a current collector and used as a predetermined electrode. As the current collector, a material having the same material and shape as the conventional one, for example, a mesh having metal fine holes or a perforated plate may be used. This gas electrode can be used as either an anode or a cathode, and the above-mentioned preparation step can be performed by the same process except that a catalyst is appropriately selected.

【0015】次に添付図面に基づいて本発明のガス電極
を説明する。図1は本発明に係わるガス電極を陽極とし
て電解槽に組み込んだ状態を示す概略縦断面図である。
箱型電解槽1はイオン交換膜2により陽極室3と陰極室
4とに区画され、該陽極室3はガス電極5により更に電
解液室6とガス室7に区画されている。前記ガス電極5
は前記イオン交換膜2側から、下端が電解槽底板8に接
触するフッ素樹脂等から形成される多孔性基体9−下端
が電解槽底板8に接触しスルホン酸系フッ素樹脂等から
成る陽イオン交換樹脂と適宜のバインダーから成るイオ
ン交換樹脂薄層10−白金族金属やその酸化物から成る電
極触媒が担持されたグラファイト等から成る炭素質層11
−集電体12の順に積層されて成り、前記多孔性基体9及
びイオン交換樹脂薄層10により電解液室6内の電解液が
ガス室7内に移行することが防止されている。又陰極室
4内には電解液に浸漬したニッケル板等から成る陰極13
が配設されている。
Next, the gas electrode of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic longitudinal sectional view showing a state in which a gas electrode according to the present invention is incorporated in an electrolytic cell as an anode.
The box-shaped electrolytic cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and the anode chamber 3 is further divided by a gas electrode 5 into an electrolyte chamber 6 and a gas chamber 7. The gas electrode 5
Is a porous substrate 9 formed from a fluororesin or the like having a lower end in contact with the electrolytic cell bottom plate 8 from the side of the ion exchange membrane 2-a cation exchange material comprising a sulfonic acid type fluororesin or the like having a lower end in contact with the electrolytic bath bottom plate 8 Ion exchange resin thin layer 10 composed of a resin and an appropriate binder; carbonaceous layer 11 composed of graphite or the like carrying an electrode catalyst composed of a platinum group metal or an oxide thereof.
The porous body 9 and the thin ion-exchange resin layer 10 prevent the electrolyte in the electrolyte chamber 6 from migrating into the gas chamber 7. In the cathode chamber 4, a cathode 13 made of a nickel plate or the like immersed in an electrolytic solution is provided.
Are arranged.

【0016】このガス電極5を有する電解槽1を芒硝電
解用として使用する場合には、陽極室3の電解液室6に
芒硝水溶液を、陰極室4に希薄苛性ソーダ水溶液を、又
陽極室3のガス室7に水素ガスをそれそれ供給しながら
集電体12を通して通電する。電解液室6内の水は多孔性
基体9、イオン交換樹脂薄層10を浸透して電極触媒が担
持された炭素質層11に達し、電解されて酸素イオンを発
生する。この酸素イオンは供給される水素ガスと反応し
て水に変換されるため、ガス発生に要するエネルギー分
だけ低いエネルギーでつまり低電解電圧で電解を進行さ
せることができる。そしてこの電解では電解液室6内の
電解液に含まれる硫酸イオンや他の不純物の透過がイオ
ン交換樹脂薄層10により抑制され電極触媒を劣化させる
恐れのあるこれらの物質が前記電極触媒を有する炭素質
層11に達しないため電極触媒の劣化が抑制され電極触媒
の長寿命化を図ることができる。
When the electrolytic cell 1 having the gas electrode 5 is used for sodium sulfate electrolysis, an aqueous solution of sodium sulfate is used in the electrolytic solution chamber 6 of the anode chamber 3, a dilute aqueous solution of caustic soda is used in the cathode chamber 4, and an aqueous solution of the anode chamber 3 is used. Power is supplied through the current collector 12 while supplying hydrogen gas to the gas chamber 7. Water in the electrolyte chamber 6 permeates the porous substrate 9 and the ion exchange resin thin layer 10 to reach the carbonaceous layer 11 on which the electrode catalyst is supported, and is electrolyzed to generate oxygen ions. Since the oxygen ions react with the supplied hydrogen gas and are converted into water, the electrolysis can be advanced with energy lower than that required for gas generation, that is, at a low electrolysis voltage. In this electrolysis, the permeation of sulfate ions and other impurities contained in the electrolytic solution in the electrolytic solution chamber 6 is suppressed by the ion exchange resin thin layer 10, and these substances which may deteriorate the electrode catalyst have the electrode catalyst. Since the electrode catalyst does not reach the carbonaceous layer 11, deterioration of the electrode catalyst is suppressed, and the life of the electrode catalyst can be extended.

【0017】[0017]

【実施例】次に本発明のガス電極を芒硝電解に適用した
実施例を記載するが、本発明のガス電極及び本発明の電
解方法はこれらに限定されるものではない。
EXAMPLES Next, examples in which the gas electrode of the present invention is applied to Glauber's salt electrolysis will be described, but the gas electrode of the present invention and the electrolytic method of the present invention are not limited thereto.

【実施例1】多孔性基体としてPTFE系繊維の不織布
を使用し、その表面をナトリウム系還元剤である商品名
テトラエッチで処理した後、ナフィオン液を水で希釈し
た液を前記多孔性基体表面全面に塗布し乾燥した。更に
その片面にナフィオン液を約10μmの厚さになるように
塗布し150 ℃で加熱焼付して実質的なイオン交換樹脂薄
層を形成した。
Example 1 A non-woven fabric of PTFE fiber was used as a porous substrate, the surface of which was treated with a sodium-reducing agent (trade name: tetra-etch), and a liquid obtained by diluting Nafion liquid with water was applied to the surface of the porous substrate. It was applied to the entire surface and dried. Further, a Nafion solution was applied to one surface to a thickness of about 10 μm, and heated and baked at 150 ° C. to form a substantially thin ion-exchange resin layer.

【0018】グラファイト微粉末にナフィオン及び水を
バインダーとして加え混練してペースト状とした。この
ペーストを前記イオン交換樹脂薄層表面に塗布し風乾後
150℃で焼き付けて炭素質層を形成した。この炭素質層
表面に、白金として5g/リットルを含む塩化白金酸水
溶液を塗布し乾燥させた。市販のヒドラジンの1:3の
水溶液を前記炭素質層表面に塗布し120 ℃で10分間加熱
し、このヒドラジンの塗布及び加熱の操作を3回繰り返
し、更に120 ℃で1時間保持し、水洗し乾燥してガス電
極を調製した。重量増加から算出した白金担持量は18〜
20g/m2 であった。このガス電極を図1に示すよう
に、デュポン社製のナフィオン324 である陽イオン交換
膜を隔膜とする2室法電解槽に陽極として組み込んだ。
陰極としてラネーニッケルを被覆したニッケルのエクス
パンドメッシュを使用した。
Nafion and water were added as binders to the fine graphite powder and kneaded to form a paste. This paste is applied to the surface of the ion-exchange resin thin layer and air-dried.
It was baked at 150 ° C. to form a carbonaceous layer. An aqueous chloroplatinic acid solution containing 5 g / liter of platinum was applied to the surface of the carbonaceous layer and dried. A commercially available 1: 3 aqueous solution of hydrazine is applied to the surface of the carbonaceous layer and heated at 120 ° C. for 10 minutes. This coating and heating operation of hydrazine is repeated three times, and further maintained at 120 ° C. for 1 hour and washed with water. After drying, a gas electrode was prepared. The platinum loading calculated from the weight increase is 18 ~
It was 20 g / m 2 . As shown in FIG. 1, this gas electrode was incorporated as an anode in a two-chamber electrolytic cell having a cation exchange membrane as Nafion 324 manufactured by DuPont as a diaphragm.
A nickel expanded mesh coated with Raney nickel was used as a cathode.

【0019】陽極室側に20重量%の硫酸ナトリウム(芒
硝)水溶液を、陰極室には脱イオン水を導入し、陰極室
で生成した水素ガスを陽極室に送りかつ理論量の20%に
相当する水素を他の電解槽から水層を通した後に陽極室
に供給し、電流密度を20A/dm2 に維持し陰極室で生成
する苛性ソーダの濃度が15%になるよう調節しながら電
解を行った。余剰の水素は水トラップを通して外部に放
出し、この水トラップを利用して陽極室側の水素の圧力
を大気圧に対して+200 Aqとした。温度70℃における
電圧は2.2 Vであった。
A 20% by weight aqueous solution of sodium sulfate (Glauber's salt) is introduced into the anode compartment and deionized water is introduced into the cathode compartment. The hydrogen gas generated in the cathode compartment is sent to the anode compartment and corresponds to 20% of the theoretical amount. Hydrogen is supplied to the anode chamber after passing through the water layer from another electrolytic cell, and the electrolysis is performed while maintaining the current density at 20 A / dm 2 and adjusting the concentration of caustic soda generated in the cathode chamber to 15%. Was. Excess hydrogen is released to the outside through a water trap, and the pressure of hydrogen on the anode chamber side is set to +200 Aq with respect to the atmospheric pressure using the water trap. The voltage at a temperature of 70 ° C. was 2.2 V.

【0020】[0020]

【比較例1】陽極を実施例1のガス電極に代えてチタン
メッシュ上に酸化イリジウム系被覆を有する寸法安定性
電極を使用し、陰極室で発生する水素を大気に放出した
こと以外は実施例1と同一条件で芒硝電解を行ったとこ
ろ、槽電圧は3.6 Vであり、実施例1の場合より1.4 V
高かった。即ち実施例1の電解ではガス電極を使用しな
い従来の電解の約3分の2の電圧で電解を行うことがで
きる。
COMPARATIVE EXAMPLE 1 A dimensionally stable electrode having an iridium oxide coating on a titanium mesh was used in place of the gas electrode of Example 1 except that the hydrogen generated in the cathode chamber was released to the atmosphere. When the Glauber's salt electrolysis was performed under the same conditions as in Example 1, the cell voltage was 3.6 V, which was 1.4 V higher than in Example 1.
it was high. That is, in the electrolysis of the first embodiment, the electrolysis can be performed at about two-thirds of the voltage of the conventional electrolysis using no gas electrode.

【0021】[0021]

【実施例2】多孔性基体として実施例1と同様にPTF
E系繊維から成る不織布を使用し、前記ナフィオン液を
塗布して半親水性とした。この多孔性基体の片面に、3
級アミン性強酸性陰イオン交換樹脂の粉末をPTFEの
水懸濁液中に混合した懸濁液を塗布し乾燥後、120 ℃で
1時間焼き付けた。この操作を2回繰り返して約30μm
の厚さのイオン交換樹脂薄層を形成した。このイオン交
換樹脂薄層の表面に化学蒸着法で約50μmのグラファイ
ト系炭素から成る炭素質層を形成し、更にルテニウム黒
を分散させたイソプロピルアルコールを塗布した。更に
この表面にPTFEの水懸濁液を薄く塗布し150 ℃で15
分間焼き付けて前記ルテニウム黒を固定し更に表面を半
疎水化した。
Example 2 PTF was used as a porous substrate in the same manner as in Example 1.
A non-woven fabric made of E-based fiber was used, and the above-mentioned Nafion solution was applied to make it semi-hydrophilic. On one side of this porous substrate, 3
A suspension prepared by mixing a powder of a highly amine-based strongly acidic anion exchange resin in an aqueous suspension of PTFE was applied, dried, and baked at 120 ° C. for 1 hour. Repeat this operation twice to obtain about 30 μm
To form a thin layer of an ion exchange resin. A carbonaceous layer of about 50 μm graphite-based carbon was formed on the surface of the ion exchange resin thin layer by a chemical vapor deposition method, and isopropyl alcohol in which ruthenium black was dispersed was applied. Further, apply a thin suspension of PTFE in water on this surface, and
After baking for a minute, the ruthenium black was fixed and the surface was made semihydrophobic.

【0022】このように調製したガス電極を陰極とし陽
イオン交換膜により陽極室及び陰極室に区画された電解
槽の陰極室に取付け、その背面側から理論量に対して30
%過剰になるように水層を通した後の酸素を供給した。
陽極としてはチタンメッシュ上に酸化イリジウムを被覆
した寸法安定性電極を使用し、陽イオン交換膜としてデ
ュポン社製のナフィオン324 を使用した。陽極室側に20
重量%の硫酸ナトリウム水溶液を、陰極室には脱イオン
水を導入し、陰極室で生成する苛性ソーダの濃度が15%
になるよう調節しながら電解を行った。温度70℃におけ
る電圧は2.7 Vであり、通常のガス発生型陰極の場合の
電圧は3.4 Vであり0.7 Vの電圧低下が観察された。な
お実施例1の陽極に比して電圧低下が少ないのは陰イオ
ン交換樹脂部分の電気抵抗が大きいためであると推測さ
れる。
The thus prepared gas electrode is used as a cathode and attached to the cathode compartment of an electrolytic cell partitioned into an anode compartment and a cathode compartment by a cation exchange membrane.
Oxygen after passing through the aqueous layer was supplied in a% excess.
As the anode, a dimensionally stable electrode in which iridium oxide was coated on a titanium mesh was used, and Nafion 324 manufactured by DuPont was used as a cation exchange membrane. 20 on the anode compartment side
Weight% sodium sulfate aqueous solution and deionized water into the cathode compartment. The concentration of caustic soda generated in the cathode compartment is 15%.
The electrolysis was performed while adjusting so that The voltage at a temperature of 70 ° C. was 2.7 V, and the voltage in the case of a normal gas generating cathode was 3.4 V, and a voltage drop of 0.7 V was observed. It is presumed that the voltage drop was smaller than that of the anode of Example 1 because the electric resistance of the anion exchange resin portion was large.

【0023】[0023]

【発明の効果】本発明に係わるガス電極構造体は、耐食
性の多孔性基体、該多孔性基体の片面に形成されたイオ
ン交換樹脂を含む薄層及び該薄層表面に形成された触媒
を担持した炭素質層を含んで成ることを特徴とするガス
電極構造体である。このような構成から成る本発明のガ
ス電極構造体では多孔性基体と電極触媒が担持された炭
素質層間にイオン交換樹脂薄層を設置しているため、該
ガス電極により陽極室及び/又は陰極室が電解液室とガ
ス室に区画され、電解液室側の電解液中のイオン交換樹
脂薄層を透過できる所望の電解質のみが該薄層を透過し
て炭素質層に達し電極触媒によりガスと反応して所望の
電解反応が行われ、かつ生成物は電場により再度前記薄
層を通して電解液室に戻る。従って電解液中の腐食性物
質や不純物がイオン交換樹脂薄層を透過して炭素質層に
到達して電極触媒を劣化させることが殆どなくなり、十
分な減極を行って電解電圧の低下を達成できかつ長寿命
をのガス電極を提供することができる。
The gas electrode structure according to the present invention carries a corrosion-resistant porous substrate, a thin layer containing an ion exchange resin formed on one surface of the porous substrate, and a catalyst formed on the surface of the thin layer. A gas electrode structure comprising a carbonaceous layer formed as described above. In the gas electrode structure of the present invention having such a configuration, since the ion exchange resin thin layer is provided between the porous substrate and the carbonaceous layer supporting the electrode catalyst, the gas electrode forms an anode chamber and / or a cathode. The chamber is divided into an electrolyte chamber and a gas chamber, and only the desired electrolyte that can permeate the thin layer of the ion exchange resin in the electrolyte on the electrolyte chamber side penetrates the thin layer to reach the carbonaceous layer, and the gas is generated by the electrode catalyst. And the desired electrolytic reaction takes place, and the product returns to the electrolyte chamber through the thin layer again by the electric field. Therefore, corrosive substances and impurities in the electrolytic solution hardly permeate the ion exchange resin thin layer and reach the carbonaceous layer to deteriorate the electrode catalyst. It is possible to provide a gas electrode that can be used and has a long life.

【0024】本発明のガス電極は陽極としても陰極とし
ても使用することができ、その調製に際しては電極触媒
そして必要に応じてイオン交換樹脂薄層のイオン交換樹
脂の種類を適宜選択する以外は同一プロセスで調製する
ことができる。又本発明方法は前記ガス電極を陽極及び
/又は陰極として使用する電解方法であり、該電解方法
では前記ガス電極の有する長所つまり電極触媒の劣化を
抑制しながら低電解電圧で所望の電解反応を行わせるこ
とができるという長所をそのまま達成することができ
る。
The gas electrode of the present invention can be used both as an anode and a cathode. The preparation is the same except that the type of the electrode catalyst and, if necessary, the ion exchange resin of the ion exchange resin thin layer are appropriately selected. Can be prepared in the process. The method of the present invention is an electrolysis method using the gas electrode as an anode and / or a cathode. In the electrolysis method, a desired electrolysis reaction can be performed at a low electrolysis voltage while suppressing the advantage of the gas electrode, that is, the deterioration of the electrode catalyst. The advantage of being able to do so can be achieved as it is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるガス電極を陽極として電解槽に
組み込んだ状態を示す概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view showing a state where a gas electrode according to the present invention is incorporated in an electrolytic cell as an anode.

【符号の説明】 1・・・電解槽 2・・・イオン交換膜 3・・・陽極
室 4・・・陰極室 5・・・ガス電極 6・・・電解液室 7・・・ガス室
8・・・底板 9・・・多孔性基体 10・・・イオン
交換樹脂薄層 11・・・炭素質層 12・・・集電体 13
・・・陰極
[Description of Signs] 1 ... Electrolyzer 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber 5 ... Gas electrode 6 ... Electrolyte chamber 7 ... Gas chamber 8・ ・ ・ Bottom plate 9 ・ ・ ・ Porous substrate 10 ・ ・ ・ Ion exchange resin thin layer 11 ・ ・ ・ Carbon layer 12 ・ ・ ・ Current collector 13
···cathode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐食性の多孔性基体、該多孔性基体の片
面に形成されたイオン交換樹脂を含む薄層及び該薄層表
面に形成された触媒を担持した炭素質層を含んで成るこ
とを特徴とするガス電極構造体。
1. A porous substrate comprising a corrosion-resistant porous substrate, a thin layer containing an ion exchange resin formed on one surface of the porous substrate, and a carbonaceous layer carrying a catalyst formed on the surface of the thin layer. Characteristic gas electrode structure.
【請求項2】 イオン交換膜により陽極室及び陰極室に
区画された電解槽の前記陽極室に、耐食性の多孔性基体
の片面に陽イオン交換樹脂を含む薄層を形成し該薄層表
面に触媒を担持した炭素質層を形成して成るガス電極構
造体を前記多孔性基体側のみが電解液に接触するように
配設し、該ガス電極構造体の炭素質層側から湿潤水素を
供給しながら電解を行うことを特徴とする電解方法。
2. A thin layer containing a cation exchange resin is formed on one side of a corrosion-resistant porous substrate in the anode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane. A gas electrode structure formed by forming a carbonaceous layer supporting a catalyst is disposed so that only the porous substrate side is in contact with the electrolytic solution, and wet hydrogen is supplied from the carbonaceous layer side of the gas electrode structure. An electrolysis method characterized by performing electrolysis while performing.
【請求項3】 イオン交換膜により陽極室及び陰極室に
区画された電解槽の前記陰極室に、耐食性の多孔性基体
の片面に陰イオン交換樹脂を含む薄層を形成し該薄層表
面に触媒を担持した炭素質層を形成して成るガス電極構
造体を前記多孔性基体側のみが電解液に接触するように
配設し、該ガス電極構造体の炭素質層側から酸素を含む
湿潤ガスを供給しながら電解を行うことを特徴とする電
解方法。
3. A thin layer containing an anion exchange resin is formed on one surface of a corrosion-resistant porous substrate in the cathode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane. A gas electrode structure formed by forming a carbonaceous layer supporting a catalyst is disposed so that only the porous substrate side is in contact with an electrolytic solution, and the gas electrode structure is wetted with oxygen from the carbonaceous layer side of the gas electrode structure. An electrolysis method characterized by performing electrolysis while supplying gas.
JP35263192A 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the structure Expired - Fee Related JP3264534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35263192A JP3264534B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35263192A JP3264534B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the structure

Publications (2)

Publication Number Publication Date
JPH06173060A JPH06173060A (en) 1994-06-21
JP3264534B2 true JP3264534B2 (en) 2002-03-11

Family

ID=18425368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35263192A Expired - Fee Related JP3264534B2 (en) 1992-12-10 1992-12-10 Gas electrode structure and electrolysis method using the structure

Country Status (1)

Country Link
JP (1) JP3264534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2622073A (en) * 2022-09-01 2024-03-06 Oort Energy Ltd A method for coating a component of an electrolyser

Also Published As

Publication number Publication date
JPH06173060A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US20090293262A1 (en) Bipolar plate for fuel cell and method for manufacturing same
US20120241315A1 (en) Electrolysis device and refrigerator
JPS6143436B2 (en)
JPH11315390A (en) Catalyst for gas diffusion electrode
TW201042801A (en) Structured gas diffusion electrode for electrolysis cells
US5693213A (en) Electrolytic process of salt water
JPH07278864A (en) Gas diffusion electrode
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JP3262408B2 (en) Gas electrode manufacturing method
US4214970A (en) Novel electrocatalytic electrodes
JPH10273791A (en) Water electrolyzing cell
US5733430A (en) Gas diffusion electrode and electrolytic method using it
US6277261B1 (en) Method of producing electrolyte units by electrolytic deposition of a catalyst
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP2020094282A (en) Electrode for water electrolysis and production method thereof
JPS604915B2 (en) Anode for electrolyzer and its manufacturing method
NO861978L (en) CATALYTIC COMPOSITION MATERIALS, SPECIFICALLY FOR ELECTROLYSE ELECTRODES, AND MANUFACTURING METHOD.
JP2012077381A (en) Method for manufacturing transport- and storage-stable oxygen-consuming electrode
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
JP3769492B2 (en) Performance recovery method of gas diffusion electrode
JPH11172484A (en) Gas diffusion electrode structural body and its production
JP3538271B2 (en) Hydrochloric acid electrolyzer
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JP3420400B2 (en) Gas diffusion electrode for electrolysis and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees