JPH11131276A - Electrolytic ozone generating element and electrolytic ozone generator - Google Patents

Electrolytic ozone generating element and electrolytic ozone generator

Info

Publication number
JPH11131276A
JPH11131276A JP9292439A JP29243997A JPH11131276A JP H11131276 A JPH11131276 A JP H11131276A JP 9292439 A JP9292439 A JP 9292439A JP 29243997 A JP29243997 A JP 29243997A JP H11131276 A JPH11131276 A JP H11131276A
Authority
JP
Japan
Prior art keywords
cathode
anode
generating element
electrolytic ozone
ozone generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9292439A
Other languages
Japanese (ja)
Other versions
JP3201316B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Hisatoshi Fukumoto
久敏 福本
Hideo Maeda
秀雄 前田
Makoto Tanmachi
誠 反町
Tetsuya Abe
哲也 阿部
Yasushi Hatanaka
康司 畠中
Takeshi Aizawa
毅 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29243997A priority Critical patent/JP3201316B2/en
Publication of JPH11131276A publication Critical patent/JPH11131276A/en
Application granted granted Critical
Publication of JP3201316B2 publication Critical patent/JP3201316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46195Cells containing solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of hydrogen in a cathode, a to convert hydrogen to water by oxidation decomposition even if it is generated and to ensure safety by forming platinum catalyst-contg. catalyst layers on both faces of a porous substrate having electronic conductivity and gas permeability to obtain the cathode. SOLUTION: In an electrolytic ozone generating element with an anode 61 and a cathode 62 placed opposite to each other with a solid polyelectrolyte membrane 4 in-between, the cathode 62 is obtd. by forming platinum catalyst- contg. catalyst layers 2, 3 on both faces of a porous substrate 1 having electronic conductivity and gas permeability. Even if hydrogen is generated in the catalyst layer 2 of the cathode kept in contact with the polyelectrolyte membrane 4, the hydrogen is converted to water by oxidation decomposition in the catalyst layer 3 on the rear side of the porous substrate 1. The deterioration of lead dioxide forming the anode 61 due to reduction is prevented by interposing a catalyst layer 6 of α-lead dioxide between the anode 61 and the polyelectrolyte membrane 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気化学素子、とく
に固体高分子電解質膜を挟んで、陽極と陰極を対峙さ
せ、直流電圧を印加して陽極からオゾンを発生させる電
解式オゾン発生素子、および電解式オゾン発生素子を装
着して構成される電解式オゾン発生装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical element, in particular, an electrolytic ozone generating element in which an anode and a cathode are opposed to each other with a solid polymer electrolyte membrane interposed therebetween, and a DC voltage is applied to generate ozone from the anode. TECHNICAL FIELD The present invention relates to an electrolytic ozone generator configured by mounting an electrolytic ozone generating element.

【0002】[0002]

【従来の技術】従来の電解式オゾン発生素子、及び電解
式オゾン発生素子を組み込んだ電解式オゾン発生装置と
しては、例えば特公平2−44908号公報に記載され
ているような、水供給型が一般的であるが、水の代わり
に、空気を供給するタイプのオゾン発生素子の実用化も
検討されている。図16は、従来の空気供給型の電解式
オゾン発生素子の側面図(a)、および平面図(b)で
ある。図において、61は電解式オゾン発生素子の陽
極、62は電解式オゾン発生素子の陰極、4は固体高分
子電解質膜、1は陰極の基材、2は陰極の触媒層、7は
陰極の電流端子、8は陽極の電流端子である。陽極に
は、例えば白金メッキしたチタンメッシュにβ型の二酸
化鉛を電着させたものが用いられ、固体高分子電解質膜
4には、商品名ナフィオン(デュポン社)が、また電解
式オゾン発生素子の陰極62には、カーボンペーパー1
に、白金を担持したカーボン粉で触媒層2を形成したも
のが用いられる。β型の二酸化鉛(黒色)はα型の二酸
化鉛(茶色)よりもオゾン発生の電流効率が高いことが
知られており、従来のオゾン発生素子にはβ型の二酸化
鉛が用いられている。
2. Description of the Related Art As a conventional electrolytic ozone generating element and an electrolytic ozone generating apparatus incorporating the electrolytic ozone generating element, for example, a water supply type as described in Japanese Patent Publication No. 2-44908 is used. In general, practical use of an ozone generating element of a type that supplies air instead of water is also being studied. FIG. 16 is a side view (a) and a plan view (b) of a conventional air supply type electrolytic ozone generating element. In the figure, 61 is the anode of the electrolytic ozone generating element, 62 is the cathode of the electrolytic ozone generating element, 4 is the solid polymer electrolyte membrane, 1 is the base material of the cathode, 2 is the catalyst layer of the cathode, and 7 is the current of the cathode. Terminal 8 is an anode current terminal. For the anode, for example, a titanium mesh plated with platinum and electrodeposited with β-type lead dioxide is used. The solid polymer electrolyte membrane 4 is made of Nafion (DuPont) and an electrolytic ozone generating element. Of carbon paper 1
In this case, a catalyst layer 2 formed of carbon powder carrying platinum is used. It is known that β-type lead dioxide (black) has higher current efficiency of ozone generation than α-type lead dioxide (brown), and β-type lead dioxide is used in a conventional ozone generating element. .

【0003】[0003]

【発明が解決しようとする課題】従来の空気供給型の電
解式オゾン発生素子は以上のように構成されており、オ
ゾン発生素子には、3.5V程度の直流電圧が印加さ
れ、陽極側でオゾンや酸素が発生し、陰極側で水が生じ
る。しかし、陰極では、必ずしも全てプロトンが水に変
換されるのではなく、一部は水素に変換される。これ
は、外部の直流電源により印加された電圧のうち、かな
りの部分が陰極側にかかり、陰極が水素発生に十分なほ
ど低い電位に置かれる場合があるためである。特に、湿
度が高くなった場合や長い休止状態の後で、急に電圧が
印加された場合などでは、著しい水素発生が起こり、陰
極側の一部の雰囲気が水素の爆発限界を超える危険性が
あるという安全上の問題点があった。また、発生した水
素によって、徐々に陽極のβ型の二酸化鉛が還元され
て、一酸化鉛や鉛イオンとなり、固体高分子電解質膜に
取り込まれてイオン伝導抵抗が増大してオゾン発生素子
としての性能が経時的に低下するという問題点があっ
た。
The conventional air-supply type electrolytic ozone generating element is constituted as described above. A DC voltage of about 3.5 V is applied to the ozone generating element, Ozone and oxygen are generated, and water is generated on the cathode side. However, at the cathode, not all protons are converted to water, but some are converted to hydrogen. This is because a considerable portion of the voltage applied by the external DC power supply is applied to the cathode side, and the cathode may be placed at a sufficiently low potential for generating hydrogen. In particular, when the voltage is suddenly applied after a high humidity or after a long pause, remarkable hydrogen generation occurs, and there is a risk that the atmosphere on the cathode side may exceed the hydrogen explosion limit. There was a safety problem. In addition, the generated hydrogen gradually reduces the β-type lead dioxide of the anode to lead monoxide and lead ions, which are taken into the solid polymer electrolyte membrane to increase the ionic conduction resistance, resulting in an ozone generating element. There is a problem that the performance decreases with time.

【0004】本発明は、上記のような問題点を解消する
ためになされたもので、陰極での水素の発生を抑え、万
一陰極で水素が発生した場合でも水素を確実に酸化分解
して水に変換し、安全性を確保する機能を有したオゾン
発生素子及びこのようなオゾン発生素子を有するオゾン
発生装置を得ることを目的とする。また、陽極の二酸化
鉛が還元されて劣化するのを防止することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and suppresses the generation of hydrogen at the cathode, and reliably oxidizes and decomposes hydrogen even if hydrogen is generated at the cathode. An object of the present invention is to obtain an ozone generating element having a function of converting water into water and ensuring safety, and an ozone generating apparatus having such an ozone generating element. Another object is to prevent lead dioxide of the anode from being reduced and deteriorated.

【0005】[0005]

【課題を解決するための手段】本発明の第1の構成に係
る電解式オゾン発生素子は、固体高分子電解質膜を挟ん
で、陽極と陰極を対峙させた電解式オゾン発生素子にお
いて、上記陰極として、電子伝導性で、かつガス通気性
のある多孔質基材を用い、上記多孔質基材の両面に、白
金触媒を含む触媒層を形成したものである。
According to a first aspect of the present invention, there is provided an electrolytic ozone generating element comprising a solid polymer electrolyte membrane sandwiched between an anode and a cathode. A porous substrate having electron conductivity and gas permeability is used, and a catalyst layer containing a platinum catalyst is formed on both surfaces of the porous substrate.

【0006】本発明の第2の構成に係る電解式オゾン発
生素子は、固体高分子電解質膜を挟んで、陽極と陰極を
対峙させた電解式オゾン発生素子において、上記陰極と
して、電子伝導性で、かつガス通気性のある多孔質基材
を用い、上記多孔質基材の内部に、白金触媒を含む触媒
を含有させたものである。
An electrolytic ozone generating element according to a second configuration of the present invention is an electrolytic ozone generating element having an anode and a cathode facing each other with a solid polymer electrolyte membrane interposed therebetween, wherein the cathode has an electron conductive property. In addition, a porous substrate having gas permeability is used, and a catalyst containing a platinum catalyst is contained in the porous substrate.

【0007】本発明の第3の構成に係る電解式オゾン発
生素子は、陽極と固体高分子電解質膜との間に、α型の
二酸化鉛よりなる触媒層を設けたものである。
The electrolytic ozone generating element according to the third structure of the present invention has a catalyst layer made of α-type lead dioxide provided between an anode and a solid polymer electrolyte membrane.

【0008】本発明の第4の構成に係る電解式オゾン発
生素子は、陽極として、α型の二酸化鉛をメッキしたチ
タン製の多孔質基材を用い、上記多孔質基材と固体高分
子電解質膜との間にα型の二酸化鉛の微粒子層を挟持し
たものである。
The electrolytic ozone generating element according to a fourth aspect of the present invention uses a titanium porous substrate plated with α-type lead dioxide as an anode, and the porous substrate and the solid polymer electrolyte are used as anodes. A fine particle layer of α-type lead dioxide is sandwiched between the film and the film.

【0009】本発明の第5の構成に係る電解式オゾン発
生素子は、陽極と固体高分子電解質膜と陰極とを貫通す
る少なくとも1つの穴を設けたものである。
The electrolytic ozone generating element according to a fifth aspect of the present invention has at least one hole penetrating the anode, the solid polymer electrolyte membrane, and the cathode.

【0010】本発明の第6の構成に係る電解式オゾン発
生素子は、陽極または陰極の少なくとも一方の外側に、
撥水性で、かつガス通気性のある多孔質膜を配置したも
のである。
[0010] The electrolytic ozone generating element according to a sixth aspect of the present invention has a structure in which at least one of an anode and a cathode is provided on the outside.
A water-repellent and gas-permeable porous membrane is provided.

【0011】本発明の第7の構成に係る電解式オゾン発
生素子は、上記多孔質膜が、外力に対して素子を保護す
る保護手段を有するものである。
[0011] In the electrolytic ozone generating element according to a seventh aspect of the present invention, the porous film has a protection means for protecting the element against external force.

【0012】本発明の第8の構成に係る電解式オゾン発
生素子は、固体高分子電解質膜を挟んで配置された陽極
と陰極の、固体高分子電解質膜の外側に配置する陽極部
分および陰極部分に、複数個の電流端子を各々形成した
ものである。
An electrolytic ozone generating element according to an eighth aspect of the present invention comprises an anode portion and a cathode portion disposed between the anode and the cathode with the solid polymer electrolyte membrane interposed therebetween, the anode portion and the cathode portion being arranged outside the solid polymer electrolyte membrane. In addition, a plurality of current terminals are formed respectively.

【0013】本発明の第1の構成に係る電解式オゾン発
生装置は、電解式オゾン発生素子をソケット本体部とソ
ケット蓋部の間に装着し、陰極電流端子部がソケット本
体部の陰極接続部と接触し、ソケット蓋部を装着した際
に陽極電流端子部がソケット蓋部、またはソケット本体
部の陽極接続部と接触するようにしたものである。
In the electrolytic ozone generating apparatus according to the first aspect of the present invention, the electrolytic ozone generating element is mounted between the socket body and the socket lid, and the cathode current terminal is connected to the cathode connecting portion of the socket body. And the anode current terminal portion comes into contact with the socket lid portion or the anode connection portion of the socket body when the socket lid portion is attached.

【0014】本発明の第2の構成に係る電解式オゾン発
生装置は、上記ソケット蓋部の陰極に面する空間が閉鎖
空間として構成されており、ソケット本体側の通気孔ま
たは電解式オゾン発生素子を貫通する穴を通じて陽極側
の空間と連絡しているものである。
In the electrolytic ozone generating apparatus according to the second configuration of the present invention, the space facing the cathode of the socket cover is formed as a closed space, and the vent hole on the socket body side or the electrolytic ozone generating element is provided. Is connected to the space on the anode side through a hole penetrating through.

【0015】本発明の第3の構成に係る電解式オゾン発
生装置は、電解式オゾン発生素子を装着し、直流電源を
備えた電解式オゾン発生装置において、装置からオゾン
を発生させない時に、陽極と陰極の間に、オゾンを発生
させる場合よりも低い電圧を印加するものである。
An electrolytic ozone generating apparatus according to a third aspect of the present invention is provided with an electrolytic ozone generating element equipped with an electrolytic ozone generating element and provided with an anode and an ozone generator when no ozone is generated from the apparatus. A lower voltage is applied between the cathodes than when ozone is generated.

【0016】本発明の第4の構成に係る電解式オゾン発
生装置は、電解式オゾン発生素子を装着し、直流電源を
備えた電解式オゾン発生装置において、オゾンを発生さ
せる場合に想定される電流値よりも高い電流値で切れる
フューズを電流回路に設けたものである。
An electrolytic ozone generator according to a fourth configuration of the present invention is equipped with an electrolytic ozone generating element, and a current assumed to generate ozone in an electrolytic ozone generator equipped with a DC power supply. A fuse that cuts at a current value higher than the current value is provided in the current circuit.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1による電
解式オゾン発生素子の構成を示す側面図(a)と平面図
(b)である。図において、1は陰極の基材、2は陰極
の固体高分子電解質膜4に接した基材おもて面の触媒
層、3は陰極の基材裏面の触媒層、62は陰極、4は固
体高分子電解質膜、5は陽極の基材、6は陽極の触媒
層、61は陽極、7aは陰極の電流端子、7bは陰極の
電圧端子、8aは陽極の電流端子、8bは陽極の電圧端
子である。
Embodiment 1 FIG. FIG. 1 is a side view (a) and a plan view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 1 of the present invention. In the figure, 1 is a cathode substrate, 2 is a catalyst layer on the front surface of the substrate in contact with the solid polymer electrolyte membrane 4 of the cathode, 3 is a catalyst layer on the back surface of the cathode substrate, 62 is the cathode, 4 is Solid polymer electrolyte membrane, 5 is an anode substrate, 6 is an anode catalyst layer, 61 is an anode, 7a is a cathode current terminal, 7b is a cathode voltage terminal, 8a is an anode current terminal, and 8b is an anode voltage. Terminal.

【0018】陰極の基材1としては、カーボン繊維でで
きた厚さ0.3mmのカーボンペーパーにポリテトラフ
ルオロエチレン(以下、PTFEと記す)の微粒子を付
着させ、350℃で熱処理することで撥水処理したもの
を用いた。電流、電圧端子部を除く陰極の直径は22m
mである。陰極のおもて面の触媒層2は、カーボン粉末
に白金微粒子を担持した触媒に、液化した固体高分子電
解質をバインダーとして固着させたもので、厚さは20
μmである。裏面の触媒層3は、カーボン粉末に白金微
粒子を担持した触媒に、PTFEの微粒子をバインダー
として固着させたもので厚さは20μmである。陰極基
材1へのおもて面の触媒層2と裏面の触媒層3の形成
は、まず、撥水処理した陰極基材1の一方の面にスクリ
ーン印刷法を用いて裏面の触媒層3を塗布した後、35
0℃で熱処理して、PTFEを陰極基材1の裏面に融着
させ、裏面の触媒層3に強力な撥水性を付与した後、ひ
っくり返して、おもて面にスクリーン印刷法を用いてお
もて面の触媒層2を塗布し、150℃で熱処理してバイ
ンダーとして加えた固体高分子電解質を陰極基材1に融
着させ、親水性の高い触媒層2を形成した。すなわち、
陰極基材の裏面には撥水性の強い触媒層3を、おもて面
には親水性の高い触媒層2を形成した。
As the base material 1 of the cathode, fine particles of polytetrafluoroethylene (hereinafter referred to as PTFE) are adhered to carbon paper made of carbon fiber and having a thickness of 0.3 mm, and repelled by heat treatment at 350 ° C. Water-treated one was used. The diameter of the cathode excluding the current and voltage terminals is 22m
m. The catalyst layer 2 on the front face of the cathode is formed by fixing a liquefied solid polymer electrolyte as a binder to a catalyst in which platinum fine particles are supported on carbon powder, and has a thickness of 20 μm.
μm. The catalyst layer 3 on the back surface is obtained by fixing fine particles of PTFE as a binder to a catalyst in which fine platinum particles are supported on carbon powder, and has a thickness of 20 μm. The catalyst layer 2 on the front surface and the catalyst layer 3 on the back surface are formed on the cathode substrate 1 by first applying a screen printing method to one surface of the water-repellent cathode substrate 1 by using a screen printing method. After applying, 35
After heat-treating at 0 ° C., PTFE is fused to the back surface of the cathode substrate 1, and after imparting strong water repellency to the catalyst layer 3 on the back surface, the PTFE is turned over and the front surface is screen-printed. The catalyst layer 2 on the front surface was applied and heat-treated at 150 ° C., and the solid polymer electrolyte added as a binder was fused to the cathode substrate 1 to form a highly hydrophilic catalyst layer 2. That is,
A highly water-repellent catalyst layer 3 was formed on the back surface of the cathode substrate, and a highly hydrophilic catalyst layer 2 was formed on the front surface.

【0019】陽極の基材5はチタン製の厚さ50μmの
薄板に切れ目を入れて引き延ばしたエキスパンドメタル
にわずかに白金メッキしたものであり、電流、電圧端子
部を除く直径は20mmである。陽極の触媒層6はβ型
の二酸化鉛よりなり、固体高分子電解質膜4に上記β型
の二酸化鉛を塗布して形成され、厚さは20μm、直径
は20mmである。固体高分子電解質膜4としては、デ
ュポン社のナフィオン115(厚さ約120μm)を打
ち抜きポンチで直径22mmに打ち抜いて用いた。2つ
の触媒層2、3を表裏に設けた陰極62と、片面に陽極
触媒層6を塗布した固体高分子電解質膜4と、陽極基材
5とを、陽極と陰極の電流、電圧端子が互いに直角にな
るように同心円上に重ね合わせ、160℃でホットプレ
スしてオゾン発生素子を作成した。
The base material 5 of the anode is made of a thin plate of titanium having a thickness of 50 μm, which is cut and stretched and is slightly plated with platinum, and has a diameter of 20 mm excluding the current and voltage terminals. The anode catalyst layer 6 is made of β-type lead dioxide, is formed by applying the above-mentioned β-type lead dioxide on the solid polymer electrolyte membrane 4, and has a thickness of 20 μm and a diameter of 20 mm. As the solid polymer electrolyte membrane 4, Nafion 115 (about 120 μm in thickness) manufactured by DuPont was punched out with a punch to a diameter of 22 mm. A cathode 62 having two catalyst layers 2 and 3 on the front and back, a solid polymer electrolyte membrane 4 having an anode catalyst layer 6 coated on one side, and an anode substrate 5 are connected to each other by the current and voltage terminals of the anode and the cathode. They were superposed on concentric circles at right angles and hot-pressed at 160 ° C. to produce an ozone generating element.

【0020】次に動作について図2を用いて説明する。
図2は図1の電解式オゾン発生素子の動作を示す説明図
である。図において、11は外部回路、12は直流電源
である。陽極61と陰極62の間に3V程度の直流電圧
を印加することで、陽極61では空気中の水分が電気分
解されて式1、式2で示す反応によりオゾンと酸素(副
反応生成物)が発生する。 3H2O → O3 + 6H+ + 6e- ・・・(式1) 2H2O → O2 + 4H+ + 4e- ・・・(式2)
Next, the operation will be described with reference to FIG.
FIG. 2 is an explanatory diagram showing the operation of the electrolytic ozone generating element of FIG. In the figure, 11 is an external circuit, and 12 is a DC power supply. When a DC voltage of about 3 V is applied between the anode 61 and the cathode 62, moisture in the air is electrolyzed at the anode 61, and ozone and oxygen (by-products) are converted by the reactions shown in Equations 1 and 2. Occur. 3H 2 O → O 3 + 6H + + 6e - ··· ( Equation 1) 2H 2 O → O 2 + 4H + + 4e - ··· ( Equation 2)

【0021】電子は外部回路11を通って陰極62へ移
動し、プロトンは固体高分子電解質膜4を通って陰極1
のおもて面の触媒層2に移動する。陰極のおもて面の触
媒層2では、空気中の酸素が次式のように反応して水が
生じる。水の一部は、固体高分子電解質膜4を介して陽
極61に戻り、陽極61での反応に用いられる。 O2 + 4H+ + 4e- → 2H2O ・・・(式3)
Electrons move to the cathode 62 through the external circuit 11 and protons pass through the solid polymer electrolyte membrane 4 to the cathode 1.
It moves to the catalyst layer 2 on the front surface. In the catalyst layer 2 on the front surface of the cathode, oxygen in the air reacts according to the following formula to generate water. Part of the water returns to the anode 61 via the solid polymer electrolyte membrane 4 and is used for the reaction at the anode 61. O 2 + 4H + + 4e → 2H 2 O (formula 3)

【0022】万一、陰極のおもて面の触媒層2への酸素
の供給が不足した場合には、次式によって水素が発生す
る恐れがある。 2H+ + 2e- → H2 ・・・(式4) しかし、陰極のおもて面の触媒層2で水素が発生した場
合でも、陰極の裏面の触媒層3で酸化され、水に戻され
るので、大気中には水素は排出されない。
If the supply of oxygen to the catalyst layer 2 on the front surface of the cathode is insufficient, hydrogen may be generated by the following equation. 2H + + 2e → H 2 (Equation 4) However, even when hydrogen is generated in the catalyst layer 2 on the front surface of the cathode, it is oxidized by the catalyst layer 3 on the back surface of the cathode and returned to water. Therefore, no hydrogen is emitted into the atmosphere.

【0023】上記実施の形態1によるオゾン発生素子を
43リットルの容積のステンレス製の評価箱に入れて、
1週間3Vを継続して印加し、オゾン濃度と水素濃度を
測定した所、オゾン濃度は50ppm、水素濃度は10
ppm以下(使用した水素センサーの検出限界以下)で
あった。
The ozone generating element according to the first embodiment is placed in a stainless steel evaluation box having a capacity of 43 liters.
When 3 V was continuously applied for one week and the ozone concentration and the hydrogen concentration were measured, the ozone concentration was 50 ppm and the hydrogen concentration was 10 ppm.
ppm or less (below the detection limit of the hydrogen sensor used).

【0024】上記実施の形態1によるオゾン発生素子の
陰極の構造の効果を比較するために、表1のように、6
種類のサンプルを作成し、それぞれ43リットルの評価
箱に入れて1週間、3Vの電圧を継続して印加し、オゾ
ン濃度と水素濃度を調べた。サンプル1は、上記実施の
形態1と同じものであり、陰極おもて面の触媒層2は親
水性の強い液化した固体高分子電解質膜をバインダーと
して製作したので親水性であり、裏面の触媒層3は撥水
性の強いPTFEの微粒子をバインダーとしたので撥水
性である。このように、バインダーの種類を変えること
で、触媒層の親水性、撥水性の区別をつけることができ
る。同様にして、サンプル2では、おもて面、裏面共に
親水性、サンプル3では、おもて面、裏面共に撥水性、
サンプル4では、サンプル1とは逆に、おもて面を撥水
性、裏面を親水性とした。また、従来の電解式オゾン発
生素子として、サンプル5は、おもて面を親水性触媒層
とし、裏面には何も設けなかった。また、サンプル6で
は、おもて面を撥水性触媒層とし、裏面には何も設けな
かった。これらの結果をまとめて表1に示す。
In order to compare the effects of the structure of the cathode of the ozone generating element according to the first embodiment, as shown in Table 1, 6
Each type of sample was prepared, placed in a 43-liter evaluation box, and continuously applied with a voltage of 3 V for one week to examine the ozone concentration and the hydrogen concentration. The sample 1 was the same as that of the first embodiment, and the catalyst layer 2 on the front surface of the cathode was hydrophilic because it was manufactured using a liquefied solid polymer electrolyte membrane having a strong hydrophilic property as a binder. The layer 3 is water repellent because PTFE fine particles having strong water repellency are used as a binder. Thus, by changing the type of the binder, it is possible to distinguish between hydrophilicity and water repellency of the catalyst layer. Similarly, in Sample 2, both the front and back surfaces are hydrophilic, and in Sample 3, both the front and back surfaces are water repellent.
In Sample 4, contrary to Sample 1, the front surface was made water-repellent and the back surface was made hydrophilic. In addition, as a conventional electrolytic ozone generating element, Sample 5 had a hydrophilic catalyst layer on the front surface and nothing on the back surface. In sample 6, the front surface was a water-repellent catalyst layer, and nothing was provided on the back surface. The results are summarized in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】陰極の両面に触媒層2、3を設けた本実施
の形態と同様の構造を有するサンプル1〜4は、従来の
構造をしたサンプル5、6と比べて、水素濃度に大きな
差異が見られた。従来構造のものでは、水素濃度は10
00ppmを超えたが、本実施の形態の構造のもので
は、水素濃度は50ppm以下に保たれていた。この差
異は、明らかに陰極裏面の触媒層3の有無によるもの
で、陰極の電位の変化などによって、わずかに生成され
る水素が陰極裏面の触媒層3で酸化されるために、サン
プル1〜4での水素濃度が50ppm以下に保たれてい
たと考えられる。従来例の1000ppm程度の水素濃
度は、水素の爆発下限である4%に比べるとかなり低い
が、43リットルの容器内の平均水素濃度なので、局部
的な水素濃度においても十分に安全であるとは言えな
い。従って、水素濃度を50ppm以下に保つことので
きる本実施の形態の効果は大きい。
Samples 1 to 4 having the same structure as that of the present embodiment in which the catalyst layers 2 and 3 are provided on both surfaces of the cathode have a large difference in hydrogen concentration as compared with the samples 5 and 6 having the conventional structure. Was seen. In the conventional structure, the hydrogen concentration is 10
Although it exceeded 00 ppm, in the structure of the present embodiment, the hydrogen concentration was kept at 50 ppm or less. This difference is apparently due to the presence or absence of the catalyst layer 3 on the cathode back surface. Since a slight amount of generated hydrogen is oxidized by the catalyst layer 3 on the cathode back surface due to a change in the potential of the cathode, the samples 1 to 4 It is considered that the hydrogen concentration at was kept at 50 ppm or less. Although the hydrogen concentration of about 1000 ppm in the conventional example is considerably lower than the lower limit of hydrogen explosion of 4%, since it is an average hydrogen concentration in a 43-liter container, it is not sufficiently safe even in a local hydrogen concentration. I can not say. Therefore, the effect of this embodiment in which the hydrogen concentration can be kept at 50 ppm or less is great.

【0027】表1をさらに詳しく見ると、陰極裏面の触
媒層3を撥水性にしたサンプル1とサンプル3が、陰極
裏面の触媒層3を親水性にしたサンプル2とサンプル4
よりも水素濃度が10ppm以下と著しく低くなってい
る。これは、陰極裏面の触媒層3を撥水性とした方が、
陰極裏面の触媒層3を親水性にした場合に比べてガス拡
散性が確保されるので、陰極おもて面の触媒層2への空
気中の酸素の供給が容易になり、陰極おもて面の触媒層
2での水素発生の可能性が少なくなるためである。
Looking at Table 1 in more detail, Samples 1 and 3 in which the catalyst layer 3 on the cathode back surface was made water-repellent were Samples 2 and 4 in which the catalyst layer 3 on the cathode back surface was made hydrophilic.
Hydrogen concentration is significantly lower than 10 ppm. This is because the catalyst layer 3 on the back surface of the cathode is made water repellent,
Since gas diffusibility is secured as compared with the case where the catalyst layer 3 on the cathode rear surface is made hydrophilic, supply of oxygen in the air to the catalyst layer 2 on the cathode front surface becomes easy, and the cathode front This is because the possibility of generating hydrogen in the surface catalyst layer 2 is reduced.

【0028】一方、オゾン濃度についても差異が見ら
れ、陰極おもて面の触媒層2を親水性にしたサンプル1
とサンプル2が、陰極おもて面の触媒層2を撥水性にし
たサンプル3とサンプル4よりもオゾン濃度が高くなっ
ていた。これは、固体高分子電解質膜4に面した触媒層
2が親水性である方が、触媒の利用率が高くなり、陰極
の分極が小さくなって、逆に印加電圧の陽極にかかる分
極が大きくなり、オゾンが発生しやすくなるためであ
る。すなわち、陰極おもて面の触媒層2を親水性にし、
陰極裏面の触媒層3を撥水性にしたサンプル1が、水素
濃度を低くしてオゾン濃度を高めるのに最も有効であ
る。
On the other hand, there was a difference in the ozone concentration, and the sample 1 in which the catalyst layer 2 on the cathode front surface was made hydrophilic was used.
And Sample 2 had a higher ozone concentration than Samples 3 and 4 in which the catalyst layer 2 on the cathode front surface was made water-repellent. This is because, when the catalyst layer 2 facing the solid polymer electrolyte membrane 4 is hydrophilic, the utilization rate of the catalyst increases, the polarization of the cathode decreases, and conversely, the polarization of the applied voltage applied to the anode increases. This is because ozone is easily generated. That is, the catalyst layer 2 on the cathode front surface is made hydrophilic,
The sample 1 in which the catalyst layer 3 on the back surface of the cathode is made water-repellent is most effective for lowering the hydrogen concentration and increasing the ozone concentration.

【0029】なお、上記実施の形態においては、陽極の
触媒層6を固体高分子電解質膜4に塗布し、陰極62
と、片面に陽極触媒層6を塗布した固体高分子電解質膜
4と、陽極基材5とを重ね合わせてオゾン発生素子を作
成したが、陽極の触媒層は従来のものと同様、電着によ
り陽極基材の全面に設け、この陽極と、固体高分子電解
質膜4と、本実施の形態と同様の構造の陰極62とを重
ね合わせてオゾン発生素子を作成してもよい。
In the above embodiment, the anode catalyst layer 6 is applied to the solid polymer electrolyte
And the solid polymer electrolyte membrane 4 coated on one side with an anode catalyst layer 6 and the anode substrate 5 to form an ozone generating element. The anode catalyst layer is formed by electrodeposition as in the prior art. An ozone generating element may be formed by providing the anode, the solid polymer electrolyte membrane 4, and the cathode 62 having the same structure as in the present embodiment on the entire surface of the anode substrate.

【0030】実施の形態2.図3はこの発明の実施の形
態2による電解式オゾン発生素子の構成を示す側面図で
ある。図において、9は多孔質基材の厚み方向の全域に
わたって白金触媒を含む触媒を付着させた陰極である。
Embodiment 2 FIG. FIG. 3 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 2 of the present invention. In the figure, reference numeral 9 denotes a cathode on which a catalyst containing a platinum catalyst is attached over the entire area in the thickness direction of the porous substrate.

【0031】陰極9の基材はカーボン繊維でできた厚さ
0.3mmのカーボンペーパーであり、撥水処理を施さ
ずに、カーボン粉末に白金微粒子を担持した触媒を、液
化した固体高分子電解質をバインダーとし、150℃で
熱処理してバインダーとして加えた固体高分子電解質に
融着させて、カーボンペーパーの繊維表面をコーティン
グするような状態で付着させた。走査型電子顕微鏡写真
による観察で、この触媒コーティング層は、カーボン繊
維の表面を薄く覆っていて、その厚さは5μm以下であ
り、基材の気孔を閉塞していないことを確認した。陽極
基材5、および陽極触媒層6や固体高分子電解質膜4に
ついては、実施の形態1と同じ仕様のものを用いた。基
材の全面にわたって触媒が付着した陰極9と、片面に陽
極触媒層6を塗布した固体高分子電解質膜4と、陽極基
材5とを、陽極と陰極の電流、電圧端子が互いに直角に
なるように同心円上に重ね合わせ、160℃でホットプ
レスしてオゾン発生素子を作成した。
The base material of the cathode 9 is a 0.3 mm-thick carbon paper made of carbon fiber, and is a solid polymer electrolyte obtained by liquefying a catalyst in which platinum particles are supported on carbon powder without performing a water-repellent treatment. Was used as a binder, heat-treated at 150 ° C., fused to the solid polymer electrolyte added as a binder, and adhered so as to coat the fiber surface of the carbon paper. Observation with a scanning electron microscope photograph confirmed that this catalyst coating layer covered the surface of the carbon fiber thinly, had a thickness of 5 μm or less, and did not block the pores of the substrate. As the anode substrate 5, the anode catalyst layer 6, and the solid polymer electrolyte membrane 4, those having the same specifications as in the first embodiment were used. The cathode 9 having the catalyst adhered over the entire surface of the base material, the solid polymer electrolyte membrane 4 having the anode catalyst layer 6 applied on one side, and the anode base material 5 are arranged such that the current and voltage terminals of the anode and the cathode are perpendicular to each other. As described above, the ozone generating element was formed by overlapping the concentric circles and hot pressing at 160 ° C.

【0032】43リットルの評価箱に入れて1週間、3
Vの電圧を印加してオゾン濃度と水素濃度を調べた所、
オゾン濃度は45ppm、水素濃度は15ppmであ
り、表1の従来例に比べて、オゾン濃度が高く、水素濃
度が低いなどの効果が得られた。これは、陰極の基材全
体にわたって存在する触媒に十分な酸素が拡散し、わず
かに発生した水素が速やかに酸化処理されるためであ
る。
One week in a 43 liter evaluation box
When a voltage of V was applied to check the ozone concentration and the hydrogen concentration,
The ozone concentration was 45 ppm and the hydrogen concentration was 15 ppm, and effects such as a higher ozone concentration and a lower hydrogen concentration were obtained as compared with the conventional example shown in Table 1. This is because a sufficient amount of oxygen diffuses into the catalyst existing over the entire base material of the cathode, and the slightly generated hydrogen is quickly oxidized.

【0033】実施の形態3.図4はこの発明の実施の形
態3による電解式オゾン発生素子の構成を示す側面図で
ある。図において、13はα型の二酸化鉛をメッキした
チタン製の多孔質基材で構成された陽極である。
Embodiment 3 FIG. 4 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 3 of the present invention. In the figure, reference numeral 13 denotes an anode composed of a titanium porous substrate plated with α-type lead dioxide.

【0034】陽極の基材は実施の形態1や実施の形態2
と同じチタン製のエキスパンドメタルにわずかに白金メ
ッキしたものであるが、陽極の触媒層を、固体高分子電
解質膜4に塗布するのではなく、α型の二酸化鉛を陽極
基材にメッキして構成した。α型の二酸化鉛のメッキ
は、アルカリ性溶液中での鉛イオンの電解メッキで容易
に形成することができる。一方、β型の二酸化鉛のメッ
キについては、酸性溶液中での鉛イオンの電解メッキで
容易に形成することができる。すなわち、メッキ液の酸
性度で、容易にα、βの区別をしてメッキを施すことが
できる。陰極62や固体高分子電解質膜4については、
実施の形態1と同じ仕様のものを用いた。陰極62と、
固体高分子電解質膜4と、上記構成の陽極13とを、陽
極と陰極の電流、電圧端子が互いに直角になるように同
心円上に重ね合わせ、160℃でホットプレスしてオゾ
ン発生素子を作成した。
The base material of the anode is used in the first and second embodiments.
This is a slightly expanded platinum metal of the same type as that of the above, except that the catalyst layer of the anode is not coated on the solid polymer electrolyte membrane 4, but α-type lead dioxide is plated on the anode substrate. Configured. The plating of α-type lead dioxide can be easily formed by electrolytic plating of lead ions in an alkaline solution. On the other hand, the plating of β-type lead dioxide can be easily formed by electrolytic plating of lead ions in an acidic solution. That is, the plating can be easily performed by distinguishing between α and β by the acidity of the plating solution. For the cathode 62 and the solid polymer electrolyte membrane 4,
The same specifications as in the first embodiment were used. A cathode 62;
The solid polymer electrolyte membrane 4 and the anode 13 having the above-mentioned configuration were overlapped on a concentric circle so that the current and voltage terminals of the anode and the cathode were perpendicular to each other, and were hot-pressed at 160 ° C. to produce an ozone generating element. .

【0035】43リットルの評価箱に入れて3ヶ月間、
3Vの電圧を継続して印加してオゾン濃度と水素濃度を
調べた。また比較のために、チタン製のエキスパンドメ
タルに白金メッキしたものに、β型の二酸化鉛をメッキ
したものを陽極として用いた電解式オゾン発生素子も同
様にして評価した。3ヶ月間のオゾン濃度の変化と水素
濃度の変化を図5に示す。
For three months in a 43 liter evaluation box,
The voltage of 3 V was continuously applied to check the ozone concentration and the hydrogen concentration. For comparison, an electrolytic ozone generating element using a platinum expanded metal made of titanium and a β-type lead dioxide plated as an anode was similarly evaluated. FIG. 5 shows changes in ozone concentration and hydrogen concentration for three months.

【0036】図5は、実施の形態3による電解式オゾン
発生素子の性能の経時変化を示すグラフである。図にお
いて、14はα型の二酸化鉛を陽極の触媒層として用い
た場合のオゾン濃度の変化、15はβ型の二酸化鉛を陽
極の触媒層として用いた場合のオゾン濃度の変化、16
はα型の二酸化鉛を陽極の触媒層として用いた場合の水
素濃度の変化、17はβ型の二酸化鉛を陽極の触媒層と
して用いた場合の水素濃度の変化である。
FIG. 5 is a graph showing the change over time in the performance of the electrolytic ozone generating element according to the third embodiment. In the figure, 14 is a change in ozone concentration when α-type lead dioxide is used as a catalyst layer of the anode, 15 is a change in ozone concentration when β-type lead dioxide is used as a catalyst layer of the anode, 16
Represents a change in hydrogen concentration when α-type lead dioxide is used as the anode catalyst layer, and 17 represents a change in hydrogen concentration when β-type lead dioxide is used as the anode catalyst layer.

【0037】α型の二酸化鉛の場合は、運転初期のオゾ
ン濃度は低いが、徐々に増加して100時間後には50
ppmに達し、その後1500時間まで、劣化は全く見
られなかった。一方、β型の二酸化鉛の場合は、初期の
オゾン濃度は高かったが、1500時間にわたって徐々
に低下した。この間の電流値はほぼ一定であったので、
酸素の発生比率が増加してオゾン発生の電流効率が徐々
に低下したと考えられる。また、水素も徐々に増加し、
1500時間後には500ppmにまで達した。運転
後、分解して陽極を調べた所、α型の二酸化鉛の場合
は、初期は茶色をしていたのに、運転後は真っ黒に色が
変化していた。また走査型電子顕微鏡で観察したが、α
型の二酸化鉛のメッキ層に亀裂などの異常は見られなか
った。一方、β型の二酸化鉛の場合は、走査型電子顕微
鏡による観察で、β型の二酸化鉛のメッキ層におびただ
しい数の亀裂が生じていることが分かった。
In the case of α-type lead dioxide, the ozone concentration in the initial stage of operation is low, but gradually increases to 50% after 100 hours.
ppm, and no degradation was observed until 1500 hours thereafter. On the other hand, in the case of β-type lead dioxide, the initial ozone concentration was high, but gradually decreased over 1500 hours. Since the current value during this period was almost constant,
It is considered that the current efficiency of ozone generation gradually decreased due to an increase in the generation rate of oxygen. Also, hydrogen gradually increases,
After 1500 hours, it reached 500 ppm. After operation, the anode was disassembled and the anode was examined. As a result, in the case of α-type lead dioxide, the color was brown at first, but changed to black after operation. Observation with a scanning electron microscope showed that α
No abnormalities such as cracks were found in the lead dioxide plating layer of the mold. On the other hand, in the case of β-type lead dioxide, observation with a scanning electron microscope revealed that numerous cracks were formed in the β-type lead dioxide plating layer.

【0038】走査型電子顕微鏡で観察した結果を基に、
図6に、運転後のα型の二酸化鉛のメッキ層(a)およ
びβ型の二酸化鉛のメッキ層(b)の断面の様子を模式
的に示す。図において、18はチタン製のエキスパンド
メタル、19はチタン表面の白金メッキ層、20はα型
の二酸化鉛のメッキ層、21はα型の二酸化鉛のメッキ
層の表面に形成されたβ型の二酸化鉛の薄い層、22は
β型の二酸化鉛のメッキ層、23はβ型の二酸化鉛のメ
ッキ層に多数生じた亀裂である。α型の二酸化鉛は茶色
でアルカル性で安定であり、β型の二酸化鉛は真っ黒
で、α型の二酸化鉛とは逆に酸性で安定である。固体高
分子電解質のスルフォン酸基は強酸であり、α型の二酸
化鉛のメッキ層の表面が相変化を起こして酸性で安定な
β型に変化したと考えられる。α型の二酸化鉛のメッキ
層は強靭な皮膜であるが、β型の二酸化鉛のメッキ層は
大変もろい層で、応力に弱く、亀裂が生じやすい。図6
(b)における亀裂は、β型の二酸化鉛のメッキ層に存
在していた内部応力によって生じたものと考えられる。
β型の二酸化鉛のメッキ層に亀裂が生じると、チタン表
面の白金メッキ層にまで水分が入り込むようになる。す
るとメッキされている白金が酸素発生の触媒となり、オ
ゾン発生よりも酸素発生が優先して起こる。図5の経時
変化15で、電流値が減少せずに、オゾン濃度が減少し
たのは、このような亀裂に水分が入り込んで酸素発生が
起こりはじめたためと考えられる。また、水素濃度の上
昇は、オゾン発生電位(1.5V)よりも低い電位で酸
素発生(1.2V)が起こるために、陰極側の電位が下
がり、水素発生が起こる確率が増えたためである。一
方、α型の二酸化鉛の表面に生じたβ型の二酸化鉛の薄
い層については、薄いために亀裂が生じにくく、また、
仮に亀裂が生じたとしても、強靭なα型の二酸化鉛のメ
ッキ層があるので、白金メッキ層やチタンにまで達する
亀裂は生じない。すなわち、本発明の実施の形態3によ
る陽極構造をとれば、寿命安定性に優れた電解式オゾン
発生素子が得られる。
Based on the results of observation with a scanning electron microscope,
FIG. 6 schematically shows the cross section of the α-type lead dioxide plating layer (a) and the β-type lead dioxide plating layer (b) after operation. In the drawing, 18 is an expanded metal made of titanium, 19 is a platinum plating layer on the surface of titanium, 20 is a plating layer of α-type lead dioxide, and 21 is a β-type plating layer formed on the surface of an α-type lead dioxide plating layer. A thin layer of lead dioxide, 22 is a plated layer of β-type lead dioxide, and 23 is a crack formed in the plated layer of β-type lead dioxide in large numbers. α-type lead dioxide is brown and alkaline and stable, and β-type lead dioxide is black, which is acidic and stable, contrary to α-type lead dioxide. It is considered that the sulfonic acid group of the solid polymer electrolyte is a strong acid, and the surface of the α-type lead dioxide plating layer has undergone a phase change to have been changed to an acidic and stable β-type. The α-type lead dioxide plating layer is a tough film, while the β-type lead dioxide plating layer is a very brittle layer, is weak to stress and easily cracks. FIG.
It is considered that the crack in (b) was caused by the internal stress existing in the plating layer of β-type lead dioxide.
If a crack occurs in the β-type lead dioxide plating layer, moisture will enter the platinum plating layer on the titanium surface. Then, the plated platinum serves as a catalyst for oxygen generation, and oxygen generation takes precedence over ozone generation. It is considered that the reason why the ozone concentration was reduced without decreasing the current value in the time-dependent change 15 in FIG. 5 is that moisture began to enter such cracks and oxygen generation began to occur. The increase in hydrogen concentration is because oxygen generation (1.2 V) occurs at a potential lower than the ozone generation potential (1.5 V), so that the potential on the cathode side decreases and the probability of hydrogen generation increases. . On the other hand, for a thin layer of β-type lead dioxide generated on the surface of α-type lead dioxide, cracks are unlikely to occur due to its thinness,
Even if a crack occurs, there is no crack that reaches the platinum plating layer or titanium because there is a tough α-type lead dioxide plating layer. That is, if the anode structure according to the third embodiment of the present invention is adopted, an electrolytic ozone generating element having excellent life stability can be obtained.

【0039】なお、上記実施の形態では、α型の二酸化
鉛を陽極基材にメッキして陽極13を構成したが、α型
の二酸化鉛を、陽極の触媒層として固体高分子電解質膜
4に塗布してもよく、実施の形態3の場合と同様に表面
が真っ黒に変化し、オゾン発生の能力と寿命について実
施の形態3の場合と同様の効果が得られた。
In the above embodiment, the anode 13 is formed by plating α-type lead dioxide on the anode substrate. However, α-type lead dioxide is applied to the solid polymer electrolyte membrane 4 as a catalyst layer of the anode. The surface may be turned black as in the case of the third embodiment, and the same effects as in the case of the third embodiment can be obtained with respect to the ozone generation ability and the service life.

【0040】実施の形態4.図7はこの発明の実施の形
態4による電解式オゾン発生素子の構成を示す側面図で
ある。図において、24はα型の二酸化鉛をメッキした
チタン製の多孔質基材、25は延伸したPTFE製の薄
膜にα型の二酸化鉛の微粉末を塗布した薄膜シートであ
り、これら多孔質基材24と薄膜シート25により陽極
を構成する。
Embodiment 4 FIG. FIG. 7 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 4 of the present invention. In the figure, reference numeral 24 denotes a titanium porous substrate plated with α-type lead dioxide, and 25 denotes a thin film sheet in which α-type lead dioxide fine powder is applied to a stretched PTFE thin film. An anode is constituted by the material 24 and the thin film sheet 25.

【0041】陽極の基材24は実施の形態3の陽極に用
いたものとと同じ仕様のものを用いた。また、延伸した
PTFE製の薄膜にα型の二酸化鉛の微粉末を塗布した
薄膜シート25は、例えば特開平8−2130270号
公報に記載されているようにローラを用いてPTFE製
の薄膜にα型の二酸化鉛の微粉末を塗布したものであ
り、やわらかくてフレキシブルな茶色い膜で、厚さは1
0μmである。陰極62や固体高分子電解質膜4につい
ては、実施の形態1と同じ仕様のものを用いた。陰極6
2と、固体高分子電解質膜4と、陽極61とを、陽極と
陰極の電流、電圧端子が互いに直角になるように同心円
上に重ね合わせ、160℃でホットプレスしてオゾン発
生素子を作成した。
As the anode substrate 24, one having the same specifications as those used for the anode of the third embodiment was used. Further, a thin film sheet 25 obtained by applying a fine powder of α-type lead dioxide to a stretched PTFE thin film is coated on the PTFE thin film using a roller as described in, for example, JP-A-8-2130270. Is a soft, flexible brown film with a thickness of 1
0 μm. As the cathode 62 and the solid polymer electrolyte membrane 4, those having the same specifications as in the first embodiment were used. Cathode 6
2, the polymer electrolyte membrane 4, and the anode 61 were concentrically overlapped so that the current and voltage terminals of the anode and the cathode were perpendicular to each other, and were hot-pressed at 160 ° C. to produce an ozone generating element. .

【0042】実施の形態3の場合と同様に、43リット
ルの評価箱に入れて3ヶ月間、3Vの電圧を印加してオ
ゾン濃度と水素濃度を調べた所、初期の100時間でオ
ゾン濃度が徐々に上昇して80ppmに達し、1500
時間安定にオゾン濃度が保たれた。また、水素は検出限
界の10ppm以下に保たれていた。さらに、運転後分
解して見たところ、固体高分子電解質膜4に接した薄膜
シート25とα型の二酸化鉛をメッキしたチタン製の多
孔質基材24の表面が真っ黒に変化しており、β型の二
酸化鉛に変化してオゾン濃度が高くなったと考えられ
る。また、実施の形態3に比べてオゾン濃度が高くなっ
たのは、α型の二酸化鉛の微粒子が陽極の反応面積を著
しく増大させたための効果である。
As in the case of the third embodiment, the ozone concentration and the hydrogen concentration were examined by applying a voltage of 3 V for 3 months in a 43 liter evaluation box, and the ozone concentration was found to be 100 hours in the initial period. Gradually increased to 80 ppm, 1500
The ozone concentration was kept stable over time. Also, hydrogen was kept below the detection limit of 10 ppm. Furthermore, as a result of disassembly after the operation, the surface of the thin film sheet 25 in contact with the solid polymer electrolyte membrane 4 and the surface of the porous substrate 24 made of titanium plated with α-type lead dioxide turned black. It is considered that the ozone concentration increased due to the change to β-type lead dioxide. Further, the ozone concentration was higher than that in the third embodiment because of the effect that the α-type lead dioxide fine particles significantly increased the reaction area of the anode.

【0043】なお、実施の形態4では、延伸したPTF
E製の薄膜にα型の二酸化鉛の微粒子を塗布した薄膜シ
ート25を用いたが、フッ素系の多孔質薄膜としては、
PTFEの他のFEP、PFAなどを用いることがで
き、同様にα型の二酸化鉛の微粒子をシート化すること
ができる。また、PTFEの微粒子とα型の二酸化鉛の
微粒子を混練して圧延することによってもα型の二酸化
鉛の微粒子の薄膜シート25を製作することができる。
さらに、シートを用いるのではなくα型の二酸化鉛の微
粒子と液化した固体高分子電解質(ナフィオン液、アル
ドリッチ社製)を混合してペースト化し、固体高分子電
解質膜4にハケ塗りなどによって直接陽極触媒層を形成
した場合にも、実施の形態4の場合と同様に表面が真っ
黒に変化し、オゾン発生の能力と寿命について実施の形
態4の場合と同様の効果が得られた。
In the fourth embodiment, the expanded PTF
Although a thin film sheet 25 in which α-type lead dioxide fine particles are applied to a thin film made of E was used, as a fluorine-based porous thin film,
Other than PTFE, other FEP, PFA, and the like can be used, and similarly, α-type lead dioxide fine particles can be formed into a sheet. Also, the thin film sheet 25 of α-type lead dioxide fine particles can be manufactured by kneading and rolling PTFE fine particles and α-type lead dioxide fine particles.
Further, instead of using a sheet, α-type lead dioxide fine particles and a liquefied solid polymer electrolyte (Nafion liquid, manufactured by Aldrich) are mixed and pasted, and the solid polymer electrolyte membrane 4 is directly anode-coated by brushing or the like. Even when the catalyst layer was formed, the surface turned black as in the case of the fourth embodiment, and the same effects as those of the fourth embodiment were obtained with respect to the ozone generation ability and the life.

【0044】実施の形態5.図8はこの発明の実施の形
態5による電解式オゾン発生素子の構成を示す側面図
(a)と平面図(b)である。図において、26は陽極
61と、固体高分子電解質膜4と、陰極62を貫通する
穴である。
Embodiment 5 FIG. FIG. 8 is a side view (a) and a plan view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 5 of the present invention. In the figure, reference numeral 26 denotes a hole passing through the anode 61, the solid polymer electrolyte membrane 4, and the cathode 62.

【0045】構成と材料は、実施の形態1と同じ仕様と
し、最後に打ち抜きポンチを用いて真ん中に直径5mm
の貫通穴26を開けた。実施の形態1の構成の電解式オ
ゾン発生素子と実施の形態5の電解式オゾン発生素子の
陰極側にそれぞれ新聞紙をかぶせて、3Vを印加し、陰
極側の水素濃度を調べた。1時間後、実施の形態1の構
成では、水素濃度が8000ppmにまで上昇したが、
実施の形態5では25ppmであった。実施の形態1の
構成で、陰極側に覆いをかぶせた場合に水素濃度が上昇
したのは、陰極側近傍の空気中の酸素が少なくなったた
めである。一方、実施の形態5で水素濃度がほとんど上
昇しなかったのは、貫通穴を通じて陰極側に酸素が供給
されるためである。従って、実施の形態5の構成によれ
ば、陰極側が覆われた場合でも水素発生が抑制され、高
い安全性を保つ効果が得られる。
The structure and material are the same as those of the first embodiment. Finally, a punch having a diameter of 5 mm
Was opened. Newspaper was placed on each of the cathodes of the electrolytic ozone generating element having the structure of the first embodiment and the electrolytic ozone generating element of the fifth embodiment, and 3 V was applied thereto. One hour later, in the configuration of Embodiment 1, the hydrogen concentration increased to 8000 ppm,
In the fifth embodiment, it was 25 ppm. In the configuration of the first embodiment, the reason why the hydrogen concentration increased when the cathode was covered was that oxygen in the air near the cathode was reduced. On the other hand, the reason why the hydrogen concentration hardly increased in the fifth embodiment is that oxygen is supplied to the cathode side through the through hole. Therefore, according to the configuration of the fifth embodiment, even when the cathode side is covered, generation of hydrogen is suppressed, and an effect of maintaining high safety can be obtained.

【0046】なお、実施の形態5では、真ん中に1個の
貫通穴26を設けた場合を示したが、複数個の貫通穴を
設けても良く、端の方に設けても良い。また、全面にわ
たって、小さな穴が設けられていてもよい。
In the fifth embodiment, the case where one through-hole 26 is provided in the center is shown, but a plurality of through-holes may be provided or may be provided at the end. Also, a small hole may be provided over the entire surface.

【0047】実施の形態6.図9はこの発明の実施の形
態6による電解式オゾン発生素子の構成を示す側面図で
ある。図において、27は撥水性で、かつガス通気性の
ある多孔質膜であり、PTFE製の多孔性薄膜である。
Embodiment 6 FIG. FIG. 9 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 6 of the present invention. In the figure, reference numeral 27 denotes a water-repellent and gas-permeable porous film, which is a porous thin film made of PTFE.

【0048】実施の形態5と同じ仕様の電解式オゾン発
生素子の外側に、PTFE製の多孔性薄膜27を設けた
ものと、設けないものとで、素子に水がかかった場合の
比較試験を行った。その結果、多孔性薄膜27を設けた
ものに水をかけても、水が玉のようになって転げ落ち
て、素子に流れる電流にほとんど変化は見られなかった
が、多孔性薄膜27を設けないものに水をかけると、通
常の3倍以上の電流が流れ、一時的に大量の水素が発生
することが分かった。これは、水の直接供給によって、
電解の反応物である水の供給が律速になって一定になっ
ていた反応速度が一挙に加速されるとともに、固体高分
子電解質膜のイオン伝導抵抗が低下し、大きな電流が流
れて、陰極で酸素が不足し水素が発生したと考えられ
る。従って、実施の形態6の構成によれば、オゾン発生
素子に水が直接かかった場合にでも、水素の発生が防止
され、高い安全性が確保される。
A comparison test was conducted between the case where the porous thin film 27 made of PTFE was provided on the outside of the electrolytic ozone generating element having the same specification as that of the embodiment 5 and the case where the element was not provided with water. went. As a result, even when water was applied to the device provided with the porous thin film 27, the water tumbled down like a ball, and almost no change was observed in the current flowing through the element, but the porous thin film 27 was not provided. It was found that when water was applied to the object, more than three times the current flowed, and a large amount of hydrogen was generated temporarily. This is due to the direct supply of water
The supply rate of water, which is the reaction product of the electrolysis, was rate-limiting and the reaction rate, which was constant, was accelerated all at once, and the ionic conduction resistance of the solid polymer electrolyte membrane decreased, causing a large current to flow. It is considered that hydrogen was generated due to lack of oxygen. Therefore, according to the configuration of the sixth embodiment, even when water is directly applied to the ozone generating element, generation of hydrogen is prevented, and high safety is ensured.

【0049】また、本実施の形態におけるオゾン発生素
子では多孔性薄膜27を設けることにより、ほこりなど
からの金属イオンの混入や有機物の付着が防止でき、性
能を長く保つ効果がある。また、PTFE製の多孔性薄
膜27は、絶縁性であるため短絡の恐れがない。
Further, in the ozone generating element of the present embodiment, by providing the porous thin film 27, it is possible to prevent the entry of metal ions from dust and the like and the attachment of organic substances, and have the effect of maintaining the performance for a long time. In addition, the porous thin film 27 made of PTFE is insulative and does not cause a short circuit.

【0050】なお、実施の形態6では、多孔性薄膜27
として、PTFE製のものを用いたが、PFAやFEP
製のものを用いてもよく、同様の効果が得られる。ま
た、陰極または陽極のうち、水が直接かかる恐れのある
方の側にだけ多孔性薄膜27を設けても良い。さらに、
多孔性薄膜27は、薄膜でなくともよく、シート状、あ
るいは板状のもので構成してもよい。
In the sixth embodiment, the porous thin film 27 is used.
Was made of PTFE, but PFA or FEP
A similar effect may be obtained. Alternatively, the porous thin film 27 may be provided only on the side of the cathode or anode where water may be directly applied. further,
The porous thin film 27 does not have to be a thin film, and may be formed in a sheet shape or a plate shape.

【0051】実施の形態7.図10はこの発明の実施の
形態7による電解式オゾン発生素子の構成を示す側面図
(a)と平面図(b)である。図において、28は撥水
処理を施した複数個の穴のあいたステンレス製の薄板、
29はステンレス製の薄板28を貫通する穴である。
Embodiment 7 FIG. FIG. 10 is a side view (a) and a plan view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 7 of the present invention. In the figure, 28 is a stainless steel plate with a plurality of holes subjected to a water-repellent treatment,
Reference numeral 29 denotes a hole passing through the stainless steel thin plate 28.

【0052】実施の形態7は、実施の形態6の構成の陽
極側の外側に、撥水処理を施した、複数個の穴のあいた
ステンレス製の薄板を、外力に対して素子を保護する保
護手段として配置したものである。この構成でも、十分
な量のオゾンが発生し、水素もほとんど発生しないこと
を確認した。金属がオゾン発生素子を貫通すると、陽極
と陰極が短絡し、大きな電流が流れ発熱するなどのトラ
ブルが予想されるが、実施の形態7によれば、先の尖っ
た金属などであやまってオゾン発生素子を突き破りそう
になった場合でもステンレス製の薄板28により容易に
は貫通せず、破壊をまぬがれることができる。また、図
10の構成では、陽極61と金属製の薄板28との間に
多孔性薄膜27が配置されており、陽極61と金属製の
薄板28との電気絶縁性を確保し、金属製の薄板28か
ら外部に電流が流れるのを防止すると共に、陽極61と
外気との通気性が確保される。
In the seventh embodiment, a stainless steel thin plate having a plurality of holes, which has been subjected to a water-repellent treatment on the outside of the anode side in the structure of the sixth embodiment, is used to protect the element against external force. It is arranged as a means. In this configuration, it was confirmed that a sufficient amount of ozone was generated and almost no hydrogen was generated. When the metal penetrates the ozone generating element, a trouble such as a short circuit between the anode and the cathode, a large current flows and heat is expected. However, according to the seventh embodiment, the ozone generation is stopped due to the sharp metal or the like. Even when the element is about to break through, the thin plate 28 made of stainless steel does not easily penetrate the element, and the element can be prevented from being broken. Further, in the configuration of FIG. 10, the porous thin film 27 is disposed between the anode 61 and the metal thin plate 28, and the electrical insulation between the anode 61 and the metal thin plate 28 is ensured. Current is prevented from flowing from the thin plate 28 to the outside, and air permeability between the anode 61 and the outside air is secured.

【0053】なお、実施の形態7では、ステンレス製の
薄板28に複数個の穴29をあけた場合を示したが、複
数の穴を設けたチタンやニッケルの薄板であってもよ
く、ステンレスの薄板と同様のオゾン耐性を持ち、フッ
素樹脂による撥水処理が可能である。さらにフッ素樹脂
によるコーティングによって、オゾンに対する耐性が強
化されるのでオゾンによって酸化される金属を用いるこ
ともできる。また、発泡金属や、パンチングメタルなど
を用いることもできる。また、陰極側についても、陰極
側の外側に、撥水処理を施した、複数個の穴のあいたス
テンレス製の薄板を配置してもよい。
In the seventh embodiment, the case where a plurality of holes 29 are formed in the stainless steel thin plate 28 is shown. However, a titanium or nickel thin plate having a plurality of holes may be used. It has the same ozone resistance as a thin plate, and can be water-repellent with a fluororesin. Further, since the resistance to ozone is enhanced by coating with a fluororesin, a metal oxidized by ozone can be used. Further, foamed metal, punching metal, or the like can be used. Also, on the cathode side, a stainless steel plate having a plurality of holes and subjected to a water-repellent treatment may be arranged outside the cathode side.

【0054】実施の形態8.図11はこの発明の実施の
形態8による電解式オゾン発生素子の構成を示す平面図
(a)と側面図(b)である。図において、30は楕円
形をした陽極、31は楕円形をした陰極、32は陽極電
流端子部A、33は陽極電流端子部B、34は陰極電流
端子部C、35は陰極電流端子部Dである。
Embodiment 8 FIG. FIG. 11 is a plan view (a) and a side view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 8 of the present invention. In the figure, 30 is an elliptical anode, 31 is an elliptical cathode, 32 is an anode current terminal A, 33 is an anode current terminal B, 34 is a cathode current terminal C, and 35 is a cathode current terminal D. It is.

【0055】本実施の形態によるオゾン発生素子におい
ては、陽極30および陰極31を楕円形に似た長細い形
状とし、固体高分子電解質膜4を挟んで陽極および陰極
の細長い形状の軸をずらして対峙させているので、陽極
と陰極が直接対峙していない4つの周辺部分が形成され
る。陽極と陰極が直接対峙していない4つの周辺部分は
陽極側の両端の2カ所が陽極電流端子部、陰極側の両端
の2カ所が陰極電流端子部として有効に利用することが
できる。反応は、2つの楕円形の重なった中心付近にあ
るので、例えば陽極電流端子部A32と陰極電流端子部
C34の2カ所を電流端子とすると、反応が陽極電流端
子部A32と陰極電流端子部C34に近い位置に偏って
しまう。しかし、本実施の形態8のように陽極電流端子
部A32と陽極電流端子部B33、および陰極電流端子
部C34と陰極電流端子部D35の両端を集電端とする
ことで、反応が均一化され、最も理想的な集電ができ
る。
In the ozone generating element according to the present embodiment, the anode 30 and the cathode 31 are formed in a slender shape resembling an ellipse, and the axes of the slender shapes of the anode and the cathode are shifted with the solid polymer electrolyte membrane 4 interposed therebetween. Since they face each other, four peripheral portions where the anode and the cathode do not directly face each other are formed. In the four peripheral portions where the anode and the cathode do not directly face each other, two portions at both ends on the anode side can be effectively used as anode current terminal portions, and two portions at both ends on the cathode side can be effectively used as cathode current terminal portions. Since the reaction is near the center of the overlap of the two ellipses, for example, if the anode current terminal portion A32 and the cathode current terminal portion C34 are used as the current terminals, the reaction will be the anode current terminal portion A32 and the cathode current terminal portion C34. To a position close to However, the reaction is made uniform by using both ends of the anode current terminal portion A32 and the anode current terminal portion B33 and the cathode current terminal portion C34 and the cathode current terminal portion D35 as the current collecting ends as in the eighth embodiment. , The most ideal current collection.

【0056】また、図11(b)に示すように、陽極と
陰極の外側にPTFE製の多孔性薄膜27のような電子
絶縁材料を配置し、電流端子部分以外を覆っておけば、
短絡や接地などの危険性が少なくなる。
As shown in FIG. 11 (b), if an electronic insulating material such as a porous thin film 27 made of PTFE is disposed outside the anode and the cathode, and the portion other than the current terminal portion is covered,
The danger of short circuit and grounding is reduced.

【0057】さらに、楕円形の長さを陽極と陰極で、違
えておけば、陽極と陰極をつなぎ間違える恐れが少なく
なる。電解式オゾン発生素子の陽極にはチタン、陰極に
はカーボンペーパーやカーボン布などが一般に用いられ
るが、カーボン材料はチタン材料よりも電気抵抗が高
い。従って、陰極側よりも陽極側の集電距離を長くした
方が、集電に要する抵抗を小さくでき、性能を高めるこ
とができる。
Further, if the length of the ellipse is changed between the anode and the cathode, the possibility of connecting the anode and the cathode and making a mistake is reduced. Titanium is generally used for the anode of the electrolytic ozone generating element, and carbon paper or carbon cloth is generally used for the cathode. The carbon material has higher electric resistance than the titanium material. Therefore, when the current collection distance on the anode side is longer than that on the cathode side, the resistance required for current collection can be reduced and the performance can be improved.

【0058】なお、図11に示す実施の形態では陽極と
陰極を楕円形状としたが、必ずしも楕円形状でなくても
よく、例えば固体高分子電解質膜より大きい形の陽極と
陰極を、固体高分子電解質膜の周囲にスペーサを配置し
て対峙させ、各電極の外周部、即ち固体高分子電解質膜
の外側の部分に複数の電流端子を設けてもよい。
In the embodiment shown in FIG. 11, the anode and the cathode are elliptical. However, the anode and the cathode are not necessarily elliptical. A plurality of current terminals may be provided on the outer peripheral portion of each electrode, that is, on the outer portion of the solid polymer electrolyte membrane, by disposing spacers around the electrolyte membrane to face each other.

【0059】実施の形態9.図12はこの発明の実施の
形態9による電解式オゾン発生装置のソケット本体部の
構成を示す平面図(a)とA−A線に沿った断面図
(b)、図13は上記電解式オゾン発生装置のソケット
蓋部の構成を示す平面図(a)とA−A線に沿った断面
図(b)である。図において、36はソケット本体部、
37はソケット蓋部、38はソケット蓋部の陽極接続部
A、39はソケット蓋部の陽極接続部B、40はソケッ
ト本体部の陰極接続部C、41はソケット本体部の陰極
接続部D、44はソケット本体部の陽極接続部A、45
はソケット本体部の陽極接続部B、46は陰極接続部
C、Dを接続する配線、47は陽極接続部A、Bを接続
する配線、48は直流電源へのプラス電流端子、49は
直流電源へのマイナス電流端子、53はソケット本体部
を貫通する穴、54はソケット蓋部を貫通する穴、55
はソケット本体取り付けボルト穴、56は陰極側設置く
ぼみ、57は陽極側設置くぼみである。
Embodiment 9 FIG. 12 is a plan view (a) showing a configuration of a socket body of an electrolytic ozone generating apparatus according to Embodiment 9 of the present invention, and a cross-sectional view (b) along line AA. FIG. It is the top view (a) which shows the structure of the socket cover part of a generator, and sectional drawing (b) along AA. In the figure, 36 is a socket body,
37 is a socket cover, 38 is an anode connection A of the socket cover, 39 is an anode connection B of the socket cover, 40 is a cathode connection C of the socket body, 41 is a cathode connection D of the socket body, 44 is an anode connection part A of the socket body part, 45
Is a wiring connecting the cathode connection parts C and D, 47 is a wiring connecting the anode connection parts A and B, 48 is a positive current terminal to a DC power supply, and 49 is a DC power supply. A negative current terminal, 53 a hole penetrating the socket body, 54 a hole penetrating the socket lid, 55
Is a socket body mounting bolt hole, 56 is a recess provided on the cathode side, and 57 is a recess provided on the anode side.

【0060】図11に示す電解式オゾン発生素子は、陰
極部を図12のソケット本体側にして装着される。陰極
側設置くぼみ56は、陽極側設置くぼみ57よりも深く
なっており、素子の形状や厚さに合わした形状になって
いる。電解式オゾン発生素子の装着は、単にソケット本
体部の陰極側設置くぼみ56に陰極側がはまるように置
いて、ソケット蓋部をはめるだけで完了する。ソケット
本体部とソケット蓋部とは、凹凸を用いて容易には外れ
ないようになっているが、このような構造は、はめ込み
式の構造として周知の技術を用いて簡単に構成すること
ができる。ソケット本体部の陰極接続部40、41は、
素子の陰極の電流端子部34、35に接続し、また、配
線46によってマイナス電流端子49に接続している。
一方、ソケット蓋部の陽極接続部38、39の内側が素
子の陽極の電流端子部32、33に電気的に接続し、さ
らに、ソケット蓋部の陽極接続部38、39の外側がソ
ケット本体部の陽極接続部44、45に接続して配線4
7によって、プラス電流端子48に接続されている。従
って、マイナス電流端子49とプラス電流端子48に3
V程度の直流電圧を印加すれば、電解式オゾン発生素子
の陰極と陽極の間に通電することができ、オゾンが発生
する。また、蓋がはずれた状態では通電されず、装着の
際に感電する恐れがない。ソケット本体部およびソケッ
ト蓋部は、オゾンに対して耐久性のある電子絶縁性のプ
ラスチック材料で構成されており、鋳型などを用いて、
押し出し成形するなどにより、簡単に、図12や図13
の形状のものを製作することができる。以上のように、
図12、図13の構成によれば、電解式オゾン発生素子
をワンタッチで装着でき、陽極や陰極の配線を行う必要
がない。
The electrolytic ozone generating element shown in FIG. 11 is mounted with the cathode part facing the socket body shown in FIG. The cathode-side installation recess 56 is deeper than the anode-side installation recess 57, and has a shape that matches the shape and thickness of the element. The mounting of the electrolytic ozone generating element is completed simply by placing the cathode side in the recess 56 on the cathode side of the socket body and fitting the socket lid. Although the socket body and the socket lid are not easily detached by using irregularities, such a structure can be easily configured by using a well-known technique as a fitting type structure. . The cathode connection portions 40 and 41 of the socket body are
The device is connected to the current terminal portions 34 and 35 of the cathode of the device, and is connected to the negative current terminal 49 by a wiring 46.
On the other hand, the inside of the anode connection portions 38 and 39 of the socket lid portion is electrically connected to the current terminal portions 32 and 33 of the anode of the element, and the outside of the anode connection portions 38 and 39 of the socket lid portion is the socket body portion. Connected to the anode connection portions 44 and 45 of the
7 is connected to a positive current terminal 48. Therefore, the minus current terminal 49 and the plus current terminal 48
When a DC voltage of about V is applied, current can flow between the cathode and the anode of the electrolytic ozone generating element, and ozone is generated. In addition, when the lid is detached, power is not supplied, and there is no danger of electric shock during mounting. The socket body and the socket lid are made of an electronically insulating plastic material that is durable to ozone.
12 and 13 by extrusion molding.
Can be manufactured. As mentioned above,
According to the configuration of FIGS. 12 and 13, the electrolytic ozone generating element can be mounted with one touch, and there is no need to perform wiring of the anode and the cathode.

【0061】実施の形態10.図14はこの発明の実施
の形態10による電解式オゾン発生装置のソケット本体
部の構成を示す平面図(a)とA−A線に沿った断面図
(b)である。図において、58は陰極側の閉鎖空間、
59はソケット本体部の通気穴、63は閉鎖空間と通気
穴との連絡穴であり、陽極側への空気連絡通路である。
Embodiment 10 FIG. FIG. 14 is a plan view (a) showing a configuration of a socket body of an electrolytic ozone generator according to Embodiment 10 of the present invention, and a cross-sectional view (b) taken along line AA. In the figure, 58 is a closed space on the cathode side,
Reference numeral 59 denotes a ventilation hole in the socket body, and 63 denotes a communication hole between the closed space and the ventilation hole, which is an air communication passage to the anode side.

【0062】本実施の形態によるオゾン発生装置では、
陰極側空間が閉塞空間になっているにもかかわらず、陰
極側と空気が連絡しているので、陰極側で水素が発生す
る危険性が少なくなっている。また、陰極側を空気に晒
す必要がないので、ソケット本体部を取り付け穴55を
用いて簡単に壁などに取り付けて、あるいは両面テープ
などを用いて接着して設置することができ、電解式オゾ
ン発生装置の設置場所の自由度が高くなる。
In the ozone generator according to the present embodiment,
Although the cathode side space is a closed space, the air is in communication with the cathode side, so that the danger of generating hydrogen on the cathode side is reduced. In addition, since it is not necessary to expose the cathode side to air, the socket body can be easily attached to a wall or the like using the attachment hole 55 or adhered using a double-sided tape or the like. The degree of freedom of the installation location of the generator is increased.

【0063】実施の形態11.図15はこの発明の実施
の形態11による電解式オゾン発生装置の回路構成を示
す構成図である。図において、50は乾電池、51は電
流回路切り替えスイッチ、52はフューズ、10は電解
式オゾン発生素子である。
Embodiment 11 FIG. FIG. 15 is a configuration diagram showing a circuit configuration of an electrolytic ozone generator according to Embodiment 11 of the present invention. In the figure, 50 is a dry battery, 51 is a current circuit changeover switch, 52 is a fuse, and 10 is an electrolytic ozone generating element.

【0064】電解式オゾン発生素子10を装着し、オゾ
ンを発生させる場合は、2個の乾電池を直列にして3V
の直流電圧を印加し、装置からオゾンを発生させない時
には、電流回路切り替えスイッチ51によって2個の乾
電池の一方のみを直列、または2個の乾電池を電気的に
並列にして、陽極と陰極の間に、オゾンを発生させる場
合よりも低い電圧1.5Vを印加する。これによって、
陽極の還元による劣化を防止できる。
When the ozone is generated by mounting the electrolytic ozone generating element 10, two dry cells are connected in series and 3 V
When no ozone is generated from the apparatus by applying a direct current voltage of only one of the two batteries in series or the two batteries are electrically connected in parallel by the current circuit changeover switch 51, and between the anode and the cathode. And a voltage 1.5 V lower than that in the case of generating ozone. by this,
Deterioration due to reduction of the anode can be prevented.

【0065】図15に示す実施の形態11の電解式オゾ
ン発生装置と、装置からオゾンを発生させない時には、
電圧を印加しないようにした電解式オゾン発生装置での
各オゾン発生素子の寿命を比較するために、ON−OF
Fを2時間ごとに繰り返す試験を行った所、1ヶ月後
に、図15に示す実施の形態11の電解式オゾン発生装
置のオゾン発生性能にはほとんど変化がなかったのに対
して、オゾン発生装置からオゾンを発生させない時には
電圧を印加しないようにした電解式オゾン発生装置で
は、オゾン発生量が半減してしまった。これは、電圧を
印加していない時に陽極の電位が低下して還元され鉛イ
オンとなって固体高分子電解質膜に取り込まれ抵抗が高
くなったためである。本実施の形態11によれば、停止
時も、陽極が低い電位になるのを防止でき、ON−OF
Fの繰り返し寿命の長い電解式オゾン発生装置が得られ
る。
With the electrolytic ozone generator of Embodiment 11 shown in FIG.
In order to compare the life of each ozone generating element in the electrolytic ozone generating apparatus without applying a voltage, ON-OF was used.
F was repeated every two hours. After one month, the ozone generation performance of the electrolytic ozone generator of the eleventh embodiment shown in FIG. In an electrolytic ozone generator in which no voltage is applied when ozone is not generated from the apparatus, the amount of ozone generated has been reduced by half. This is because when no voltage was applied, the potential of the anode was reduced and reduced to lead ions, which were taken into the solid polymer electrolyte membrane, and the resistance was increased. According to the eleventh embodiment, it is possible to prevent the anode from being at a low potential even during stoppage, and
An electrolytic ozone generator having a long repetition life of F can be obtained.

【0066】一方、図15におけるフューズ52は、通
常よりも大きな電流が流れた場合に切れて、それ以上電
流を流さないようにできるので、水が素子にかかった
り、外からの力で素子に損傷を受けて短絡した場合など
に、素子の異常な発熱や水素の発生を防止でき、万一の
場合の安全性を高く保つことができる。
On the other hand, the fuse 52 in FIG. 15 is cut off when a current larger than usual flows, and it is possible to prevent the current from flowing any more. In a case where the element is damaged and short-circuited, abnormal heat generation of the element and generation of hydrogen can be prevented, and the safety in the event of an emergency can be kept high.

【0067】なお、上記実施の形態では、乾電池を使用
した場合について示したが、直流電圧であれば、何でも
よく、家庭用の100V電源からAC・DCコンバータ
ーで3Vや1.5Vに設定しても良い。また、太陽電池
を用いることもできる。
In the above embodiment, the case where a dry battery is used has been described. However, any DC voltage may be used. A DC / DC converter may be used to set the voltage to 3 V or 1.5 V from a household 100 V power supply. Is also good. Further, a solar cell can also be used.

【0068】また、オゾンを発生させる場合に素子に印
加する電圧として、上記実施の形態では3Vの場合を示
したが、適正な印加電圧は、固体高分子電解質膜のイオ
ン伝導抵抗や電気回路、集電部分での電子伝導抵抗など
によって異なる。例えば、イオン伝導抵抗の高い固体高
分子電解質膜を用いた場合には印加電圧を高くする必要
があり、3.5Vや4Vのような値が用いられる。逆に
イオン伝導抵抗の低い固体高分子電解質膜を用いた場合
には、3Vではなく、2.5Vや2Vなど、より低い印
加電圧を適用することができる。従って、素子からオゾ
ンを発生させない場合の印加電圧についても、1.5V
が最適な値ではなく、オゾンが発生する電圧よりも低い
電圧の中から用いやすい電圧を選択すればよい。印加電
圧が低くなるほど、消費電力が小さくなるが、変圧する
際の電力ロスを勘案すると、電解式オゾン発生装置が用
いられるケースによって用いやすい電圧は異なる。
In the above-described embodiment, the voltage applied to the element when generating ozone is 3 V. However, the appropriate applied voltage may be the ionic conduction resistance of the solid polymer electrolyte membrane, the electric circuit, or the like. It depends on the electronic conduction resistance at the current collector. For example, when a solid polymer electrolyte membrane having high ionic conduction resistance is used, it is necessary to increase the applied voltage, and a value such as 3.5 V or 4 V is used. Conversely, when a solid polymer electrolyte membrane having a low ionic conduction resistance is used, a lower applied voltage such as 2.5 V or 2 V can be applied instead of 3 V. Accordingly, the applied voltage when ozone is not generated from the element is also 1.5 V
Is not an optimal value, and an easy-to-use voltage may be selected from voltages lower than the voltage at which ozone is generated. The lower the applied voltage, the lower the power consumption. However, in consideration of the power loss at the time of voltage transformation, the voltage that can be easily used differs depending on the case where the electrolytic ozone generator is used.

【0069】[0069]

【発明の効果】以上のように、本発明の第1の構成の電
解式オゾン発生素子によれば、固体高分子電解質膜を挟
んで、陽極と陰極を対峙させた電解式オゾン発生素子に
おいて、上記陰極として、電子伝導性で、かつガス通気
性のある多孔質基材を用い、上記多孔質基材の両面に、
白金触媒を含む触媒層を形成したので、陰極の固体高分
子電解質膜に接した触媒層で水素が発生した場合でも、
陰極の多孔質基材の裏面の触媒層で、水素が水に還元さ
れ、安全性が保たれる効果がある。
As described above, according to the electrolytic ozone generating element of the first configuration of the present invention, in the electrolytic ozone generating element in which the anode and the cathode face each other with the solid polymer electrolyte membrane interposed therebetween, As the cathode, an electron-conductive, gas-permeable porous substrate is used, on both surfaces of the porous substrate,
Since a catalyst layer containing a platinum catalyst was formed, even if hydrogen was generated in the catalyst layer in contact with the solid polymer electrolyte membrane of the cathode,
Hydrogen is reduced to water in the catalyst layer on the back surface of the porous substrate of the cathode, and there is an effect that safety is maintained.

【0070】また、本発明の第2の構成の電解式オゾン
発生素子によれば、固体高分子電解質膜を挟んで、陽極
と陰極を対峙させた電解式オゾン発生素子において、上
記陰極として、電子伝導性で、かつガス通気性のある多
孔質基材を用い、上記多孔質基材の内部に、白金触媒を
含む触媒を含有させたので、陰極の固体高分子電解質膜
に接した触媒で水素が発生した場合でも、陰極の多孔質
基材の内部に含有された白金触媒で、水素が水に還元さ
れ、安全性が高くなる効果がある。
According to the electrolytic ozone generating element of the second configuration of the present invention, in the electrolytic ozone generating element in which the anode and the cathode are opposed to each other with the solid polymer electrolyte membrane interposed therebetween, Since a conductive and gas-permeable porous substrate was used, and a catalyst containing a platinum catalyst was contained inside the porous substrate, hydrogen was applied to the catalyst in contact with the solid polymer electrolyte membrane of the cathode. In the case where hydrogen is generated, hydrogen is reduced to water by the platinum catalyst contained in the porous base material of the cathode, and the safety is enhanced.

【0071】また、本発明の第3の構成の電解式オゾン
発生素子によれば、陽極と固体高分子電解質膜との間
に、α型の二酸化鉛よりなる触媒層を設けたので、表面
がβ型の二酸化鉛に変化して、β型の二酸化鉛をメッキ
した場合と同様なオゾン発生の電流効率が得られると共
に、強靭なα型の二酸化鉛の層によって、二酸化鉛層の
亀裂が防止され、性能が長期間安定して保たれる効果が
ある。
Further, according to the electrolytic ozone generating element of the third configuration of the present invention, since the catalyst layer made of α-type lead dioxide is provided between the anode and the solid polymer electrolyte membrane, the surface becomes Converts to β-type lead dioxide and provides the same current efficiency of ozone generation as when β-type lead dioxide is plated, and the tough α-type lead dioxide layer prevents cracking of the lead dioxide layer The effect is that the performance is kept stable for a long time.

【0072】また、本発明の第4の構成の電解式オゾン
発生素子によれば、陽極として、α型の二酸化鉛をメッ
キしたチタン製の多孔質基材を用い、上記多孔質基材と
固体高分子電解質膜との間にα型の二酸化鉛の微粒子層
を挟持したので、α型の二酸化鉛の微粒子の表面がオゾ
ン発生の電流効率の高いβ型に変化し、応力に対する強
度を保ちながら、大きな反応表面積を維持することがで
きる。また、強靭なα型の二酸化鉛のメッキ層によっ
て、二酸化鉛層の亀裂が防止され、集電材としての役割
が長時間維持される効果がある。
According to the electrolytic ozone generating element of the fourth configuration of the present invention, a titanium porous substrate plated with α-type lead dioxide is used as an anode, and the porous substrate and the solid Since the α-type lead dioxide fine particle layer is sandwiched between the polymer electrolyte membrane, the surface of the α-type lead dioxide fine particles changes to β-type, which has high current efficiency of ozone generation, while maintaining the strength against stress. , A large reaction surface area can be maintained. In addition, the tough α-type lead dioxide plating layer has the effect of preventing the lead dioxide layer from cracking and maintaining its role as a current collector for a long time.

【0073】また、本発明の第5の構成の電解式オゾン
発生素子によれば、陽極と固体高分子電解質膜と陰極と
を貫通する少なくとも1つの穴を設けたので、上記穴か
ら陰極に十分な酸素や水分が供給され、陰極側の空間が
閉塞されても、大量の水素が発生する恐れがなく、安全
性が保たれる効果がある。
Further, according to the electrolytic ozone generating element of the fifth configuration of the present invention, since at least one hole penetrating the anode, the solid polymer electrolyte membrane and the cathode is provided, the hole is sufficiently connected to the cathode. Even if a large amount of oxygen or moisture is supplied and the space on the cathode side is closed, a large amount of hydrogen is not likely to be generated, and there is an effect that safety is maintained.

【0074】また、本発明の第6の構成の電解式オゾン
発生素子によれば、陽極または陰極の少なくとも一方の
外側に、撥水性で、かつガス通気性のある多孔質膜を配
置したので、オゾン発生素子が防水され、さらにほこり
などからの金属イオンや有機物が付着することが防止さ
れ、性能が長く保たれる効果がある。
According to the electrolytic ozone generating element of the sixth configuration of the present invention, a water-repellent and gas-permeable porous membrane is disposed outside at least one of the anode and the cathode. The ozone generating element is waterproofed, and furthermore, metal ions and organic substances from dust and the like are prevented from adhering, and the performance is maintained for a long time.

【0075】また、本発明の第7の構成の電解式オゾン
発生素子によれば、上記多孔質膜が、外力に対して素子
を保護する保護手段を有するので、外部からの力で素子
が破壊されることを防止できる。
Further, according to the electrolytic ozone generating element of the seventh configuration of the present invention, since the porous film has a protection means for protecting the element against external force, the element is destroyed by an external force. Can be prevented.

【0076】また、本発明の第8の構成の電解式オゾン
発生素子によれば、固体高分子電解質膜を挟んで配置さ
れた陽極と陰極の、固体高分子電解質膜の外側に配置す
る陽極部分および陰極部分に、複数個の電流端子を各々
形成したので、効果的な集電が行われる効果がある。
According to the electrolytic ozone generating element of the eighth configuration of the present invention, the anode part disposed between the anode and the cathode sandwiching the solid polymer electrolyte membrane is disposed outside the solid polymer electrolyte membrane. In addition, since a plurality of current terminals are respectively formed in the cathode portion, there is an effect that effective current collection is performed.

【0077】また、本発明の第1の構成の電解式オゾン
発生装置によれば、電解式オゾン発生素子をソケット本
体部とソケット蓋部の間に装着し、陰極電流端子部がソ
ケット本体部の陰極接続部と接触し、ソケット蓋部を装
着した際に陽極電流端子部がソケット蓋部、またはソケ
ット本体部の陽極接続部と接触するようにしたので、素
子の装着が簡単になる効果がある。
Further, according to the electrolytic ozone generating device of the first configuration of the present invention, the electrolytic ozone generating element is mounted between the socket body and the socket lid, and the cathode current terminal is connected to the socket main body. The anode current terminal comes in contact with the socket lid or the anode connection of the socket body when the socket lid is attached, when it comes into contact with the cathode connection, so that the element can be easily mounted. .

【0078】また、本発明の第2の構成の電解式オゾン
発生装置によれば、上記ソケット蓋部の陰極に面する空
間が閉鎖空間として構成されており、ソケット本体側の
通気孔または電解式オゾン発生素子を貫通する穴を通じ
て陽極側の空間と連絡しているので、電解式オゾン発生
装置を壁のような面に取り付けた場合でも、陰極側の空
間で水素が発生することなくオゾンを発生させることが
できる効果がある。
Further, according to the electrolytic ozone generator of the second configuration of the present invention, the space facing the cathode of the socket lid is configured as a closed space, and the vent hole on the socket body side or the electrolytic Ozone is generated without generating hydrogen in the cathode-side space even when the electrolytic ozone generator is mounted on a surface such as a wall because it communicates with the space on the anode side through a hole that penetrates the ozone generating element. There is an effect that can be made.

【0079】また、本発明の第3の構成の電解式オゾン
発生装置によれば、装置からオゾンを発生させない時
に、陽極と陰極の間に、オゾンを発生させる場合よりも
低い電圧を印加するように構成したので、電力がほとん
ど消費されることなく陽極の還元が防止できる効果があ
る。
Further, according to the electrolytic ozone generator of the third configuration of the present invention, when ozone is not generated from the device, a lower voltage is applied between the anode and the cathode than when ozone is generated. Thus, there is an effect that the reduction of the anode can be prevented with little power consumption.

【0080】また、本発明の第4の構成の電解式オゾン
発生装置によれば、オゾンを発生させる場合に想定され
る電流値よりも高い電流値で切れるフューズを電流回路
に設けたので、水が直接オゾン発生素子にかかって大き
な電流が流れた場合や、外力によって素子が破損して短
絡した場合でも、フューズが切れて電流が流れなくな
り、陰極での水素の発生や過剰な発熱が防止できる効果
がある。
Further, according to the electrolytic ozone generator of the fourth configuration of the present invention, the current circuit is provided with a fuse which can be cut at a current value higher than the current value expected when ozone is generated. However, even when a large current flows directly to the ozone generating element, or when the element is damaged by an external force and short-circuited, the fuse cuts and no current flows, preventing generation of hydrogen at the cathode and excessive heat generation. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による電解式オゾン
発生素子の構成を示す側面図(a)と平面図(b)であ
る。
FIG. 1 is a side view (a) and a plan view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1による電解式オゾン
発生素子の動作を示す説明図である。
FIG. 2 is an explanatory diagram showing an operation of the electrolytic ozone generating element according to the first embodiment of the present invention.

【図3】 この発明の実施の形態2による電解式オゾン
発生素子の構成を示す側面図である。
FIG. 3 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 2 of the present invention.

【図4】 この発明の実施の形態3による電解式オゾン
発生素子の構成を示す側面図である。
FIG. 4 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 3 of the present invention.

【図5】 この発明の実施の形態3による電解式オゾン
発生素子の性能の経時変化を示すグラフである。
FIG. 5 is a graph showing a change over time in performance of an electrolytic ozone generating element according to Embodiment 3 of the present invention.

【図6】 運転後のα型の二酸化鉛のメッキ層およびβ
型の二酸化鉛のメッキ層の断面の様子を模式的に示す図
である。
FIG. 6 shows a plated layer of α-type lead dioxide after operation and β
It is a figure which shows typically the mode of the cross section of the plating layer of the type | mold lead dioxide.

【図7】 この発明の実施の形態4による電解式オゾン
発生素子の構成を示す側面図である。
FIG. 7 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 4 of the present invention.

【図8】 この発明の実施の形態5による電解式オゾン
発生素子の構成を示す側面図(a)と平面図(b)であ
る。
8A and 8B are a side view and a plan view showing a configuration of an electrolytic ozone generating element according to Embodiment 5 of the present invention.

【図9】 この発明の実施の形態6による電解式オゾン
発生素子の構成を示す側面図である。
FIG. 9 is a side view showing a configuration of an electrolytic ozone generating element according to Embodiment 6 of the present invention.

【図10】 この発明の実施の形態7による電解式オゾ
ン発生素子の構成を示す側面図(a)と平面図(b)で
ある。
FIG. 10 is a side view (a) and a plan view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 7 of the present invention.

【図11】 この発明の実施の形態8による電解式オゾ
ン発生素子の構成を示す平面図(a)と側面図(b)で
ある。
FIG. 11 is a plan view (a) and a side view (b) showing a configuration of an electrolytic ozone generating element according to Embodiment 8 of the present invention.

【図12】 この発明の実施の形態9による電解式オゾ
ン発生装置のソケット本体部の構成を示す平面図(a)
とA−A線に沿った断面図(b)である。
FIG. 12 (a) is a plan view showing a configuration of a socket body of an electrolytic ozone generator according to Embodiment 9 of the present invention.
FIG. 2B is a cross-sectional view taken along line AA.

【図13】 この発明の実施の形態9による電解式オゾ
ン発生装置のソケット蓋部の構成を示す平面図(a)と
A−A線に沿った断面図(b)である。
FIGS. 13A and 13B are a plan view and a cross-sectional view taken along line AA, respectively, showing a configuration of a socket lid of an electrolytic ozone generator according to Embodiment 9 of the present invention.

【図14】 この発明の実施の形態10による電解式オ
ゾン発生装置のソケット本体部の構成を示す平面図
(a)とA−A線に沿った断面図(b)である。
FIGS. 14A and 14B are a plan view and a cross-sectional view taken along line AA, respectively, showing a configuration of a socket body of an electrolytic ozone generator according to Embodiment 10 of the present invention.

【図15】 この発明の実施の形態11による電解式オ
ゾン発生装置の回路構成を示す構成図である。
FIG. 15 is a configuration diagram showing a circuit configuration of an electrolytic ozone generator according to Embodiment 11 of the present invention.

【図16】 従来の電解式オゾン発生素子の構成を示す
側面図(a)と平面図(b)である。
FIG. 16 is a side view (a) and a plan view (b) showing the configuration of a conventional electrolytic ozone generating element.

【符号の説明】 1 陰極の基材、2 陰極の基材のおもて面の触媒層、
3 陰極の基材の裏面の触媒層、4 固体高分子電解質
膜、5 陽極の基材、6 陽極の触媒層、7a陰極の電
流端子、7b 陰極の電圧端子、8a 陽極の電流端
子、8b 陽極の電圧端子、9 陰極、10 電解式オ
ゾン発生素子、11 外部回路、12直流電源、13
陽極、14 α型の二酸化鉛の場合のオゾン濃度の変
化、15β型の二酸化鉛の場合のオゾン濃度の変化、1
6 α型の二酸化鉛の場合の水素濃度の変化、17 β
型の二酸化鉛の場合の水素濃度の変化、18 チタン製
のエキスパンドメタル、19 チタン表面の白金メッキ
層、20 α型の二酸化鉛のメッキ層、21 β型の二
酸化鉛の薄い層、22 β型の二酸化鉛のメッキ層、2
3 亀裂、24 α型の二酸化鉛をメッキしたチタン製
の多孔質基材、25 α型の二酸化鉛の微粒子を主成分
とした薄膜シート、26 穴、27 多孔性薄膜、28
金属製の薄板、29 穴、30 陽極、31 陰極、
32 陽極電流端子部A、33 陽極電流端子部B、3
4 陰極電流端子部C、35 陰極電流端子部D、36
ソケット本体部、37 ソケット蓋部、38 ソケッ
ト蓋部の陽極接続部A、39 ソケット蓋部の陽極接続
部B、40 ソケット本体部の陰極接続部C、41 ソ
ケット本体部の陰極接続部D、44 ソケット本体部の
陽極接続部A、45 ソケット本体部の陽極接続部B、
46 配線、47 配線、48 直流電源へのプラス電
流端子、49 直流電源へのマイナス電流端子、50
乾電池、51 電流回路切り替えスイッチ、52 フュ
ーズ、53 穴、54 穴、55 ボルト穴、56 陰
極側設置くぼみ、57 陽極側設置くぼみ、58 陰極
側の閉鎖空間、59 ソケット本体部の通気穴、61
陽極、62 陰極、63 連絡穴。
[Description of Signs] 1 Cathode base material, 2 Catalytic layer on front surface of cathode base material,
3 Catalytic layer on the back of the base material of the cathode, 4 Solid polymer electrolyte membrane, 5 Base material of the anode, 6 Catalytic layer of the anode, 7a Cathode current terminal, 7b Cathode voltage terminal, 8a Anode current terminal, 8b anode Voltage terminal, 9 cathode, 10 electrolytic ozone generating element, 11 external circuit, 12 DC power supply, 13
Anode, change in ozone concentration in case of 14α type lead dioxide, change in ozone concentration in case of 15β type lead dioxide, 1
6 Change in hydrogen concentration in the case of α-type lead dioxide, 17 β
Change of hydrogen concentration in case of type lead dioxide, 18 titanium expanded metal, 19 titanium surface platinum plating layer, 20 α type lead dioxide plating layer, 21 β type lead dioxide thin layer, 22 β type Lead dioxide plating layer, 2
3 Crack, porous substrate made of titanium plated with 24α-type lead dioxide, thin-film sheet mainly composed of fine particles of 25α-type lead dioxide, 26 holes, 27 porous thin film, 28
Metal plate, 29 holes, 30 anodes, 31 cathodes,
32 Anode current terminal A, 33 Anode current terminal B, 3
4 Cathode current terminal C, 35 Cathode current terminal D, 36
Socket body part, 37 Socket cover part, 38 Anode connection part A of socket cover part, 39 Anode connection part B of socket cover part, 40 Cathode connection part C of socket body part, 41 Cathode connection part D of socket body part, 44 Anode connection part A of the socket body part, 45 Anode connection part B of the socket body part,
46 wiring, 47 wiring, 48 plus current terminal to DC power supply, 49 minus current terminal to DC power supply, 50
Dry cell, 51 current circuit changeover switch, 52 fuse, 53 hole, 54 hole, 55 bolt hole, 56 cathode side recess, 57 anode side recess, 58 cathode side closed space, 59 socket body part vent hole, 61
Anode, 62 cathode, 63 connecting hole.

フロントページの続き (72)発明者 反町 誠 東京都台東区北上野2−6−4 東洋高砂 乾電池株式会社内 (72)発明者 阿部 哲也 兵庫県尼崎市塚口本町8丁目1番1号 菱 彩テクニカ株式会社内 (72)発明者 畠中 康司 兵庫県三田市三輪2丁目6番1号 菱電化 成株式会社内 (72)発明者 相沢 毅 東京都大田区久が原2−14−10 株式会社 オプテックディディ・メルコ・ラボラトリ ー内Continued on the front page (72) Inventor Makoto Sorimachi 2-6-4 Kitaueno, Taito-ku, Tokyo Inside Toyo Takasago Dry Battery Co., Ltd. (72) Inventor Tetsuya Abe 8-1-1 Honcho Tsukaguchi, Amagasaki City, Hyogo Pref. Within the company (72) Inventor Koji Hatanaka 2-6-1, Miwa, Mita-shi, Hyogo Ryoden Kasei Co., Ltd. (72) Inventor Takeshi Aizawa 2-14-10 Kugahara, Ota-ku, Tokyo Optec Didi Melco Co., Ltd. In the laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟んで、陽極と陰
極を対峙させた電解式オゾン発生素子において、上記陰
極として、電子伝導性で、かつガス通気性のある多孔質
基材を用い、上記多孔質基材の両面に、白金触媒を含む
触媒層を形成したことを特徴とする電解式オゾン発生素
子。
1. An electrolytic ozone generating element in which an anode and a cathode are opposed to each other with a solid polymer electrolyte membrane interposed therebetween, wherein an electron conductive and gas-permeable porous base material is used as the cathode. An electrolytic ozone generating element, wherein a catalyst layer containing a platinum catalyst is formed on both surfaces of the porous substrate.
【請求項2】 固体高分子電解質膜を挟んで、陽極と陰
極を対峙させた電解式オゾン発生素子において、上記陰
極として、電子伝導性で、かつガス通気性のある多孔質
基材を用い、上記多孔質基材の内部に、白金触媒を含む
触媒を含有させたことを特徴とする電解式オゾン発生素
子。
2. An electrolytic ozone generating element in which an anode and a cathode are opposed to each other with a solid polymer electrolyte membrane interposed therebetween, wherein an electron conductive and gas-permeable porous base material is used as the cathode. An electrolytic ozone generating element, wherein a catalyst containing a platinum catalyst is contained in the porous substrate.
【請求項3】 陽極と固体高分子電解質膜との間に、α
型の二酸化鉛よりなる触媒層を設けたことを特徴とする
請求項1または2記載の電解式オゾン発生素子。
3. The method according to claim 1, wherein α is between the anode and the solid polymer electrolyte membrane.
The electrolytic ozone generating element according to claim 1 or 2, further comprising a catalyst layer made of a type of lead dioxide.
【請求項4】 陽極として、α型の二酸化鉛をメッキし
たチタン製の多孔質基材を用い、上記多孔質基材と固体
高分子電解質膜との間にα型の二酸化鉛の微粒子層を挟
持したことを特徴とする請求項1または2記載の電解式
オゾン発生素子。
4. A titanium porous substrate plated with α-type lead dioxide is used as an anode, and a fine particle layer of α-type lead dioxide is provided between the porous substrate and the solid polymer electrolyte membrane. The electrolytic ozone generating element according to claim 1 or 2, wherein the element is sandwiched.
【請求項5】 陽極と固体高分子電解質膜と陰極とを貫
通する少なくとも1つの穴が設けられていることを特徴
とする請求項1ないし4のいずれかに記載の電解式オゾ
ン発生素子。
5. The electrolytic ozone generating element according to claim 1, wherein at least one hole penetrating the anode, the solid polymer electrolyte membrane, and the cathode is provided.
【請求項6】 陽極または陰極の少なくとも一方の外側
に、撥水性で、かつガス通気性のある多孔質膜を配置し
たことを特徴とする請求項1ないし5のいずれかに記載
の電解式オゾン発生素子。
6. The electrolytic ozone according to claim 1, wherein a water-repellent and gas-permeable porous membrane is disposed outside at least one of the anode and the cathode. Generating element.
【請求項7】 多孔質膜は、外力に対して素子を保護す
る保護手段を有することを特徴とする請求項6記載の電
解式オゾン発生素子。
7. The electrolytic ozone generating element according to claim 6, wherein the porous film has a protection means for protecting the element against an external force.
【請求項8】 固体高分子電解質膜を挟んで配置された
陽極と陰極の、上記固体高分子電解質膜の外側に位置す
る陽極部分および陰極部分に、複数個の電流端子を各々
形成したことを特徴とする請求項1ないし7のいずれか
に記載の電解式オゾン発生素子。
8. A method in which a plurality of current terminals are respectively formed on an anode portion and a cathode portion of the anode and the cathode disposed with the solid polymer electrolyte membrane interposed therebetween, which are located outside the solid polymer electrolyte membrane. The electrolytic ozone generating element according to any one of claims 1 to 7, wherein:
【請求項9】 電解式オゾン発生素子をソケット本体部
とソケット蓋部の間に装着し、陰極電流端子部がソケッ
ト本体部の陰極接続部と接触し、ソケット蓋部を装着し
た際に陽極電流端子部がソケット蓋部、またはソケット
本体部の陽極接続部と接触するようにしたことを特徴と
する電解式オゾン発生装置。
9. An electrolytic ozone generating element is mounted between the socket body and the socket lid, and the cathode current terminal contacts the cathode connection of the socket body, and the anodic current flows when the socket lid is mounted. An electrolytic ozone generator characterized in that a terminal portion is brought into contact with a socket lid portion or an anode connection portion of a socket body portion.
【請求項10】 ソケット蓋部の陰極に面する空間が閉
鎖空間として構成されており、ソケット本体側の通気孔
または電解式オゾン発生素子を貫通する穴を通じて陽極
側の空間と連絡していることを特徴とする請求項9記載
の電解式オゾン発生装置。
10. A space facing the cathode of the socket lid portion is configured as a closed space, and is connected to a space on the anode side through a vent hole on the socket body side or a hole penetrating the electrolytic ozone generating element. The electrolytic ozone generator according to claim 9, characterized in that:
【請求項11】 電解式オゾン発生素子を装着し、直流
電源を備えた電解式オゾン発生装置において、装置から
オゾンを発生させない時に、陽極と陰極の間に、オゾン
を発生させる場合よりも低い電圧を印加することを特徴
とする請求項9または10記載の電解式オゾン発生装
置。
11. In an electrolytic ozone generator equipped with an electrolytic ozone generating element and provided with a DC power supply, when no ozone is generated from the device, a lower voltage is applied between the anode and the cathode than when ozone is generated. The electrolytic ozone generator according to claim 9 or 10, wherein the voltage is applied.
【請求項12】 電解式オゾン発生素子を装着し、直流
電源を備えた電解式オゾン発生装置において、オゾンを
発生させる場合に想定される電流値よりも高い電流値で
切れるフューズを電流回路に設けたことを特徴とする請
求項9ないし11のいずれかに記載の電解式オゾン発生
装置。
12. In an electrolytic ozone generator equipped with an electrolytic ozone generating element and provided with a DC power supply, a fuse that cuts at a current value higher than a current value expected when generating ozone is provided in a current circuit. The electrolytic ozone generator according to any one of claims 9 to 11, wherein:
JP29243997A 1997-10-24 1997-10-24 Electrolytic ozone generator and electrolytic ozone generator Expired - Fee Related JP3201316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29243997A JP3201316B2 (en) 1997-10-24 1997-10-24 Electrolytic ozone generator and electrolytic ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29243997A JP3201316B2 (en) 1997-10-24 1997-10-24 Electrolytic ozone generator and electrolytic ozone generator

Publications (2)

Publication Number Publication Date
JPH11131276A true JPH11131276A (en) 1999-05-18
JP3201316B2 JP3201316B2 (en) 2001-08-20

Family

ID=17781815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29243997A Expired - Fee Related JP3201316B2 (en) 1997-10-24 1997-10-24 Electrolytic ozone generator and electrolytic ozone generator

Country Status (1)

Country Link
JP (1) JP3201316B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262385A (en) * 2000-03-17 2001-09-26 Matsushita Refrig Co Ltd Electrolytic ozone generating device
US6328862B1 (en) 1999-12-22 2001-12-11 Take-One Office, Ltd. Ozone generating electrolysis cell and method of fabricating the same
US6589403B2 (en) 2000-02-25 2003-07-08 Mitsubishi Denki Kabushiki Kaisha Electrolysis gas converter and electric device using same
US6599403B2 (en) 1999-12-21 2003-07-29 Mitsubishi Denki Kabushiki Kaisha Electrochemical device using solid polymer electrolytic film
WO2008142771A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment equipment
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP2015514866A (en) * 2012-04-01 2015-05-21 無錫国贏科技有限公司 Self-breathing electrochemical oxygen generator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126884A (en) * 1989-10-11 1991-05-30 Permelec Electrode Ltd Electrolytic electrode and its production
JPH03260098A (en) * 1990-03-12 1991-11-20 Permelec Electrode Ltd Electrolysis using electrode covered with lead dioxide
JPH0417689A (en) * 1990-05-11 1992-01-22 Permelec Electrode Ltd Electrode for electrolyzing water and production thereof
JPH0488182A (en) * 1990-08-01 1992-03-23 Permelec Electrode Ltd Electrode structure for ozone production and its production
JPH04272195A (en) * 1991-02-28 1992-09-28 Matsushita Electric Ind Co Ltd Ozonizer
JPH04289664A (en) * 1991-02-12 1992-10-14 Mitsubishi Electric Corp Electrode structure for solid electrolyte
JPH0633286A (en) * 1992-07-17 1994-02-08 Permelec Electrode Ltd Electrode for electrolysis and its production
JPH06330367A (en) * 1993-05-18 1994-11-29 Permelec Electrode Ltd Production of gas electrode
JPH09143777A (en) * 1995-11-27 1997-06-03 Mitsubishi Electric Corp Solid polymer electrolytic element
JPH09155157A (en) * 1995-12-11 1997-06-17 Opt D D Melco Lab:Kk Electrochemical element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126884A (en) * 1989-10-11 1991-05-30 Permelec Electrode Ltd Electrolytic electrode and its production
JPH03260098A (en) * 1990-03-12 1991-11-20 Permelec Electrode Ltd Electrolysis using electrode covered with lead dioxide
JPH0417689A (en) * 1990-05-11 1992-01-22 Permelec Electrode Ltd Electrode for electrolyzing water and production thereof
JPH0488182A (en) * 1990-08-01 1992-03-23 Permelec Electrode Ltd Electrode structure for ozone production and its production
JPH04289664A (en) * 1991-02-12 1992-10-14 Mitsubishi Electric Corp Electrode structure for solid electrolyte
JPH04272195A (en) * 1991-02-28 1992-09-28 Matsushita Electric Ind Co Ltd Ozonizer
JPH0633286A (en) * 1992-07-17 1994-02-08 Permelec Electrode Ltd Electrode for electrolysis and its production
JPH06330367A (en) * 1993-05-18 1994-11-29 Permelec Electrode Ltd Production of gas electrode
JPH09143777A (en) * 1995-11-27 1997-06-03 Mitsubishi Electric Corp Solid polymer electrolytic element
JPH09155157A (en) * 1995-12-11 1997-06-17 Opt D D Melco Lab:Kk Electrochemical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599403B2 (en) 1999-12-21 2003-07-29 Mitsubishi Denki Kabushiki Kaisha Electrochemical device using solid polymer electrolytic film
US6328862B1 (en) 1999-12-22 2001-12-11 Take-One Office, Ltd. Ozone generating electrolysis cell and method of fabricating the same
US6589403B2 (en) 2000-02-25 2003-07-08 Mitsubishi Denki Kabushiki Kaisha Electrolysis gas converter and electric device using same
JP2001262385A (en) * 2000-03-17 2001-09-26 Matsushita Refrig Co Ltd Electrolytic ozone generating device
WO2008142771A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment equipment
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP2015514866A (en) * 2012-04-01 2015-05-21 無錫国贏科技有限公司 Self-breathing electrochemical oxygen generator

Also Published As

Publication number Publication date
JP3201316B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
US8343321B2 (en) Membrane electrode unit for the electrolysis of water
JP6284602B2 (en) Gas diffusion electrode, manufacturing method thereof, membrane electrode assembly including the same, and method of manufacturing membrane electrode assembly including the same
CA2532945C (en) Membrane-electrode assembly for the electrolysis of water
US8129065B2 (en) Electrochemical cell assemblies including a region of discontinuity
US20030175570A1 (en) Solid polymer electrolyte fuel cell unit
US20130108947A1 (en) Porous current collector, method of producing the same and fuel cell including porous current collector
EP1671388B1 (en) Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
US20050123816A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP4781626B2 (en) Fuel cell
US20140011115A1 (en) Proton-exchange membrane fuel cell having enhanced performance
JP3201316B2 (en) Electrolytic ozone generator and electrolytic ozone generator
JP2006012816A (en) Separator for fuel cell, its manufacturing method, and fuel cell comprising it
US20180090773A1 (en) Fuel cell stack
US20060046126A1 (en) Fuel cell and information terminal carrying the same
JP2001118583A (en) Fuel cell electrode and method for manufacturing the same
US8632927B2 (en) Membraneless fuel cell and method of operating same
JP4162469B2 (en) Electrode structure for polymer electrolyte fuel cell
JPH06223836A (en) Fuel cell
JP2002110190A (en) Fuel cell
JP7035711B2 (en) Metal plates, separators, cells, and fuel cells
JP2001006700A (en) Electrochemical device
JP2007134159A (en) Fuel cell
Cloutier et al. Triode operation of a proton exchange membrane (PEM) methanol electrolyser
JP4179847B2 (en) Electrode structure for polymer electrolyte fuel cell
WO2022203011A1 (en) Electrochemical cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees