JPH0417689A - Electrode for electrolyzing water and production thereof - Google Patents
Electrode for electrolyzing water and production thereofInfo
- Publication number
- JPH0417689A JPH0417689A JP2119871A JP11987190A JPH0417689A JP H0417689 A JPH0417689 A JP H0417689A JP 2119871 A JP2119871 A JP 2119871A JP 11987190 A JP11987190 A JP 11987190A JP H0417689 A JPH0417689 A JP H0417689A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- lead dioxide
- layer
- electrolysis
- fluororesin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 claims abstract description 107
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 50
- 125000001174 sulfone group Chemical group 0.000 claims abstract description 25
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 77
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 31
- 239000011229 interlayer Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract description 2
- 229910006531 α-PbO2 Inorganic materials 0.000 abstract 2
- 239000011529 conductive interlayer Substances 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 abstract 1
- 238000005260 corrosion Methods 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 229910006654 β-PbO2 Inorganic materials 0.000 abstract 1
- 239000003014 ion exchange membrane Substances 0.000 description 11
- 239000007784 solid electrolyte Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- CSLZEOQUCAWYDO-UHFFFAOYSA-N [O-2].[Ti+4].[Ta+5] Chemical compound [O-2].[Ti+4].[Ta+5] CSLZEOQUCAWYDO-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、消毒、水処理、洗浄用等に使用できるオゾン
ガスやオゾン含有水を電解法により製造するための電極
及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrode for producing ozone gas or ozone-containing water, which can be used for disinfection, water treatment, cleaning, etc., by an electrolytic method, and a method for producing the same.
(従来技術とその問題点)
水を電解して水素及び酸素(及びオゾン)を得ることは
従来から広(行われ、例えば電解液を苛性カリ水溶液と
し隔膜を装着した電解槽を使用してオゾン等を製造し、
該オゾンを殺菌等に利用することが従来から行われてい
る。(Prior art and its problems) Hydrogen and oxygen (and ozone) have been obtained by electrolyzing water for a long time. manufacture,
Conventionally, ozone has been used for sterilization and the like.
この水電解によるオゾン製造では、いかにして電力原単
位を低下させあるいは使用する電極を安価に製造して効
率良(電解を行うかに注目が集められている。最近では
、隔膜を例えばスルホン基を有するフン素樹脂系のイオ
ン交換膜とし、該交換膜の両側に陽極活性物質及び陰極
活性物質を被覆し、前記イオン交換膜を固体電解質とし
、陽極側から水を供給して電解を行ういわゆる固体電解
質型電解法が採用されている。この電解法では一般に電
極を隔膜に近接あるいは密着させて電解が行われるが、
隔膜中のスルホン基及びフッ素化合物(フン素樹脂)が
助触媒として機能することから、電解に寄与するのは主
に前記スルホン基の近傍つまりイオン交換膜に近接する
部分の電極物質例えば二酸化鉛のみであると考えられる
。In the production of ozone through water electrolysis, attention has been focused on how to reduce the electricity consumption rate and how to manufacture the electrodes used at low cost to achieve efficient electrolysis. A so-called ion exchange membrane made of a fluororesin having A solid electrolyte electrolysis method is used.In this electrolysis method, electrolysis is generally performed with the electrode close to or in close contact with the diaphragm.
Since the sulfone groups and fluorine compounds (fluorine resins) in the diaphragm function as cocatalysts, it is only the electrode material near the sulfone groups, that is, near the ion exchange membrane, such as lead dioxide, that mainly contributes to electrolysis. It is thought that.
勿論電解液が十分に高純度で導電率が約1μS/C以下
のような場合であればイオン交換膜と接触している部分
以外の電極物質は絶縁体を介して該イオン交換膜に接触
し電解に寄与しないため、電極物質が比較的高価である
電極製造コストの低減を図ることができない意思外には
特に問題は生じない。しかし通常はイオン交換膜に接触
する液の導電率は液中の炭酸ガスや電極からの溶出物に
より10μS / cm以上に上昇するため、直接イオ
ン交換膜に接触しない部分以外でも電解が起こる。Of course, if the electrolyte is of sufficiently high purity and the conductivity is about 1 μS/C or less, the electrode material other than the part that is in contact with the ion exchange membrane will come into contact with the ion exchange membrane through an insulator. Since it does not contribute to electrolysis, no particular problem arises unless the electrode material is relatively expensive and it is not possible to reduce the cost of manufacturing the electrode. However, the conductivity of the liquid that comes into contact with the ion exchange membrane usually increases to 10 μS/cm or more due to carbon dioxide in the liquid and eluates from the electrodes, so electrolysis occurs even in areas other than those that do not directly contact the ion exchange membrane.
この部分の電解では触媒不在下の電解となるためオゾン
発生効率が低下し、全体の電流効率を低下させるという
問題点がある。Since this part of the electrolysis is performed in the absence of a catalyst, there is a problem in that the ozone generation efficiency is reduced and the overall current efficiency is reduced.
例えば特開昭63−100190号公報には、陽極を2
層構造としてイオン交換膜(固体電解質)に接触する層
にのみ電極物質を存在させて電流効率の向上を図る電極
構造が開示されているが、この電極構造では実質的に電
極面積が制限されて実質電流密度の増大を招き寿命の短
縮化の恐れがあるとともに構造が複雑になるという問題
点があり、この問題点に対する解決法は未だに見出され
ていないのが現状である。For example, in Japanese Unexamined Patent Publication No. 1983-100190, two anodes are used.
An electrode structure has been disclosed in which an electrode material is present only in the layer that contacts the ion exchange membrane (solid electrolyte) to improve current efficiency, but this electrode structure substantially limits the electrode area. There are problems in that the actual current density increases, which may shorten the life span, and the structure becomes complicated.Currently, no solution to this problem has been found yet.
(発明の目的)
従って本発明は、有効な電極面積を減少させることなく
オゾン発生の電流効率をほぼ一定に維持できる水電解用
電極及びその製造方法を提供することを目的とする。(Objective of the Invention) Therefore, an object of the present invention is to provide an electrode for water electrolysis and a method for manufacturing the same, which can maintain the current efficiency of ozone generation substantially constant without reducing the effective electrode area.
(問題点を解決するための手段)
本発明に係わる水電解用電極は、電極基体、及び該電極
基体の表面に形成されたスルホン基を含むフッ素樹脂を
有する二酸化鉛層を含んで成る水電解用電極であり、前
記電極基体及び二酸化鉛層の間に導電性中間層を形成し
てもよい。又本発明に係わる水電解用電極の製造方法は
、電極基体を陽極とし、スルホン基を含む・フッ素樹脂
を懸濁した鉛成分を有する溶液を電解液として電解を行
い、前記基体表面にスルホン基を含むフッ素樹脂を有す
る二酸化鉛層を形成することを含んで成る水電解用電極
の製造方法であり、該二酸化鉛層の電解的被覆の前に前
記電極基体に熱分解法により導電性中間層を形成しても
よい。(Means for Solving the Problems) An electrode for water electrolysis according to the present invention includes an electrode base and a lead dioxide layer having a fluororesin containing a sulfone group formed on the surface of the electrode base. A conductive intermediate layer may be formed between the electrode base and the lead dioxide layer. In addition, the method for producing an electrode for water electrolysis according to the present invention is to conduct electrolysis using an electrode substrate as an anode and a solution containing a sulfone group and a lead component in which a fluororesin is suspended as an electrolyte, thereby forming a sulfone group on the surface of the substrate. 1. A method for producing an electrode for water electrolysis, comprising forming a lead dioxide layer having a fluororesin containing: a conductive intermediate layer by a pyrolysis method on the electrode substrate before electrolytically coating the lead dioxide layer. may be formed.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、水電解用電極におけるオゾン生成に対する電
極物質として機能する二酸化鉛層に、通常の固体電解!
(イオン交換膜)中で助触媒として機能するスルホン基
を有するフッ素樹脂を添加する。これにより、従来の水
電解では前記固体電解質に接触する前記電極物質のみが
オゾン生成に有効に機能していたのに対し、本発明に係
わる水電解用電極では電極物質が固体電解質との接触の
有無に係わらずオゾン発生の助触媒として機能するスル
ホン基を有するフン素樹脂と接触できるため、電流密度
が均一化して電流効率の低下も抑制できる。The present invention uses normal solid electrolysis in a lead dioxide layer that functions as an electrode material for ozone production in an electrode for water electrolysis.
A fluororesin having a sulfone group that functions as a cocatalyst in the (ion exchange membrane) is added. As a result, in conventional water electrolysis, only the electrode material in contact with the solid electrolyte effectively functions to generate ozone, whereas in the water electrolysis electrode according to the present invention, the electrode material does not come into contact with the solid electrolyte. Since it can come into contact with the fluororesin having a sulfone group that functions as a cocatalyst for ozone generation regardless of its presence or absence, the current density can be made uniform and a decrease in current efficiency can be suppressed.
本発明の電極基体は固体電解質に密着して均一に電流を
流すことができ発生する酸素ガス及びオゾンガスをその
背後に取り出すことができればその形状は特に限定され
ないが、通常はガス抜けが良好に行われる程度の微細な
貫通孔通常は50〜300μm程度の貫通孔を有する多
孔質であることが望ましい。又前記電極基体の材料は導
電性でありオゾンガスやオゾン含有水に対して耐性があ
れば特に限定されないが、例えばチタンやチタン合金等
の金属や合金、あるいは酸化チタン焼結体や炭素焼結体
等のセラミ7クスを使用することが好ましい。The shape of the electrode substrate of the present invention is not particularly limited as long as it is in close contact with the solid electrolyte to allow a uniform current to flow therethrough and the generated oxygen gas and ozone gas can be taken out behind it, but it usually allows good gas release. It is desirable that the porous material has through holes as small as 50 to 300 μm. The material of the electrode substrate is not particularly limited as long as it is conductive and resistant to ozone gas and ozone-containing water, but examples include metals and alloys such as titanium and titanium alloys, or titanium oxide sintered bodies and carbon sintered bodies. It is preferable to use ceramics such as
該基体はそのまま後述する中間層あるいは二酸化鉛層の
被覆に使用してもよいが、前処理を行ってその表面を活
性化しておくと前記中間層や二酸化鉛層を強固に被覆す
ることができる。この前処理法としては、ブラスト処理
による表面積拡大、粗面化、酸洗による表面活性化、及
び硫酸水溶液等の電解液中で陰分極を行い基体表面から
水素ガスを発生させて表面洗浄を行いかつ該水素ガスに
より一部生成する水素化物による活性化を行う方法等が
ある。The substrate may be used as it is to cover the intermediate layer or lead dioxide layer described later, but if the surface is activated by pretreatment, the intermediate layer or lead dioxide layer can be coated firmly. . This pretreatment method includes expanding the surface area by blasting, roughening the surface, activating the surface by pickling, and cleaning the surface by generating hydrogen gas from the substrate surface through cathodic polarization in an electrolytic solution such as an aqueous sulfuric acid solution. There is also a method of activation using a hydride partially generated by the hydrogen gas.
この電極基体上に直接二酸化鉛層を形成してもよいが、
不働態化を防止するために中間層を設けることもできる
。この中間層は白金等のそれ自身導電性を有ししかも電
極触媒となり得るものであってもよいが、該中間層が露
出すると電解が起こり電流効率を低下させることになる
ため導電性は有するが電極触媒としての機能を有しない
か該機能が弱い物質により前記中間層を形成することが
望ましい。該中間層を形成する物質としては例えばチタ
ンとタンタルの複合酸化物に、モル比でX程度の白金を
分散させた材料を使用することができる。この材料を前
記電極基体上に被覆するには、例えば塩化チタンと塩化
タンタルの希塩酸水溶液に所定量の塩化白金酸を溶解し
て塗布液とし、該塗布液を前記電極基体表面に塗布し乾
燥後、450〜600°Cで焼成し熱分解し、又必要に
応してこの操作を複数回繰り返せばよい。このようにし
て得られる中間層は、チタン−タンタル酸化物のルチル
型結晶と金属白金の混合物であり、これを陽極として電
解を行ってもその電位は二酸化鉛の電位より遥かに高く
、IOA/dm2程度の電流密度の電解用としては使用
できない。但し該中間層の電気抵抗は10−2〜10−
3Ωcm程度であり通電用としては最適である。A lead dioxide layer may be formed directly on this electrode substrate, but
An intermediate layer can also be provided to prevent passivation. This intermediate layer may be made of a material such as platinum that is conductive itself and can act as an electrode catalyst, but if the intermediate layer is exposed, electrolysis will occur and the current efficiency will be reduced. It is desirable that the intermediate layer be formed of a substance that does not have the function of an electrode catalyst or has a weak function. As the material forming the intermediate layer, for example, a material in which platinum is dispersed in a composite oxide of titanium and tantalum in a molar ratio of about X can be used. To coat this material on the electrode substrate, for example, a predetermined amount of chloroplatinic acid is dissolved in a dilute hydrochloric acid aqueous solution of titanium chloride and tantalum chloride to prepare a coating solution, and the coating solution is applied to the surface of the electrode substrate and dried. , pyrolyzed by firing at 450 to 600°C, and this operation may be repeated multiple times if necessary. The intermediate layer thus obtained is a mixture of rutile-type crystals of titanium-tantalum oxide and metallic platinum, and even if electrolysis is performed using this as an anode, its potential is much higher than that of lead dioxide; It cannot be used for electrolysis with a current density of about dm2. However, the electrical resistance of the intermediate layer is 10-2 to 10-
It has a resistance of about 3 Ωcm, making it ideal for current-carrying purposes.
このように中間層を形成したあるいは形成していない電
極基体に続いて二酸化鉛層を被覆する。The electrode substrate with or without the intermediate layer is then coated with a lead dioxide layer.
この二酸化鉛層を形成する二酸化鉛としてはα−二酸化
鉛とβ−二酸化鉛とがあり、電極物質として活性の高い
β−二酸化鉛を直接被覆してもよいが、全体に均一に該
β−二酸化鉛層を形成するにはまずα−二酸化鉛層を被
覆しその上にβ−二酸化鉛層を被覆することが望ましい
。The lead dioxide that forms this lead dioxide layer includes α-lead dioxide and β-lead dioxide.Although β-lead dioxide, which is highly active as an electrode material, may be directly coated, the β-lead dioxide layer may be uniformly coated on the entire surface. To form the lead dioxide layer, it is desirable to first coat an α-lead dioxide layer and then coat the β-lead dioxide layer thereon.
前記電極基体上にα−二酸化鉛層を被覆するには、該基
体を陽極とし25%程度の水酸化ナトリウム水溶液に酸
化鉛(PbO)を飽和になるよう溶解させた溶液を電解
液とし、25〜60°Cで2A/d+n2程度の比較的
低い電流密度で電解し電着させればよく、このα−二酸
化鉛層の厚さは表面が覆われる程度でよく5〜100μ
m程度が最適である。To coat the α-lead dioxide layer on the electrode substrate, use the substrate as an anode, and use a solution of lead oxide (PbO) dissolved in a 25% sodium hydroxide aqueous solution to saturation as an electrolyte. Electrodeposition can be carried out by electrolysis at ~60°C with a relatively low current density of about 2A/d+n2, and the thickness of this α-lead dioxide layer is preferably 5 to 100μ, just enough to cover the surface.
The optimum value is about m.
次いでこのα−二酸化鉛層上にあるいは前述の中間層を
形成しあるいは形成していない電極基体上に直接スルホ
ン基を含むフッ素樹脂を有する好ましくはβ型である二
酸化鉛層を被覆する。Next, a preferably β-type lead dioxide layer containing a sulfone group-containing fluororesin is directly coated on this α-lead dioxide layer or on the electrode substrate with or without the aforementioned intermediate layer.
前記フッ素樹脂はスルホン基を含むものであれば特に限
定されないが、オゾン等に対して高い耐性を有するパー
フルオロスルホン酸系イオン交換樹脂を使用することが
望ましい。The fluororesin is not particularly limited as long as it contains a sulfonic group, but it is desirable to use a perfluorosulfonic acid-based ion exchange resin that has high resistance to ozone and the like.
前記二酸化鉛層の被覆は電着によることが望ましく、前
記フッ素樹脂を懸濁させた鉛化合物の水溶液を電解液と
して電着を行うことができる。代表的なβ−二酸化鉛の
電着による形成条件は、スルホン基を含むフン素樹脂を
1〜10%懸濁させた200〜800g/j2の硝酸鉛
水溶液を電解液とし40〜80°Cの温度で0.1〜1
0A / dm2程度の電流密度で、前記基体を陽極と
して電解を行う。このフッ素樹脂を含浸した二酸化鉛層
の厚さは電解条件を調節して適宜選定すればよいが通常
は30〜300μmとなり、オゾン発生用としてはこの
厚さで十分である。It is desirable that the lead dioxide layer be coated by electrodeposition, and electrodeposition can be carried out using an aqueous solution of a lead compound in which the fluororesin is suspended as an electrolyte. Typical conditions for forming β-lead dioxide by electrodeposition are as follows: 200 to 800 g/j2 of lead nitrate aqueous solution in which 1 to 10% of fluorine resin containing sulfonic groups is suspended is used as the electrolyte, and the temperature is 40 to 80°C. 0.1-1 at temperature
Electrolysis is performed at a current density of about 0 A/dm2 using the substrate as an anode. The thickness of the lead dioxide layer impregnated with this fluororesin may be appropriately selected by adjusting the electrolytic conditions, but it is usually 30 to 300 μm, and this thickness is sufficient for ozone generation.
この条件で二酸化鉛に対して約0.5〜5重景%程度の
フッ素樹脂を含浸させることができる。このフッ素樹脂
は二酸化鉛全体にほぼ均一に分散するため、二酸化鉛被
覆で常に問題となる電着歪も見掛は上殆どなくなるとい
う副次的効果も生ずる。Under these conditions, it is possible to impregnate lead dioxide with about 0.5 to 5 percent of fluororesin. Since this fluororesin is almost uniformly dispersed throughout the lead dioxide, there is also the secondary effect that electrodeposition distortion, which is always a problem with lead dioxide coatings, is virtually eliminated.
このように製造した二酸化鉛電極を例えば固体電解質で
あるパーフルオロスルホン酸系イオン交換膜に押圧しイ
オン交換水を供給しながら電解を行う。該電解によると
イオン交換水の電導度が10〜100μS/cmになっ
てもオゾン発生の電流効率は13%程度以上に保持する
ことができるのに対し、スルホン基を含むフッ素樹脂を
有しない二酸化鉛層から成る電極では一般に10%程度
又はそれ以下の電流効率しか得ることができず、本発明
に係わる水電解用電極は、従来の電極より遥かに安定な
状態でオゾン発生を行うことができる。The lead dioxide electrode produced in this manner is pressed against, for example, a perfluorosulfonic acid-based ion exchange membrane that is a solid electrolyte, and electrolysis is performed while supplying ion exchange water. According to this electrolysis, the current efficiency of ozone generation can be maintained at about 13% or more even if the conductivity of ion-exchanged water becomes 10 to 100 μS/cm, whereas carbon dioxide, which does not have a fluororesin containing sulfone groups, can maintain the current efficiency of ozone generation at about 13% or more. Electrodes made of lead layers can generally achieve a current efficiency of only about 10% or less, and the electrode for water electrolysis according to the present invention can generate ozone in a much more stable state than conventional electrodes. .
(実施例)
以下本発明の詳細な説明するが、該実施例は本発明を限
定するものではない。(Examples) The present invention will be described in detail below, but the examples are not intended to limit the present invention.
実l■上
厚さ2mmのチタン繊維を焼結して固めた目開き40〜
200μmの多孔質フィルタを基体とし該基体を90°
Cの20%硫酸中で酸洗し、その表面にチタン60モル
%、タンタル15モル%及ヒ白金25モル%から成る各
金属の塩化物を10%希塩酸に溶解した溶液を塗布し乾
燥した後、空気を流通したマツフル炉中で510°Cで
10分間熱分解した。この操作を5回繰り返して中間層
とした。ルチル型のチタン−タンタル酸化物と白金金属
から成る中間層が形成された。Fruit size: 40~ made by sintering and solidifying titanium fibers with a thickness of 2mm
A porous filter of 200 μm is used as a base, and the base is rotated at an angle of 90°.
After pickling in 20% sulfuric acid of C, a solution containing 10% dilute hydrochloric acid of chloride of each metal, consisting of 60 mol% titanium, 15 mol% tantalum, and 25 mol% platinum, was applied to the surface and dried. The material was pyrolyzed at 510°C for 10 minutes in a Matsufuru furnace with air flowing through it. This operation was repeated five times to form an intermediate layer. An interlayer consisting of rutile-type titanium-tantalum oxide and platinum metal was formed.
25%水酸化ナトリウム水溶液中に酸化鉛(Pb0ンを
鉛として25 g / f溶解した溶解を電解液とし、
前記基体を陽極として、0.2A/dm2の電流密度で
1時間電解を行って該基体上にα−二酸化鉛の薄層を形
成した。25 g/f of lead oxide (Pb0) was dissolved in a 25% aqueous sodium hydroxide solution as an electrolyte.
Using the substrate as an anode, electrolysis was performed at a current density of 0.2 A/dm2 for 1 hour to form a thin layer of α-lead dioxide on the substrate.
更に800 g / 1の硝酸鉛水溶液中に市販のナフ
ィオン(商品名)液を2%添加した溶液を電解液とし、
前記基体を陽極としIA/dI11”の電流密度及び液
温65°Cで2時間電解を行った。見掛は電流効率85
%で前記基体表面に、ナフィオンを層中に約3%含むβ
−二酸化鉛層が形成された。基体上にα−二酸化鉛の薄
層を形成して、水電解用電極とした。Furthermore, a solution prepared by adding 2% of commercially available Nafion (trade name) solution to an 800 g/1 lead nitrate aqueous solution was used as an electrolyte.
Using the above substrate as an anode, electrolysis was carried out for 2 hours at a current density of IA/dI of 11" and a liquid temperature of 65°C.The apparent current efficiency was 85.
%, on the surface of the substrate, β containing about 3% Nafion in the layer.
- A layer of lead dioxide was formed. A thin layer of α-lead dioxide was formed on the substrate to form an electrode for water electrolysis.
この二酸化鉛層が形成された電極を、パーフルオロスル
ホン酸系イオン交換膜ナフィオン117に接触させて陽
極とし、イオン交換水を加えながら100 A/dm2
の電流密度で水電解によるオゾン含有ガスの製造を行っ
た。24時間の予備電解の後、イオン交換水を交換しな
いでそのまま電解を継続したところ、当初のオゾン発生
の電流効率は14.5%で、10時間経過後の電流効率
は13%であった。The electrode on which this lead dioxide layer was formed was brought into contact with a perfluorosulfonic acid-based ion exchange membrane Nafion 117 to serve as an anode, and the electrode was heated at 100 A/dm2 while adding ion exchange water.
Ozone-containing gas was produced by water electrolysis at a current density of . After 24 hours of preliminary electrolysis, electrolysis was continued without exchanging the ion-exchanged water, and the initial current efficiency for ozone generation was 14.5%, and the current efficiency after 10 hours was 13%.
この時の陽極側のイオン交換水の電導度は50uS/a
nであった。At this time, the conductivity of ion exchange water on the anode side is 50 uS/a
It was n.
ル較拠
二酸化鉛層形成時に電解液にナフィオン液を添加せず形
成されるβ−二酸化鉛層中にフ・7素樹脂を含有させな
い電極を製造し、該電極を実施例1と同一条件で陽極と
してオゾン含有ガスの製造に使用したところ、当初のオ
ゾン発生の電流効率は14%であったが、10時間後の
電流効率は9%に低下し、イオン交換水の電導度が50
μS / cmとなった。イオン交換水を入れ換えたと
ころ電流効率は13.5%まで回復した。An electrode was manufactured in which no fluorine-containing resin was contained in the β-lead dioxide layer formed without adding Nafion liquid to the electrolyte during the formation of the lead dioxide layer, and the electrode was subjected to the same conditions as in Example 1. When used as an anode in the production of ozone-containing gas, the initial current efficiency for ozone generation was 14%, but after 10 hours the current efficiency decreased to 9%, and the conductivity of ion-exchanged water decreased by 50%.
It became μS/cm. When the ion exchange water was replaced, the current efficiency recovered to 13.5%.
実施1
基体としてマグネリ相の酸化チタン製多孔譬焼結体を使
用し中間層を形成せずに、該基体上に実施例1と同様の
条件でα−二酸化鉛層、次いでフッ素樹脂を含浸させた
β−二酸化鉛層を形成し、電極とした。Example 1 A porous sintered body made of titanium oxide in the Magneli phase was used as a substrate, and an α-lead dioxide layer and then a fluororesin were impregnated on the substrate under the same conditions as in Example 1 without forming an intermediate layer. A β-lead dioxide layer was formed and used as an electrode.
この電極を、ナフィオン117を固体電解質とした電解
層の陽極として該固体電解質に密着して取り付け100
A / dm2の電流密度で電導度10uS/cmの純
水の電解によるオゾン含有ガスの製造を行った。24時
間の予備電解の電流効率は13.8%であり、1週間後
の電流効率は14.2%まで上昇した。This electrode is attached as an anode of an electrolytic layer using Nafion 117 as a solid electrolyte in close contact with the solid electrolyte (100).
Ozone-containing gas was produced by electrolysis of pure water with a conductivity of 10 uS/cm at a current density of A/dm2. The current efficiency during preliminary electrolysis for 24 hours was 13.8%, and the current efficiency rose to 14.2% after one week.
(発明の効果)
本発明に係わる水電解用電極は、電極基体、及び該電極
基体の表面に形成されたスルホン基を含むフン素樹脂を
含浸した二酸化鉛層を含んで成る水電解用電極(請求項
1)、あるいは該電極基体と二酸化鉛層の間に導電性中
間層を形成した水電解用電極(請求項3)である。(Effects of the Invention) The electrode for water electrolysis according to the present invention comprises an electrode base and a lead dioxide layer impregnated with a fluororesin containing a sulfone group formed on the surface of the electrode base. Claim 1) Or an electrode for water electrolysis (Claim 3) in which a conductive intermediate layer is formed between the electrode base and the lead dioxide layer.
従って本発明で電極では、電極機能を有する二酸化鉛層
中に助触媒機能を有するスルホン基を含むフッ素樹脂が
存在するため、該電極を固体電解質であるイオン交換膜
に密着させて水電解を行う場合に固体電解質中のスルホ
ン基を含むフッ素樹脂に接触していない二酸化鉛層中の
二酸化鉛も該二酸化鉛層中の同様のスルホン基を含むフ
ッ素樹脂に接触してオゾン発生反応が促進される。従っ
て電解液の電導度が高くても二酸化鉛層のほぼ全体で有
効な電極面積を減少させることなく、均一にオゾン発生
反応が生してオゾン発生の電流効率を高く維持すること
ができる。更に電極基体と二酸化鉛層の間に導電性中間
層を形成すると、前記電極基体の不働態化が防止されて
十分な通電量が確保される。Therefore, in the electrode of the present invention, since a fluororesin containing a sulfone group having a promoter function is present in the lead dioxide layer having an electrode function, water electrolysis is performed by bringing the electrode into close contact with an ion exchange membrane, which is a solid electrolyte. In this case, the lead dioxide in the lead dioxide layer that is not in contact with the fluororesin containing sulfone groups in the solid electrolyte also comes into contact with the fluororesin containing similar sulfone groups in the lead dioxide layer, and the ozone generation reaction is promoted. . Therefore, even if the electrolytic solution has high conductivity, the ozone generation reaction occurs uniformly over almost the entire lead dioxide layer without reducing the effective electrode area, and the current efficiency of ozone generation can be maintained at a high level. Furthermore, if a conductive intermediate layer is formed between the electrode base and the lead dioxide layer, passivation of the electrode base is prevented and a sufficient amount of current is ensured.
本発明に係わる水電解用電極の二酸化鉛層はα二酸化鉛
層と、スルホン基を含むフッ素樹脂を有するβ−二酸化
鉛層の2N構造とすることが好ましく(請求項2)、こ
のように構成することにより電極触媒として高い機能を
有するβ−二酸化鉛層を前記電極基体表面全体に均一に
被覆することができる。The lead dioxide layer of the electrode for water electrolysis according to the present invention preferably has a 2N structure of an α-lead dioxide layer and a β-lead dioxide layer having a fluororesin containing a sulfone group (Claim 2), and is configured in this way. By doing so, the entire surface of the electrode substrate can be uniformly coated with a β-lead dioxide layer having a high function as an electrode catalyst.
又前記導電性中間層は、チタン及びタンタルの複合酸化
物に白金を分散させた層として形成することが好ましく
(請求項4)、このような中間層は電極触媒としての機
能が弱くかつ導電性が高いため、二酸化鉛層によるオゾ
ン発生を阻害することなく不働態化の防止と十分な通電
量の確保を行うことができる。Further, it is preferable that the conductive intermediate layer is formed as a layer in which platinum is dispersed in a composite oxide of titanium and tantalum (claim 4), and such an intermediate layer has a weak function as an electrode catalyst and a conductive layer. is high, it is possible to prevent passivation and ensure a sufficient amount of current without inhibiting ozone generation by the lead dioxide layer.
更に本発明に係わる水電解用電極の製造方法では、前記
スルホン基を含むフン素樹脂を含浸した二酸化鉛層を被
覆する際に電解法を使用しく請求項5)、又導電性中間
層を形成する際には該中間層は熱分解法により被覆し更
に二酸化鉛層を前記電解法により形成する(請求項6)
ようにしている。従って本発明方法により製造される水
電解用電極は前述と同様に二酸化鉛層のほぼ全体で均一
にオゾン発生反応が生じてオゾン発生の電流効率を高く
維持することができ、かつ中間層を有する電極では十分
な通電量が確保される。Furthermore, in the method for producing an electrode for water electrolysis according to the present invention, an electrolytic method is used when coating the lead dioxide layer impregnated with the fluororesin containing a sulfone group, and a conductive intermediate layer is formed. In this case, the intermediate layer is coated by a pyrolysis method, and a lead dioxide layer is further formed by the electrolytic method (claim 6).
That's what I do. Therefore, in the water electrolysis electrode manufactured by the method of the present invention, as described above, the ozone generation reaction occurs uniformly over almost the entire lead dioxide layer, and the current efficiency of ozone generation can be maintained at a high level, and the electrode has an intermediate layer. A sufficient amount of current is ensured at the electrodes.
Claims (6)
ルホン基を含むフッ素樹脂を有する二酸化鉛層を含んで
成る水電解用電極。(1) An electrode for water electrolysis comprising an electrode base and a lead dioxide layer having a fluororesin containing sulfone groups formed on the surface of the electrode base.
鉛層と、該α−二酸化鉛層上に形成されたスルホン基を
含むフッ素樹脂を含浸したβ−二酸化鉛層から成る請求
項1に記載の水電解用電極。(2) A claim in which the lead dioxide consists of an α-lead dioxide layer formed on the electrode base and a β-lead dioxide layer impregnated with a fluororesin containing a sulfone group formed on the α-lead dioxide layer. 1. The water electrolysis electrode according to 1.
中間層、及び該導電性中間層の表面に形成されたスルホ
ン基を含むフッ素樹脂を有する二酸化鉛層を含んで成る
水電解用電極。(3) For water electrolysis, comprising an electrode base, a conductive intermediate layer formed on the surface of the electrode base, and a lead dioxide layer having a fluororesin containing a sulfone group formed on the surface of the conductive intermediate layer. electrode.
物に白金を分散させた層である請求項3に記載の水電解
用電極。(4) The electrode for water electrolysis according to claim 3, wherein the conductive intermediate layer is a layer in which platinum is dispersed in a composite oxide of titanium and tantalum.
脂を懸濁した鉛成分を有する溶液を電解液として電解を
行い、前記基体表面にスルホン基を含むフッ素樹脂を有
する二酸化鉛層を形成することを含んで成る水電解用電
極の製造方法。(5) Using the electrode substrate as an anode, electrolysis is performed using a solution containing a lead component in which a fluororesin containing a sulfone group is suspended as an electrolyte, and a lead dioxide layer having a fluororesin containing a sulfone group is formed on the surface of the substrate. A method for producing an electrode for water electrolysis, comprising:
する塗布液を塗布し該塗布液を熱分解することにより前
記基体上に中間層を形成し、該中間層が形成された基体
を陽極とし、スルホン基を含むフッ素樹脂を懸濁した鉛
成分を有する溶液を電解液として電解を行い、前記中間
層上にスルホン基を含むフッ素樹脂を有する二酸化鉛層
を形成することを含んで成る水電解用電極の製造方法。(6) Forming an intermediate layer on the substrate by applying a coating liquid containing a compound of an intermediate layer forming component to the surface of the electrode substrate and thermally decomposing the coating liquid, and removing the substrate on which the intermediate layer is formed. The method comprises forming a lead dioxide layer having a fluororesin containing a sulfone group on the intermediate layer by performing electrolysis using a solution containing a lead component in which a fluororesin containing a sulfone group is suspended as an anode as an electrolyte. A method for manufacturing an electrode for water electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119871A JP3010496B2 (en) | 1990-05-11 | 1990-05-11 | Electrode for water electrolysis and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119871A JP3010496B2 (en) | 1990-05-11 | 1990-05-11 | Electrode for water electrolysis and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0417689A true JPH0417689A (en) | 1992-01-22 |
JP3010496B2 JP3010496B2 (en) | 2000-02-21 |
Family
ID=14772327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2119871A Expired - Fee Related JP3010496B2 (en) | 1990-05-11 | 1990-05-11 | Electrode for water electrolysis and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3010496B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11131276A (en) * | 1997-10-24 | 1999-05-18 | Mitsubishi Electric Corp | Electrolytic ozone generating element and electrolytic ozone generator |
WO2007009311A1 (en) * | 2005-07-20 | 2007-01-25 | Yantai United Ozonetec Corporation | An anode structure for electrolysis-type ozone generator |
JP2011006716A (en) * | 2009-06-23 | 2011-01-13 | Chlorine Engineers Corp Ltd | Electroconductive diamond electrode, and ozone-generating apparatus using the same |
WO2019082878A1 (en) * | 2017-10-27 | 2019-05-02 | パナソニックIpマネジメント株式会社 | Electrolysis electrode, and ozone-generating device and electrical device equipped with same |
JP2023102404A (en) * | 2022-01-12 | 2023-07-25 | トヨタ自動車株式会社 | Water electrolysis cell and method for manufacturing water electrolysis cell |
JP2023159573A (en) * | 2022-04-20 | 2023-11-01 | トヨタ自動車株式会社 | Water electrolytic cell and production method of water electrolytic cell |
-
1990
- 1990-05-11 JP JP2119871A patent/JP3010496B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11131276A (en) * | 1997-10-24 | 1999-05-18 | Mitsubishi Electric Corp | Electrolytic ozone generating element and electrolytic ozone generator |
WO2007009311A1 (en) * | 2005-07-20 | 2007-01-25 | Yantai United Ozonetec Corporation | An anode structure for electrolysis-type ozone generator |
JP2011006716A (en) * | 2009-06-23 | 2011-01-13 | Chlorine Engineers Corp Ltd | Electroconductive diamond electrode, and ozone-generating apparatus using the same |
WO2019082878A1 (en) * | 2017-10-27 | 2019-05-02 | パナソニックIpマネジメント株式会社 | Electrolysis electrode, and ozone-generating device and electrical device equipped with same |
JP2023102404A (en) * | 2022-01-12 | 2023-07-25 | トヨタ自動車株式会社 | Water electrolysis cell and method for manufacturing water electrolysis cell |
JP2023159573A (en) * | 2022-04-20 | 2023-11-01 | トヨタ自動車株式会社 | Water electrolytic cell and production method of water electrolytic cell |
Also Published As
Publication number | Publication date |
---|---|
JP3010496B2 (en) | 2000-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4673628B2 (en) | Cathode for hydrogen generation | |
US7232509B2 (en) | Hydrogen evolving cathode | |
JPH0581677B2 (en) | ||
JP2009215580A (en) | Cathode for hydrogen generation | |
JPWO2003026052A1 (en) | Bipolar plate for fuel cell and manufacturing method thereof | |
JPS6143436B2 (en) | ||
WO2021164702A1 (en) | Electrode having polarity capable of being reversed and use thereof | |
JP4354821B2 (en) | Electrode for electrolysis in acidic media | |
JP3080971B2 (en) | Electrode structure for ozone production and method for producing the same | |
CN110318069B (en) | Electrode for electrolysis, method for producing same, and electrolytic cell | |
JP7097042B2 (en) | Electrode for chlorine generation | |
JPH0417689A (en) | Electrode for electrolyzing water and production thereof | |
KR890002700B1 (en) | Low over-voltage electrodes for alkaline electrolytes | |
JP3676554B2 (en) | Activated cathode | |
JP4115575B2 (en) | Activated cathode | |
JPH0257159B2 (en) | ||
JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
JPH0774470B2 (en) | Manufacturing method of anode for oxygen generation | |
JP3264535B2 (en) | Gas electrode structure and electrolysis method using the gas electrode structure | |
JPH02179891A (en) | Anode for generate oxygen and production thereof | |
KR100770736B1 (en) | Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same | |
JPH10330998A (en) | Electroplating method | |
US20150017554A1 (en) | Process for producing transport and storage-stable oxygen-consuming electrode | |
JPS6147231B2 (en) | ||
JP3941898B2 (en) | Activated cathode and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |