JP2020094282A - Electrode for water electrolysis and production method thereof - Google Patents

Electrode for water electrolysis and production method thereof Download PDF

Info

Publication number
JP2020094282A
JP2020094282A JP2019220004A JP2019220004A JP2020094282A JP 2020094282 A JP2020094282 A JP 2020094282A JP 2019220004 A JP2019220004 A JP 2019220004A JP 2019220004 A JP2019220004 A JP 2019220004A JP 2020094282 A JP2020094282 A JP 2020094282A
Authority
JP
Japan
Prior art keywords
electrode
substrate
water electrolysis
porous
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019220004A
Other languages
Japanese (ja)
Inventor
公男 高瀬
Kimio Takase
公男 高瀬
栞 飯塚
Shiori Iizuka
栞 飯塚
正明 田村
Masaaki Tamura
正明 田村
眞一郎 向畠
Shinichiro Mukohata
眞一郎 向畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Publication of JP2020094282A publication Critical patent/JP2020094282A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an electrode for water electrolysis that has excellent electrolytic performance and durability and a water electrolytic cell using the same, in which the exfoliation and/or detachment of a catalyst from a base substance, or more specifically, the exfoliation of a catalyst film from the base substance and/or the detachment of a catalyst (particles) from a material comprising the base substance are prevented.SOLUTION: An electrode for water electrolysis 2 is arranged adjacent to a solid polymer electrolyte membrane (PEM) 5 in a water electrolytic cell 1. The electrode for water electrolysis 2 has "a catalyst-carried porous electrode base 3, in which a metal catalyst 3c or a metal oxide catalyst 3c is carried", and which is made by depositing a metal catalyst or a metal catalyst precursor onto a porous base 3a and by firing it. Preferably, the electrode for water electrolysis 2 further has an ionomer (layer) 4 on the side, adjacent to the solid polymer electrolyte membrane 5, of the catalyst-carried porous electrode base 3, including the production method thereof. In addition, preferably, the water electrolytic cell 1 has the electrode for water electrolysis 2 and the solid polymer electrolyte membrane, and a water electrolytic stack cell 9 has the water electrolytic cells 1 combined.SELECTED DRAWING: Figure 2

Description

本発明は、水電解用電極に関し、更に詳しくは、固体高分子電解質膜(PEM)を用いて水電解をする際に用いられる水電解用電極及びその製造方法、並びに、該水電解用電極を有する水電解セルに関する。 The present invention relates to an electrode for water electrolysis, and more specifically, an electrode for water electrolysis used in water electrolysis using a solid polymer electrolyte membrane (PEM), a method for producing the same, and an electrode for water electrolysis. A water electrolysis cell having the same.

燃料電池や「水素発生装置用の水電解セル」に用いられる膜電極接合体(MEA)は、固体高分子電解質膜(PEM)の両面上に各電極触媒を形成した構造を有している(図5(b)参照)。 A membrane electrode assembly (MEA) used in a fuel cell or a "water electrolysis cell for a hydrogen generator" has a structure in which each electrode catalyst is formed on both sides of a solid polymer electrolyte membrane (PEM) ( See FIG. 5B).

特許文献1に記載の発明は、電極触媒層に含まれる硫酸イオンの量が規定値以下であるときに良品とする膜電極接合体(MEA)の製造方法に関するものであるが、固体高分子電解質膜の面上に電極触媒層が形成された膜電極接合体と、その製造方法が開示されている。
そして、この製造方法における製造工程については、以下のように記されている。電解質膜を用意し、電極触媒層を用意し、用意した電解質膜及び電極触媒層を用いて触媒層形成膜を作製し、ガス拡散層を用意し、作製した触媒層形成膜及び用意したガス拡散層を用いて膜電極接合体(MEA)を作製する。
The invention described in Patent Document 1 relates to a method for producing a membrane electrode assembly (MEA) that is regarded as a good product when the amount of sulfate ions contained in the electrode catalyst layer is equal to or less than a specified value. A membrane-electrode assembly in which an electrode catalyst layer is formed on the surface of a membrane and a method for producing the same are disclosed.
The manufacturing process in this manufacturing method is described as follows. Prepare an electrolyte membrane, prepare an electrode catalyst layer, prepare a catalyst layer forming film using the prepared electrolyte membrane and electrode catalyst layer, prepare a gas diffusion layer, prepare a catalyst layer forming film and prepare gas diffusion The layers are used to make a membrane electrode assembly (MEA).

しかしながら、特許文献1の膜電極接合体(MEA)は燃料電池用のものであることに加え、該膜電極接合体(MEA)が有する電極触媒層は、触媒インクを塗工し乾燥して作製する(ことによって硫酸イオンの量を低減させる)と言うものであった。 However, in addition to the membrane electrode assembly (MEA) of Patent Document 1 for fuel cells, the electrode catalyst layer of the membrane electrode assembly (MEA) is produced by applying a catalyst ink and drying. (And thereby reduce the amount of sulfate ion).

特許文献2には、「触媒が被覆された拡散媒体」が膜に貼り合わされていない耐久性膜電極組立体の作製方法が開示され、拡散媒体層上に触媒層を堆積し、次いで該触媒層上にアイオノマー層を噴霧し、燃料電池用の膜電極組立体(MEA)を製作している。 Patent Document 2 discloses a method for producing a durable membrane electrode assembly in which a "catalyst-coated diffusion medium" is not bonded to a membrane, and a catalyst layer is deposited on the diffusion medium layer, and then the catalyst layer is deposited. An ionomer layer is sprayed on the top of the membrane to produce a membrane electrode assembly (MEA) for a fuel cell.

しかしながら、特許文献2の膜電極組立体(MEA)は燃料電池用のものであることに加え、該膜電極組立体(MEA)が有する触媒層の製造方法に関しては、触媒を拡散媒体層上にスラリーとして転造するか塗布したものであった。触媒を一旦転写基板に被覆して、それを加熱プレスによって膜に転写すると言うものであった。 However, in addition to the membrane electrode assembly (MEA) of Patent Document 2 for a fuel cell, regarding the method for producing a catalyst layer included in the membrane electrode assembly (MEA), a catalyst is provided on a diffusion medium layer. It was rolled or applied as a slurry. The catalyst was once coated on a transfer substrate and then transferred to a film by a hot press.

近年、水素の需要が拡大してきていることに伴い、優れた水の電気分解の技術が要求されているが、従来技術では十分ではなく、水電解セルの性能や耐久性等に関して優れた技術が望まれていた。 In recent years, as the demand for hydrogen has expanded, excellent electrolysis technology for water has been required, but the conventional technology is not sufficient, and an excellent technology for the performance and durability of the water electrolysis cell is required. Was wanted.

特許第6128099号公報Japanese Patent No. 6128099 特許第4738350号公報Japanese Patent No. 4738350

本発明は上記に鑑みてなされたものであり、その課題は、水の電解性能や耐久性に優れた水電解用電極と、該水電解用電極を用いた水電解セルや水電解スタックセルを提供することにある。
具体的には、例えば、従来の触媒層を基体上に堆積する方法では、潜在的に触媒層がガスリフトによって基体から剥離してしまうおそれがあったが、本発明の課題は、触媒の剥離又は脱離が防止された、特に基体からの触媒膜の剥離や、該基体を構成する素材からの触媒(粒子)の脱離が防止された水電解用電極と、該水電解用電極を用いた水電解セルを提供することにある。
The present invention has been made in view of the above, and its problem is a water electrolysis electrode having excellent electrolysis performance and durability of water, and a water electrolysis cell or a water electrolysis stack cell using the water electrolysis electrode. To provide.
Specifically, for example, in the conventional method of depositing a catalyst layer on a substrate, there is a possibility that the catalyst layer is potentially peeled off from the substrate due to gas lift. An electrode for water electrolysis in which desorption is prevented, in particular, a catalyst film from the substrate is prevented from peeling and the catalyst (particles) from the material constituting the substrate is prevented, and the electrode for water electrolysis is used. It is to provide a water electrolysis cell.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、基体上に触媒層を堆積することを必須とするのではなく、多孔質基体を構成する素材に(基体そのものに)、触媒粒子や触媒膜と言った触媒を担持させ、電極上に固体高分子電解質膜層を形成することで、ガスリフトによる触媒膜の剥離や触媒(粒子)の脱離が起こり難くなり、性能劣化が発生しなくなることを見出して本発明を完成するに至った。本発明は、「触媒層を有する膜電極接合体(MEA)」を使用しないので、所謂従来の「触媒層」が必須ではない。 The present inventor, as a result of extensive studies to solve the above problems, does not necessarily require depositing a catalyst layer on a substrate, but rather a material constituting a porous substrate (on the substrate itself), By supporting the catalyst such as catalyst particles or catalyst membrane and forming the solid polymer electrolyte membrane layer on the electrode, it becomes difficult for the catalyst membrane to be peeled off or the catalyst (particles) to be detached due to the gas lift, resulting in performance deterioration. The present invention has been completed by finding that it does not occur. Since the present invention does not use a "membrane electrode assembly (MEA) having a catalyst layer", a so-called conventional "catalyst layer" is not essential.

更には、固体高分子電解質膜(PEM)に触れる電極面の表面をアイオノマー分散液でコーティングすることで、及び/又は、電極内である多孔質空隙内にアイオノマーを貫入させることで、セル電圧(電解電圧)の低減がなされることを見出して本発明を完成するに至った。 Furthermore, by coating the surface of the electrode surface in contact with the solid polymer electrolyte membrane (PEM) with the ionomer dispersion liquid and/or by allowing the ionomer to penetrate into the porous voids in the electrode, the cell voltage ( The present invention has been completed by finding that the electrolysis voltage) is reduced.

すなわち、本発明は、水電解セルにおいて固体高分子電解質膜(PEM)に隣接する水電解用電極であって、
多孔質基体に金属触媒又は金属触媒前駆体を付着させて焼成してなる「金属触媒又は金属酸化物触媒が担持された触媒担持多孔質電極基材」を有することを特徴とする水電解用電極を提供するものである。
That is, the present invention provides an electrode for water electrolysis adjacent to a solid polymer electrolyte membrane (PEM) in a water electrolysis cell,
An electrode for water electrolysis, which has a "catalyst-supporting porous electrode base material on which a metal catalyst or a metal oxide catalyst is supported", which is obtained by adhering a metal catalyst or a metal catalyst precursor to a porous substrate and firing it. Is provided.

また、本発明は、上記触媒担持多孔質電極基材の、上記固体高分子電解質膜に隣接する側に、更にアイオノマー層を有する上記の水電解用電極を提供するものである。 The present invention also provides the above-mentioned electrode for water electrolysis, which further has an ionomer layer on the side of the catalyst-supporting porous electrode base material adjacent to the solid polymer electrolyte membrane.

また、本発明は、上記アイオノマー層が、上記触媒担持多孔質電極基材の多孔質空隙内にも貫入され、かつ、当該触媒担持多孔質電極基材が有する空隙容量のうち、該アイオノマー層により空隙が充填される割合が10体積%以上90体積%以下である上記の水電解用電極を提供するものである。 Further, the present invention, the ionomer layer is also penetrated into the porous voids of the catalyst-supporting porous electrode substrate, and, of the void volume of the catalyst-supporting porous electrode substrate, the ionomer layer It is intended to provide the above-mentioned electrode for water electrolysis in which the ratio of filling voids is 10 vol% or more and 90 vol% or less.

また、本発明は、上記焼成が、酸素含有気体の存在下に、200℃以上600℃未満でなされるものである上記の水電解用電極を提供するものである。 The present invention also provides the above-mentioned electrode for water electrolysis, wherein the firing is performed at 200°C or higher and lower than 600°C in the presence of an oxygen-containing gas.

また、本発明は、上記多孔質基体が、多孔質チタン族基体、多孔質チタン族合金基体若しくは多孔質チタン族化合物基体、又は、多孔質炭素基体である上記の水電解用電極を提供するものである。 Further, the present invention provides the above-mentioned electrode for water electrolysis, wherein the porous substrate is a porous titanium group substrate, a porous titanium group alloy substrate or a porous titanium group compound substrate, or a porous carbon substrate. Is.

また、本発明は、上記の水電解用電極の製造方法であって、
該水電解用電極が有する触媒担持多孔質電極基材の製造を、多孔質基体に金属触媒又は金属触媒前駆体を付着させ、次いで焼成して触媒を多孔質電極基材に担持させることを特徴とする水電解用電極の製造方法を提供するものである。
Further, the present invention is a method for producing the above-mentioned electrode for water electrolysis,
Production of a catalyst-supporting porous electrode substrate included in the electrode for water electrolysis is characterized in that a metal catalyst or a metal catalyst precursor is attached to a porous substrate, and then the catalyst is supported on the porous electrode substrate by firing. The present invention provides a method for producing an electrode for water electrolysis.

また、本発明は、少なくとも、上記の水電解用電極である水電解用陰極、固体高分子電解質膜(PEM)、及び、水電解用陽極をこの順に有してなるものであることを特徴とする水電解セルを提供するものである。 Further, the present invention is characterized by comprising at least a water electrolysis cathode that is the above-mentioned water electrolysis electrode, a solid polymer electrolyte membrane (PEM), and a water electrolysis anode in this order. The present invention provides a water electrolysis cell.

本発明によれば、前記問題点と上記課題を解決し、例えば、セル電圧が低いと言った優れた性能を有し、触媒(層)を強固にすること等で耐久性に優れた水電解用電極やそれを用いた水電解セルを提供することができる。 According to the present invention, the above problems and the above problems are solved, for example, water electrolysis having excellent performance such as low cell voltage and excellent durability by strengthening the catalyst (layer). It is possible to provide an electrode for water and a water electrolysis cell using the electrode.

具体的には、特定の方法で触媒を、多孔質チタン族基体、多孔質チタン族合金基体若しくは多孔質チタン族化合物基体、多孔質炭素基体等の多孔質基体に担持させることで、触媒と該基体とを一体化させることができ、また、触媒を「多孔質基体を構成するチタン繊維、炭素繊維等の素材」に担持させることで、触媒粒子や触媒膜と言った触媒が、該素材から脱離することが防止され、耐久性が向上する。 Specifically, the catalyst and the catalyst can be prepared by supporting the catalyst on a porous substrate such as a porous titanium group substrate, a porous titanium group alloy substrate or a porous titanium group compound substrate, or a porous carbon substrate by a specific method. The catalyst can be integrated with the substrate, and by supporting the catalyst on "a material such as titanium fiber or carbon fiber forming the porous substrate", the catalyst such as catalyst particles or catalyst film can be formed from the material. Detachment is prevented and durability is improved.

更に、電極表面にアイオノマー分散液をコーティングすることで(アイオノマー層を設けることで)、セル電圧の低下をもたらし、また、ガスリフトによる触媒膜の剥離や触媒(粒子)の脱離が発生し難い水電解用電極を提供することができる。このような「触媒膜の剥離や触媒(粒子)の脱離」は、特に、前記した「特定の方法での触媒の多孔質基体への担持」と、上記した「アイオノマー(層)の存在」とが相乗的に作用して効果的に防止・抑制される。
なお、本発明は、「触媒層を有する膜電極接合体(MEA)」を使用しないので(図5、図7参照)、すなわち、所謂従来の「触媒層」が(必須では)ないので、所謂従来の「触媒層」の剥離自体が、そもそもあり得ない。
Furthermore, by coating the surface of the electrode with an ionomer dispersion (providing an ionomer layer), the cell voltage is reduced, and the catalyst film peeling or catalyst (particle) desorption due to gas lift is less likely to occur in water. An electrode for electrolysis can be provided. Such "peeling of the catalyst membrane and desorption of the catalyst (particles)" is particularly referred to as "supporting the catalyst on the porous substrate by a specific method" and "presence of the ionomer (layer)". And synergistically act to effectively prevent and suppress.
The present invention does not use a “membrane electrode assembly (MEA) having a catalyst layer” (see FIGS. 5 and 7 ), that is, a so-called conventional “catalyst layer” is not (essentially) necessary. The conventional peeling of the “catalyst layer” itself cannot occur in the first place.

本発明の水電解用電極を用い、水電解用陰極、固体高分子電解質膜、水電解用陽極をこの順に有してなる水電解セルは、水電解時のセル電圧が低く、触媒膜や触媒粒子の剥離・脱離がないので、極めて耐久性が高い。 Using the electrode for water electrolysis of the present invention, a water electrolysis cell comprising a cathode for water electrolysis, a solid polymer electrolyte membrane, and an anode for water electrolysis in this order has a low cell voltage during water electrolysis, and a catalyst film or a catalyst. It has extremely high durability because there is no peeling or detachment of particles.

本発明の水電解用電極を有する水電解セルの概略断面図である。It is a schematic sectional drawing of the water electrolysis cell which has the electrode for water electrolysis of this invention. 本発明の水電解用電極における触媒担持多孔質電極基材の概略斜視図、及び、「多孔質基体が、チタン族繊維、チタン族合金繊維若しくはチタン族化合物繊維、又は、炭素繊維の集合体であるときの、触媒(粒子)が担持された繊維の概略拡大図である。A schematic perspective view of a catalyst-supporting porous electrode substrate in the electrode for water electrolysis of the present invention, and "the porous substrate is a titanium group fiber, titanium group alloy fiber or titanium group compound fiber, or an aggregate of carbon fibers It is a schematic enlarged view of the fiber carrying the catalyst (particles) at a certain time. 実施例1〜6、比較例1で得られた水電解セルの「セル電圧(V)の電流密度(A/cm)依存性」を示すグラフである。It is a graph which shows the "current density (A/cm< 2 >) dependence of cell voltage (V)" of the water electrolysis cell obtained in Examples 1-6 and the comparative example 1. 実施例13、14、比較例1で得られた水電解セルの「セル電圧(V)の電流密度(A/cm)依存性」を示すグラフである。5 is a graph showing “current density (A/cm 2 ) dependence of cell voltage (V)” of the water electrolysis cells obtained in Examples 13 and 14 and Comparative Example 1. 水電解セルの概略展開斜視図である。 (a)本発明の水電解用電極を有する水電解セル (b)従来の水電解用電極を有する水電解セル(従来の膜電極接合体(MEA)を使用した水電解セル)It is a schematic development perspective view of a water electrolysis cell. (A) Water electrolysis cell having an electrode for water electrolysis of the present invention (b) Water electrolysis cell having a conventional electrode for water electrolysis (water electrolysis cell using a conventional membrane electrode assembly (MEA)) 本発明の水電解用電極を2対有する水電解セル(水電解スタックセル)の概略展開斜視図である。It is a schematic development perspective view of the water electrolysis cell (water electrolysis stack cell) which has two pairs of electrodes for water electrolysis of the present invention. 本発明の水電解用電極で固体高分子電解質膜(PEM)を挟んだ状態を示す本発明の水電解セルの概略断面図である。It is a schematic sectional drawing of the water electrolysis cell of this invention which shows the state which sandwiched the solid polymer electrolyte membrane (PEM) with the electrode for water electrolysis of this invention.

以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific forms and can be arbitrarily modified within the scope of the technical idea.

[水電解用電極]
本発明の水電解用電極2は、水電解セル1において固体高分子電解質膜(PEM)5に隣接する水電解用電極2であって、
多孔質基体3aに金属触媒又は金属触媒前駆体を付着させて焼成してなる「金属触媒3c又は金属酸化物触媒3cが担持された触媒担持多孔質電極基材3」を有することを特徴とする。
図1、図5(a)及び図7に、本発明の水電解用電極2を用いた水電解セル1の好ましい一例の概略断面図又は概略展開斜視図を示す。すなわち、本発明の水電解用電極2は、「金属触媒3c又は金属酸化物触媒3c」が担持された触媒担持多孔質電極基材3を有するが、該触媒担持多孔質電極基材3は、多孔質基体3aに金属触媒又は金属触媒前駆体を付着させて焼成して得られるようなものである。
[Electrode for water electrolysis]
The electrode 2 for water electrolysis of the present invention is the electrode 2 for water electrolysis adjacent to the solid polymer electrolyte membrane (PEM) 5 in the water electrolysis cell 1,
It is characterized in that it has a "catalyst-supporting porous electrode substrate 3 carrying a metal catalyst 3c or a metal oxide catalyst 3c" which is obtained by depositing a metal catalyst or a metal catalyst precursor on a porous substrate 3a and firing it. ..
FIG. 1, FIG. 5A and FIG. 7 show a schematic sectional view or a schematic exploded perspective view of a preferred example of a water electrolysis cell 1 using the electrode 2 for water electrolysis of the present invention. That is, the electrode 2 for water electrolysis of the present invention has the catalyst-supporting porous electrode base material 3 on which the “metal catalyst 3c or the metal oxide catalyst 3c” is supported. It is obtained by adhering a metal catalyst or a metal catalyst precursor to the porous substrate 3a and firing it.

なお、本発明の水電解用電極2は、水電解用陰極としても、水電解用陽極としても使用できる。
以下、上記「 」内の「金属触媒又は金属酸化物触媒」を単に「触媒」と略記することがあり、上記「触媒担持多孔質電極基材」や「多孔質電極基材」を単に「電極基材」と略記することがある。また、「水電解用電極」を単に「電極」と略記することがある。
また、「触媒粒子」と「触媒膜」を総称して「触媒」と略記することがある。
また、「多孔質チタン族基体、多孔質チタン族合金基体若しくは多孔質チタン族化合物基体」を総称して、単に「多孔質チタン族系基体」と略記することがあり、「チタン族繊維、チタン族合金繊維若しくはチタン族化合物繊維」を総称して、単に「チタン繊維」と略記することがある。
The water electrolysis electrode 2 of the present invention can be used as both a water electrolysis cathode and a water electrolysis anode.
Hereinafter, the "metal catalyst or metal oxide catalyst" in the above "" may be simply abbreviated as "catalyst", and the above "catalyst-supporting porous electrode substrate" and "porous electrode substrate" are simply referred to as "electrodes". It may be abbreviated as "base material". Further, the "electrode for water electrolysis" may be simply abbreviated as "electrode".
Further, the “catalyst particles” and the “catalyst film” may be collectively referred to as “catalyst”.
In addition, "a porous titanium group substrate, a porous titanium group alloy substrate or a porous titanium group compound substrate" may be collectively referred to simply as "a porous titanium group-based substrate". "Group alloy fiber or titanium group compound fiber" may be collectively referred to as "titanium fiber".

<触媒担持多孔質電極基材>
本発明における電極基材3は、具体的には、多孔質チタン族系基体、多孔質炭素基体等の多孔質基体3aに対して、「金属触媒又は金属触媒前駆体」が溶解又は微分散した塗布液を塗布し、次いで、それを焼成することによって、多孔質基体3aの構成素材の表面に(電極基材上に)、触媒膜又は触媒粒子と言った触媒3cを形成させて得られるようなものであることが好ましい(図7参照)。すなわち、言い換えると、前記「付着」は、上記塗布液の塗布・乾燥によるものであることが好ましい。ここで、付着の後に行われる「焼成」とは、広く一般的な熱処理のことを言う。
<Catalyst-supporting porous electrode substrate>
In the electrode substrate 3 of the present invention, specifically, a “metal catalyst or metal catalyst precursor” is dissolved or finely dispersed in a porous substrate 3a such as a porous titanium group-based substrate or a porous carbon substrate. It is obtained by applying a coating liquid and then firing it to form a catalyst film or catalyst 3c such as catalyst particles on the surface of the constituent material of the porous substrate 3a (on the electrode base material). It is preferable that it is (see FIG. 7). That is, in other words, it is preferable that the “adhesion” is caused by coating and drying the coating liquid. Here, “baking” performed after the adhesion means a general heat treatment.

なお、本発明において、電極基材上にどのような形態で触媒3cが形成されているか;「多孔質基体3aを構成する例えばチタン繊維3b又は炭素繊維3b」にどのような形態で触媒粒子等の触媒3cが担持されているか;等を、直接特定することもパラメーター等で特定することも、不可能であるか実際的でない。すなわち、「多孔質基体3aに金属触媒又は金属触媒前駆体を付着させて焼成してなる電極基材」を、その形態(形状)で直接特定したり、パラメーター等で直接特定したりすることは、不可能であるか又はおよそ実際的でないため、本発明における電極基材は、その製造方法で特定するしかない。 In the present invention, in what form the catalyst 3c is formed on the electrode base material; "in the form of the titanium fiber 3b or the carbon fiber 3b constituting the porous substrate 3a", the catalyst particle, etc. It is impossible or impractical to specify directly whether or not the catalyst 3c of 3 is supported; That is, it is not possible to directly specify "the electrode base material obtained by adhering the metal catalyst or the metal catalyst precursor to the porous substrate 3a and firing it" by its form (shape) or by directly specifying the parameters or the like. Since it is impossible or almost impractical, the electrode substrate in the present invention can only be specified by its manufacturing method.

<<多孔質チタン族系基体>>
本発明の電極は、多孔質チタン族系基体、多孔質炭素基体等の多孔質基体3aに、触媒3cが担持された触媒担持多孔質電極基材3を有するが、ここで、「チタン族(金属)」とは、チタン、ジルコニウム又はハフニウムのことを言う。また、「チタン族系」とは、該チタン族金属単体、それらの合金又はそれらの化合物のことを言う。
すなわち、本発明における多孔質チタン族系基体は、多孔質チタン族基体、多孔質チタン族合金基体若しくは多孔質チタン族化合物基体であることが好ましい。
「チタン族化合物」としては、例えば、窒化チタン(チタンナイトライド(TiN))、炭化チタン(チタンカーバイド(TiC))、ホウ化チタン(チタンジボライド(TiB))等が挙げられる。
<< Porous Titanium Group Substrate >>
The electrode of the present invention has a catalyst-supporting porous electrode substrate 3 in which a catalyst 3c is supported on a porous substrate 3a such as a porous titanium group-based substrate or a porous carbon substrate. "Metal)" refers to titanium, zirconium or hafnium. Further, the "titanium group-based" means the titanium group metal simple substance, an alloy thereof, or a compound thereof.
That is, the porous titanium group substrate in the present invention is preferably a porous titanium group substrate, a porous titanium group alloy substrate or a porous titanium group compound substrate.
Examples of the “titanium group compound” include titanium nitride (titanium nitride (TiN)), titanium carbide (titanium carbide (TiC)), titanium boride (titanium diboride (TiB 2 )) and the like.

中でも、多孔質チタン族系基体としては、多孔質チタン基体、多孔質ジルコニウム基体若しくは多孔質ハフニウム基体、又は、多孔質チタン合金基体、多孔質ジルコニウム合金基体若しくは多孔質ハフニウム合金基体がより好ましい。
水電解用電極2の多孔質基体3aに用いた際にセル電圧が低く、触媒(粒子)3cが電極基材から脱離することが防止されること等から、「チタン族系」としては、チタン又はチタン合金が更に好ましく、チタンが特に好ましい。
また、同様の理由により、上記多孔質チタン族基体が多孔質チタン基体であり、上記多孔質チタン族合金基体が多孔質チタン合金基体であることが特に好ましく、本発明おける多孔質基体3aが多孔質チタン基体であることが最も好ましい。
Among them, the porous titanium group-based substrate is more preferably a porous titanium substrate, a porous zirconium substrate or a porous hafnium substrate, or a porous titanium alloy substrate, a porous zirconium alloy substrate or a porous hafnium alloy substrate.
When used as the porous substrate 3a of the electrode 2 for water electrolysis, the cell voltage is low, and the catalyst (particles) 3c is prevented from being desorbed from the electrode substrate. Titanium or a titanium alloy is more preferable, and titanium is particularly preferable.
For the same reason, it is particularly preferable that the porous titanium group substrate is a porous titanium substrate and the porous titanium group alloy substrate is a porous titanium alloy substrate, and the porous substrate 3a of the present invention is porous. Most preferably, it is a titanium substrate.

ここで「多孔質」とは、平面に単に孔が開いているような形態には限定されず、「チタン族繊維、チタン族合金繊維若しくはチタン族化合物繊維」(チタン繊維)の集合体であって、紙、織布、不織布等のように表面積を大きくすべく、粗面化状態、多孔状態、有空間状態等になっている形態全てのことを言う。本電極基材3により、水を電気分解して水素がガスとして発生し、それを取り出す必要があることから、該多孔質基体3aは、給電体6及び/又は樹脂槽体7側へ通気性を有する必要がある。 Here, "porous" is not limited to a form in which holes are simply formed in a plane, and is an aggregate of "titanium group fiber, titanium group alloy fiber or titanium group compound fiber" (titanium fiber). Thus, it refers to all forms such as paper, woven fabric, non-woven fabric, etc. that are in a roughened state, a porous state, a spatial state, etc. in order to increase the surface area. The electrode base material 3 electrolyzes water to generate hydrogen as a gas, and it is necessary to take out the gas. Therefore, the porous substrate 3a is permeable to the power supply body 6 and/or the resin tank body 7 side. Need to have.

上記多孔質チタン族系基体としては、チタン族繊維、チタン族合金繊維若しくはチタン族化合物繊維の集合体であることが好ましく、中でも、本発明の前記効果を好適に発揮させるために、該多孔質チタン族系基体3aは、チタン繊維の集合体であることが特に好ましい。
特に好ましい形態として、該多孔質基体3aが、チタン繊維3bの集合体である例を図2に示す。
The porous titanium-group-based substrate is preferably an aggregate of titanium-group fibers, titanium-group alloy fibers or titanium-group compound fibers. Above all, in order to exert the effects of the present invention suitably, It is particularly preferable that the titanium group base 3a is an aggregate of titanium fibers.
As a particularly preferable form, an example in which the porous substrate 3a is an aggregate of titanium fibers 3b is shown in FIG.

<<多孔質炭素基体>>
本発明の電極は、多孔質チタン族系基体、多孔質炭素基体等の多孔質基体3aに、触媒3cが担持された触媒担持多孔質電極基材3を有するが、該多孔質炭素基体3aは、通電し電気化学的に水を分解させる必要があることから導電性を有する必要がある。多孔質炭素基体3aの材質としては導電性を有する炭素質物からなっており、多孔質であれば特に限定はないが、電気化学的に安定であることが望ましい。該炭素質物としては、グラファイト構造(グラフェン構造)を有するものが好ましい。
<< Porous carbon substrate >>
The electrode of the present invention has a catalyst-supporting porous electrode substrate 3 in which a catalyst 3c is supported on a porous substrate 3a such as a porous titanium group substrate or a porous carbon substrate. The porous carbon substrate 3a is It is necessary to have electrical conductivity because it is necessary to apply electricity to decompose water electrochemically. The porous carbon substrate 3a is made of a conductive carbonaceous material, and is not particularly limited as long as it is porous, but it is desirable that it is electrochemically stable. The carbonaceous material preferably has a graphite structure (graphene structure).

また、該炭素質物の形状については、炭素質物同士が接触し、給電体6と電気的な導通が取れていれば、必ずしも炭素質物同士が固着している必要はないが、実際の電極として取り扱う上での機械的強度を有することが望ましい。 Regarding the shape of the carbonaceous material, if the carbonaceous materials are in contact with each other and electrically connected to the power supply body 6, the carbonaceous materials are not necessarily fixed to each other, but they are treated as actual electrodes. It is desirable to have the above mechanical strength.

ここで「多孔質」とは、平面に単に孔が開いているような形態には限定されず、炭素質物の集合体であって、紙、織布、不織布等のように表面積を大きくすべく、粗面化状態、多孔状態、有空間状態等になっている形態全てのことを言う。ただし、本電極基材3により、水を電気分解して水素がガスとして発生し、それを取り出す必要があることから、該多孔質基体3aは、給電体6及び/又は樹脂槽体7側へ通気性を有する必要がある。
図2に、該多孔質炭素基体3aが、炭素繊維3bの集合体である例を図示する。
また、化学薬品を用いたエッチングやスパッタリング等により、表面を粗面化した多孔質炭素基体3aを用いることで、より水の電気分解に要するエネルギーの低減を図ることができる。
Here, “porous” is not limited to a form in which holes are simply formed on a plane, but is an aggregate of carbonaceous materials, and is intended to have a large surface area such as paper, woven fabric, and nonwoven fabric. , All the forms such as a roughened state, a porous state, and a spatial state. However, since the electrode base material 3 electrolyzes water to generate hydrogen as a gas, and it is necessary to take out the gas, the porous substrate 3a is transferred to the power supply body 6 and/or the resin tank body 7 side. Must be breathable.
FIG. 2 illustrates an example in which the porous carbon substrate 3a is an aggregate of carbon fibers 3b.
Further, by using the porous carbon substrate 3a whose surface is roughened by etching or sputtering using a chemical, it is possible to further reduce the energy required for electrolysis of water.

中でも、本発明の前記効果を好適に発揮させるために、該多孔質炭素基体3aは、炭素繊維3bの集合体であることが好ましく、該炭素繊維3bの集合体の中でも、カーボンペーパー、カーボンクロス、カーボンフェルト等がより好ましい。更にその中でも、上記理由から、カーボンペーパーが特に好ましく、燃料電池用のガス拡散層に用いられるカーボンペーパーが最も好ましい。
特に、カーボンペーパー、カーボンクロス、カーボンフェルト等の「炭素繊維3bの集合体」の表面を、化学薬品を用いたエッチングやスパッタリング等により粗面化することで、更に電気分解に要するエネルギーの低減が図れる。
Above all, in order to preferably exert the effects of the present invention, the porous carbon substrate 3a is preferably an aggregate of carbon fibers 3b, and among the aggregates of carbon fibers 3b, carbon paper and carbon cloth. , Carbon felt and the like are more preferable. Further, among them, carbon paper is particularly preferable, and carbon paper used for a gas diffusion layer for a fuel cell is most preferable for the above reason.
Particularly, by roughening the surface of the “aggregate of carbon fibers 3b” such as carbon paper, carbon cloth, and carbon felt by etching using chemicals or sputtering, the energy required for electrolysis can be further reduced. Can be achieved.

<<金属触媒又は金属触媒前駆体>>
本発明における電極基材3は、多孔質基体3aに金属触媒又は金属触媒前駆体を付着させて焼成して得られるようなものであるが、該金属触媒又は金属触媒前駆体における金属は、それを焼成してなる触媒3cが触媒として作用するものであれば特に限定はないが、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、タンタル(Ta)、及び、ニッケル(Ni)よりなる群から選ばれた金属であることが、触媒効果が高い点から好ましい。上記金属は、1種であってもよく、2種以上の併用も可能である。また、上記以外の金属との併用も可能である。
<<Metal Catalyst or Metal Catalyst Precursor>>
The electrode substrate 3 in the present invention is such that it can be obtained by adhering a metal catalyst or a metal catalyst precursor to the porous substrate 3a and calcining the metal, and the metal in the metal catalyst or the metal catalyst precursor is There is no particular limitation as long as the catalyst 3c obtained by baking the above acts as a catalyst, but platinum (Pt), ruthenium (Ru), iridium (Ir), palladium (Pd), tantalum (Ta), and nickel A metal selected from the group consisting of (Ni) is preferable from the viewpoint of high catalytic effect. The above metals may be used alone or in combination of two or more. It is also possible to use together with metals other than the above.

触媒(金属触媒又は金属酸化物触媒)3cの原料である金属触媒・金属触媒前駆体における金属化合物としては、具体的には、例えば、塩化白金(IV)酸n水和物、塩化白金(IV)酸アンモニウム、ジニトロジアンミン白金(II)、塩化第一白金(II)、塩化第二白金(IV)、テトラアンミン白金(II)ジクロライドn水和物、テトラアンミン白金(II)水酸化物、ヘキサヒドロキシ白金(IV)酸等の白金含有化合物;塩化ルテニウム(III)水和物、硝酸ルテニウム(III)、酸化ルテニウム(IV)水和物等のルテニウム含有化合物;塩化イリジウム(IV)酸n水和物、塩化イリジウム(III)n水和物、塩化イリジウム(III)無水和物、硝酸イリジウム(IV)、塩化イリジウム(IV)酸アンモニウム、ヘキサアンミンイリジウム(III)水酸化物等のイリジウム含有化合物;塩化パラジウム(II)、硝酸パラジウム(II)、ジニトロジアンミンパラジウム(II)、酢酸パラジウム(II)、テトラアンミンパラジウム(II)ジクロライド等のパラジウム含有化合物;5塩化タンタル、タンタルアルコキシド等のタンタル含有化合物;塩化ニッケル(II)無水和物、塩化ニッケル(II)六水和物、硝酸ニッケル(II)六水和物等のニッケル含有化合物;等が挙げられる。 Specific examples of the metal compound in the metal catalyst/metal catalyst precursor which is a raw material of the catalyst (metal catalyst or metal oxide catalyst) 3c include, for example, platinum (IV) chloride n-hydrate and platinum chloride (IV ) Ammonium acid, dinitrodiammine platinum (II), platinum (II) chloride, platinum (IV) chloride, tetraammine platinum (II) dichloride n hydrate, tetraammine platinum (II) hydroxide, hexahydroxyplatinum (IV) Platinum-containing compound such as acid; Ruthenium (III) chloride hydrate, Ruthenium (III) nitrate, Ruthenium oxide (IV) hydrate and other ruthenium-containing compounds; Iridium chloride (IV) acid n-hydrate, Iridium(III) chloride n-hydrate, iridium(III) chloride anhydrate, iridium(IV) nitrate, iridium(IV) chloride ammonium, hexaammineiridium(III) hydroxide, and other iridium-containing compounds; palladium chloride (II), palladium (II) nitrate, dinitrodiammine palladium (II), palladium (II) acetate, tetraammine palladium (II) dichloride and other palladium-containing compounds; tantalum chloride, tantalum alkoxides and other tantalum-containing compounds; nickel chloride ( II) nickel-containing compounds such as anhydrous products, nickel chloride (II) hexahydrate, nickel nitrate (II) hexahydrate; and the like.

金属触媒前駆体としては、例えば、上記金属化合物にアルコールが配位したもの等が挙げられる。上記金属化合物をアルコール溶媒等に溶解させて金属触媒前駆体を調製し、該金属触媒前駆体を含有する塗布液を多孔質基体3aに塗布し、次いで焼成することで「触媒粒子又は触媒膜」3cに転換して担持させて、電極基材3(触媒担持多孔質電極基材3)を調製することが特に好ましい。 Examples of the metal catalyst precursor include those in which alcohol is coordinated to the above metal compound. “Catalyst particles or catalyst film” is prepared by dissolving the above metal compound in an alcohol solvent or the like to prepare a metal catalyst precursor, applying a coating liquid containing the metal catalyst precursor to the porous substrate 3a, and then firing the solution. It is particularly preferable to prepare the electrode base material 3 (catalyst-supporting porous electrode base material 3) by converting it into 3c and supporting it.

金属触媒又は金属触媒前駆体の多孔質基体3aへの付着を塗布によって行う場合には、「該塗布に用いる塗布液の溶媒(分散媒)」としては、又は、上記「金属化合物に配位させるアルコール」としては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール等が好ましいものとして挙げられる。 When the deposition of the metal catalyst or the metal catalyst precursor to the porous substrate 3a is performed by coating, as the "solvent (dispersion medium) of the coating liquid used for the coating", or the above "coordinate with the metal compound" Preferred examples of the "alcohol" include methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, hexanol, cyclohexanol and the like.

多孔質基体3aへの付着を塗布によって行う場合、塗布液の塗布方法としては、限定はないが、刷毛塗り法、噴霧法、スプレー塗布法、浸漬法等が好ましい方法として挙げられる。
また、塗布後の乾燥は、溶媒が蒸発するような温度であれば特に限定はないが、20℃以上100℃以下が好ましく、40℃以上90℃以下が特に好ましい。
また、乾燥時間は、溶媒が蒸発するような時間であれば特に限定はないが、5分以上120分以下が好ましく、10分以上90分以下がより好ましく、20分以上50分以下が特に好ましい。
When applying to the porous substrate 3a by coating, the coating method of the coating liquid is not limited, but a brush coating method, a spraying method, a spray coating method, a dipping method, and the like are preferable.
The drying after coating is not particularly limited as long as it is a temperature at which the solvent evaporates, but is preferably 20° C. or higher and 100° C. or lower, and particularly preferably 40° C. or higher and 90° C. or lower.
The drying time is not particularly limited as long as the solvent evaporates, but is preferably 5 minutes or more and 120 minutes or less, more preferably 10 minutes or more and 90 minutes or less, and particularly preferably 20 minutes or more and 50 minutes or less. ..

触媒3cとしては、金属触媒又は金属酸化物触媒であり、上記「金属触媒又は金属触媒前駆体」を焼成してなるものが挙げられる。上記金属触媒又は金属触媒前駆体の金属が、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、タンタル(Ta)、及び、ニッケル(Ni)よりなる群から選ばれる金属であることが好ましい。
具体的には、例えば、白金(Pt)、酸化白金、ルテニウム(Ru)、酸化ルテニウム、イリジウム(Ir)、酸化イリジウム、パラジウム(Pd)、酸化パラジウム、タンタル(Ta)、酸化タンタル、ニッケル(Ni)、酸化ニッケル等が好ましい。また、触媒3cとしては、上記以外に、他の金属若しくは他の金属の酸化物の併用、又は、他の触媒の混合も可能である。
The catalyst 3c is a metal catalyst or a metal oxide catalyst, and examples thereof include those obtained by firing the "metal catalyst or metal catalyst precursor". The metal of the metal catalyst or metal catalyst precursor is a metal selected from the group consisting of platinum (Pt), ruthenium (Ru), iridium (Ir), palladium (Pd), tantalum (Ta), and nickel (Ni). Is preferred.
Specifically, for example, platinum (Pt), platinum oxide, ruthenium (Ru), ruthenium oxide, iridium (Ir), iridium oxide, palladium (Pd), palladium oxide, tantalum (Ta), tantalum oxide, nickel (Ni). ), nickel oxide and the like are preferable. In addition to the above, the catalyst 3c may be used in combination with another metal or an oxide of another metal, or may be mixed with another catalyst.

上記触媒3cが触媒粒子であるときは、該触媒粒子の平均粒子径は、数平均粒子径として、300μm以下が好ましく、200μm以下がより好ましく、100μm以下が特に好ましい。 When the catalyst 3c is catalyst particles, the number average particle diameter of the catalyst particles is preferably 300 μm or less, more preferably 200 μm or less, and particularly preferably 100 μm or less.

触媒粒子の平均粒子径が大き過ぎると、触媒効果が落ち、セル電圧が上昇したり、電極基材から脱離したりする場合等があり、一方、小さ過ぎると、電極基材の深部に潜り込んでしまう場合等がある。
ただし、複数の微小粒子が隣接・結合することで、深部への潜行を抑制しつつ、触媒の表面積を大きくすることができれば、必ずしも上記粒径範囲にとらわれず、任意の形状、例えば、塊状や顆粒状であったり、更には微視的には電極基材を部分的に被覆するような状態で担持されていたりしても構わない。
なお、「セル電圧」とは、水の電気分解のために水電解セル1の陰極と陽極の間に印加する電解電圧のことを言う。
If the average particle size of the catalyst particles is too large, the catalytic effect may decrease, the cell voltage may increase, or may be detached from the electrode base material.On the other hand, if it is too small, the electrode base material may dig into the deep part. There are cases where it will end up.
However, as long as the surface area of the catalyst can be increased by suppressing the infiltration into the deep part by adjoining and binding a plurality of fine particles, the shape is not necessarily limited to the above particle size range, and any shape, for example, a lump or It may be in the form of granules, or microscopically, it may be carried in a state of partially covering the electrode base material.
The "cell voltage" means an electrolysis voltage applied between the cathode and the anode of the water electrolysis cell 1 for electrolysis of water.

上記触媒3cが触媒膜の形態で、多孔質基体3aの孔の側面や繊維3bの側面に担持されている場合は、該膜の平均膜厚は、触媒の種類にもより、特に限定はないが、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が特に好ましい。該平均膜厚は、焼成後に得られる触媒担持多孔質電極基材3の断面を走査型電子顕微鏡(SEM)で観察して得ることができ、そのようにして得られたものとして定義する。 When the catalyst 3c is in the form of a catalyst film and is carried on the side surface of the pores of the porous substrate 3a or the side surface of the fiber 3b, the average film thickness of the film is not particularly limited depending on the type of catalyst. However, 50 μm or less is preferable, 40 μm or less is more preferable, and 30 μm or less is particularly preferable. The average film thickness can be obtained by observing a cross section of the catalyst-supporting porous electrode substrate 3 obtained after firing with a scanning electron microscope (SEM), and is defined as obtained in this way.

図2及び図7に、本発明の好ましい形態、すなわち、多孔質基体3aがチタン繊維3b又は炭素繊維3bの集合体であって、「金属触媒又は金属酸化物触媒」3cが該チタン繊維3b又は炭素繊維3bに担持されて触媒担持多孔質電極基材3を構成している状態を示す。 2 and 7, a preferred embodiment of the present invention, that is, the porous substrate 3a is an aggregate of titanium fibers 3b or carbon fibers 3b, and the "metal catalyst or metal oxide catalyst" 3c is the titanium fibers 3b or The state where the catalyst-supporting porous electrode substrate 3 is supported by the carbon fibers 3b is shown.

図2及び図7に、本発明の特に好ましい形態、すなわち、多孔質チタン族系基体がチタン族繊維(チタン繊維)の集合体であって、「金属触媒又は金属酸化物触媒」3cが該チタン族繊維に担持されて触媒担持多孔質電極基材3を構成している状態を示す。 2 and 7, a particularly preferred embodiment of the present invention, that is, the porous titanium group-based substrate is an aggregate of titanium group fibers (titanium fibers), and the "metal catalyst or metal oxide catalyst" 3c is the titanium. A state in which the catalyst-supporting porous electrode base material 3 is supported by a group fiber is shown.

<<焼成>>
上記焼成は、加熱により触媒3cを生成させるようなものであれば特に限定はないが、酸素含有気体の存在下に行うことが、高い触媒効果が得られる点から好ましい。また、多孔質基体3aが多孔質炭素基体の場合には、該多孔質炭素基体を賦活化する等の点から好ましい。
また、焼成温度(熱処理温度)としては、200℃以上600℃未満が好ましく、280℃以上590℃以下が特に好ましい。
<<Baking>>
The calcination is not particularly limited as long as it can generate the catalyst 3c by heating, but it is preferable to perform it in the presence of an oxygen-containing gas from the viewpoint of obtaining a high catalytic effect. Further, when the porous substrate 3a is a porous carbon substrate, it is preferable from the viewpoint of activating the porous carbon substrate.
The firing temperature (heat treatment temperature) is preferably 200°C or higher and lower than 600°C, and particularly preferably 280°C or higher and 590°C or lower.

上記焼成温度範囲で焼成すると、多孔質基体3aに過度の劣化を生じさせず、電極基材3としての機械的強度を維持できる。
詳細には、多孔質基体3aが多孔質炭素基体の場合には、上記焼成温度の上限が上記以下であると、多孔質炭素基体を構成する炭素繊維3b(カーボンペーパーの炭素繊維等)が過度に細ることがなく、後記する質量残存率が小さくなり過ぎず、多孔質炭素基体自体も劣化しないで機械的強度を保つことができる。
By firing in the above firing temperature range, the porous substrate 3a is not excessively deteriorated, and the mechanical strength of the electrode base material 3 can be maintained.
Specifically, when the porous substrate 3a is a porous carbon substrate, if the upper limit of the firing temperature is not higher than the above, the carbon fibers 3b (such as carbon fibers of carbon paper) forming the porous carbon substrate are excessive. It does not become too thin, the residual mass ratio described below does not become too small, and the mechanical strength can be maintained without deterioration of the porous carbon substrate itself.

一方、多孔質基体3aが多孔質炭素基体の場合には、上記焼成温度の下限が上記以上であると、金属触媒前駆体が好適に触媒3cになり、触媒効果が高い金属酸化物が生成し、後記するような「多孔質炭素基体の質量減少」や「多孔質炭素基体を構成している炭素繊維3b等の素材の細り」が好適(適度)に生じ、触媒(粒子)3cの炭素繊維3b等への減り込みが十分となり、結果として、触媒(粒子)3cを「多孔質炭素基体を構成する炭素繊維3b等の素材」に好適に担持させることができ、該触媒(粒子)3cが該素材から脱離することが防止される。 On the other hand, when the porous substrate 3a is a porous carbon substrate and the lower limit of the firing temperature is the above or higher, the metal catalyst precursor is preferably the catalyst 3c, and a metal oxide having a high catalytic effect is produced. The "mass reduction of the porous carbon substrate" and the "thinning of the material such as the carbon fibers 3b constituting the porous carbon substrate" as described below occur suitably (moderately), and the carbon fibers of the catalyst (particles) 3c As a result, the catalyst (particles) 3c can be favorably supported on the "raw material such as the carbon fibers 3b constituting the porous carbon substrate", and the catalyst (particles) 3c is reduced. Detachment from the material is prevented.

また、触媒(粒子)3cが、炭素繊維3b等の素材に適度に減り込む等して、多孔質炭素基体に好適に担持されることは、後述するアイオノマー層4の形成と組み合わせることによって、尚更、相乗的に触媒(粒子)3cの該素材からの脱離を抑制する。
また、上記焼成によって、炭素繊維3b等の「多孔質炭素基体を構成している素材」が、細り等の変化(劣化等)を受けるが、該変化(劣化等)をアイオノマー層4がフォローしてくれる。言い換えると、後述するアイオノマー層4を形成させることで、該素材が細っても、触媒(粒子)3cの離脱が起こり難くなり、電極基材3の耐久性を向上させることができる。
Further, the fact that the catalyst (particles) 3c is appropriately reduced on the material such as the carbon fibers 3b and is suitably supported on the porous carbon substrate can be further improved by combining with the formation of the ionomer layer 4 described later. , Synergistically suppressing the desorption of the catalyst (particles) 3c from the material.
In addition, the “material forming the porous carbon substrate” such as the carbon fibers 3b undergoes changes (deterioration, etc.) such as thinning due to the above firing, and the ionomer layer 4 follows the changes (deterioration, etc.). Will give you. In other words, by forming the ionomer layer 4 to be described later, even if the material is thin, the catalyst (particles) 3c is less likely to come off, and the durability of the electrode base material 3 can be improved.

焼成時間(熱処理時間)は、上記効果を奏する範囲であれば特に限定はないが、10分以上8時間以下が好ましく、30分以上5時間以下がより好ましく、1時間以上3時間以下が特に好ましい。
焼成時間が上記下限以上であると、上記焼成温度が前記下限以上のときと同様の効果が得られ、焼成時間が上記上限以下であると、上記焼成温度が前記上限以下のときと同様の効果が得られる。
The firing time (heat treatment time) is not particularly limited as long as the above effect is exhibited, but is preferably 10 minutes or more and 8 hours or less, more preferably 30 minutes or more and 5 hours or less, and particularly preferably 1 hour or more and 3 hours or less. ..
When the firing time is the lower limit or more, the same effect as when the firing temperature is the lower limit or more is obtained, and when the firing time is the upper limit or less, the same effect as when the firing temperature is the upper limit or less. Is obtained.

本発明における多孔質基体3aが多孔質炭素基体の場合には、焼成後の多孔質炭素基体の質量の残存量(g)を、焼成前の多孔質炭素基体の質量(g)で割った値を「質量残存率」と定義する。焼成条件(熱処理条件)が強い(例えば、焼成温度が高い、焼成時間が長い等)と該質量残存率は小さくなる。
該質量残存率は、実施例に記載の方法で求めた。すなわち、走査型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(SEM−EDX)を用いて、焼成前後で炭素と白金の質量比を測定し、白金の質量は焼成前後で不変であることを利用して、計算することによって求めた。
When the porous substrate 3a in the present invention is a porous carbon substrate, a value obtained by dividing the residual amount (g) of the mass of the porous carbon substrate after firing by the mass (g) of the porous carbon substrate before firing. Is defined as "mass residual rate". If the firing conditions (heat treatment conditions) are strong (for example, the firing temperature is high, the firing time is long, etc.), the mass residual rate becomes small.
The mass residual rate was determined by the method described in the examples. That is, the mass ratio of carbon and platinum was measured before and after firing using an analyzer (SEM-EDX) using a scanning electron microscope and energy dispersive X-ray spectroscopy, and the mass of platinum was unchanged before and after firing. It was calculated by taking advantage of the fact.

本発明における多孔質基体3aが多孔質炭素基体の場合には、焼成による多孔質炭素基体の質量残存率は、好適に触媒(粒子)3cが生成し、該触媒(粒子)3cが炭素繊維3b等の「多孔質炭素基体を構成している素材」に好適に減り込み、好ましくはアイオノマー層4によって炭素繊維3bの細りがカバーできる範囲に収めることが好ましい。
具体的には、上記焼成は、焼成後の多孔質炭素基体の質量が、焼成前の上記多孔質炭素基体の質量の55質量%以上99質量%以下になるように行われることが上記効果を好適に得るために好ましい。
焼成による多孔質炭素基体の質量残存率は、70質量%以上97質量%以下がより好ましく、90質量%以上95質量%以下が特に好ましい。
When the porous substrate 3a in the present invention is a porous carbon substrate, the mass residual rate of the porous carbon substrate due to firing is such that the catalyst (particles) 3c is preferably produced, and the catalyst (particles) 3c are carbon fibers 3b. It is preferable to reduce the amount of the carbon fiber 3b to a range such that the ionomer layer 4 can cover the thinness of the carbon fiber 3b.
Specifically, the above-mentioned effect is obtained by performing the firing so that the mass of the porous carbon substrate after firing is 55% by mass or more and 99% by mass or less of the mass of the porous carbon substrate before firing. It is preferable in order to obtain it suitably.
The mass residual ratio of the porous carbon substrate by firing is more preferably 70% by mass or more and 97% by mass or less, and particularly preferably 90% by mass or more and 95% by mass or less.

<<アイオノマー>>
本発明の水電解用電極2は、上記した触媒担持多孔質電極基材3の、少なくとも、上記固体高分子電解質膜(PEM)5に隣接する側に、更にアイオノマー層4やアイオノマー4を有することが好ましい(図7参照)。なお、電極基材3の両側にアイオノマー層4やアイオノマー4を有していてもよい。
ここで「アイオノマー」は、陽イオン交換ポリマー、側鎖に強酸基を有するポリマー、プロトン伝導性ポリマー、イオン伝導性ポリマー等とも言われており、「アイオノマー(層)」は、上記のような化学構造や物性を有するポリマー(の層)である。
<<<ionomer>>>
The electrode 2 for water electrolysis of the present invention further has an ionomer layer 4 and an ionomer 4 on at least the side of the catalyst-supporting porous electrode substrate 3 adjacent to the solid polymer electrolyte membrane (PEM) 5. Is preferred (see FIG. 7). The ionomer layer 4 and the ionomer 4 may be provided on both sides of the electrode base material 3.
Here, the "ionomer" is also referred to as a cation exchange polymer, a polymer having a strong acid group in the side chain, a proton conductive polymer, an ion conductive polymer, etc., and the "ionomer (layer)" is the above-mentioned chemistry. A polymer (layer) having a structure and physical properties.

電極基材3は、チタン繊維3b又は炭素繊維3bの集合体の表面に代表されるように平坦ではないので(網目状であったりするので)、固体高分子電解質膜(PEM)5との接触が十分ではない場合があり、そのため触媒3cと固体高分子電解質膜(PEM)5との接触も十分ではない場合があるが、アイオノマー(層)4が存在すると、「電極基材3自体」若しくは「電極基材3と固体高分子電解質膜(PEM)5との間」に存在する空隙が埋められて、接触が良好となる。
また、前記したように、多孔質炭素基体を焼成することで、炭素繊維3b等の多孔質炭素基体を構成する素材が細くなり、水電解セル1の製造時に電極基材3が固体高分子電解質膜(PEM)5に、より埋まり難くなるところ、アイオノマー(層)4があると、触媒(粒子)3cが担持された電極基材3と固体高分子電解質膜(PEM)5との接触が良好となる。
Since the electrode base material 3 is not flat as it is represented by the surface of the aggregate of the titanium fibers 3b or the carbon fibers 3b (because it has a mesh shape), contact with the solid polymer electrolyte membrane (PEM) 5 May not be sufficient, and therefore the contact between the catalyst 3c and the solid polymer electrolyte membrane (PEM) 5 may not be sufficient, but when the ionomer (layer) 4 is present, the “electrode substrate 3 itself” or The voids existing “between the electrode base material 3 and the solid polymer electrolyte membrane (PEM) 5” are filled, and the contact becomes good.
Further, as described above, by firing the porous carbon substrate, the material forming the porous carbon substrate such as the carbon fiber 3b becomes thin, and the electrode base material 3 becomes the solid polymer electrolyte when the water electrolysis cell 1 is manufactured. Where the membrane (PEM) 5 becomes more difficult to be buried, when the ionomer (layer) 4 is present, the contact between the electrode base material 3 carrying the catalyst (particles) 3c and the solid polymer electrolyte membrane (PEM) 5 is good. Becomes

すなわち、該アイオノマー層4は、水、及び、「特に陰極側へは水素イオン(プロトン)」を伝導する機能を有しており、少なくとも、上記した触媒担持多孔質電極基材3の、上記固体高分子電解質膜(PEM)5に隣接する側に存在することによって、固体高分子電解質膜(PEM)5から表面へとプロトンを伝導させる際の抵抗を大幅に削減させることができる。
従って、該アイオノマー層4は、固体高分子電解質膜(PEM)5及び触媒層3c表面に接触していれば、「穴の開いていない、場所によって均質な厚さを有する平板層状」である必要はない。例えば、電極基材3を構成する繊維3b自体の表面に層をなして存在していても「アイオノマー層」と言う。
むしろ、例えば図7に示したように、多孔質電極基材3の空隙やより微視的な多孔質(以下これらを「多孔質空隙」と言う場合がある)内にもアイオノマー4が貫入され充填されることで、「固体高分子電解質膜とは直接接触することができない給電体6側の触媒3c」へもプロトンを伝導し、水電解反応を起こし易くすることができる。
That is, the ionomer layer 4 has a function of conducting water and “hydrogen ions (protons) particularly to the cathode side”, and at least the solid of the catalyst-supporting porous electrode substrate 3 described above. By being present on the side adjacent to the polymer electrolyte membrane (PEM) 5, the resistance when conducting protons from the solid polymer electrolyte membrane (PEM) 5 to the surface can be significantly reduced.
Therefore, if the ionomer layer 4 is in contact with the surfaces of the solid polymer electrolyte membrane (PEM) 5 and the catalyst layer 3c, it needs to be "a flat plate layer having no holes and a uniform thickness depending on the location". There is no. For example, even if a layer is present on the surface of the fiber 3b constituting the electrode base material 3 itself, it is referred to as an "ionomer layer".
Rather, as shown in FIG. 7, for example, the ionomer 4 penetrates into the voids of the porous electrode substrate 3 and into the more microscopic pores (these may also be referred to as “porous voids”). By being filled, protons can be conducted also to the “catalyst 3c on the side of the power feeding body 6 that cannot be in direct contact with the solid polymer electrolyte membrane” to facilitate the water electrolysis reaction.

その結果、電極基材3の固体高分子電解質膜(PEM)5側にアイオノマー層4を設けることで、担持させた触媒3cの利用効率を向上させられることもあり、水電解セル1を低いセル電圧(電解電圧)で作動させられる。また、発生する気体による触媒粒子3cや触媒膜3cの脱離も抑えられる。 As a result, by providing the ionomer layer 4 on the side of the solid polymer electrolyte membrane (PEM) 5 of the electrode base material 3, the utilization efficiency of the carried catalyst 3c may be improved, and the water electrolysis cell 1 may be used as a low cell. It is operated at a voltage (electrolytic voltage). Further, desorption of the catalyst particles 3c and the catalyst film 3c due to the generated gas can be suppressed.

該アイオノマー層4の形成量は、触媒担持多孔質電極基材3の厚みや空隙度、また、水電解セル1の使用条件、例えば単位時間あたりの発生水素量に伴い変化することから、必ずしも限定はされないが、水電解に伴いガスが発生し、そのガスをセル外部に取り出す必要があることから、微視的には、アイオノマー4を構成する高分子鎖により触媒(粒子)3c表面を全面的にかつ厚くは覆わず、触媒(粒子)3c表面が微視的・部分的に露出していることが望ましく、巨視的には、触媒担持多孔質電極基材3が有する空隙を全てアイオノマー4が充填せず、発生ガスが抜け出せる空隙を有することが望ましい(図7参照)。 The amount of the ionomer layer 4 formed varies depending on the thickness and porosity of the catalyst-supporting porous electrode substrate 3 and the usage conditions of the water electrolysis cell 1, for example, the amount of hydrogen generated per unit time, and therefore is not always limited. However, since the gas is generated by water electrolysis and it is necessary to take out the gas to the outside of the cell, microscopically, the polymer chains forming the ionomer 4 completely cover the surface of the catalyst (particle) 3c. It is desirable that the surface of the catalyst (particles) 3c is exposed microscopically and partially without being covered thickly, and macroscopically, all the voids of the catalyst-supporting porous electrode base material 3 are covered by the ionomer 4. It is desirable to have a void that allows the generated gas to escape without being filled (see FIG. 7).

また、発生したガスは、給電体6及び/又は樹脂槽体7側から取り出すことから、より効率よくガスが取り出せるよう、電極基材3の、固体高分子電解質膜(PEM)5に接する側と、給電体6に接する側との間で、アイオノマー4の存在量(局所的な充填率)に分布を持たせることも好ましい。
従って、必ずしも限定はされないが、該触媒担持多孔質電極基材3自体が有する空隙容量のうち、アイオノマー(層)4により該空隙が充填される体積量の割合(以下、「充填率」と言う場合がある)は、10体積%以上90体積%以下であることが好ましく、20体積%以上80体積%以下であることがより好ましく、30体積%以上70体積%以下であることが特に好ましい。
なお、上記数値は、アイオノマー4の存在量(充填率)が、電極基材3の厚さ方向に対して異なるときは、該電極基材3の厚さ方向の平均値である。
Further, since the generated gas is taken out from the power supply body 6 and/or the resin tank body 7 side, the side of the electrode base material 3 in contact with the solid polymer electrolyte membrane (PEM) 5 is arranged so that the gas can be taken out more efficiently. It is also preferable that the abundance (local filling rate) of the ionomer 4 be distributed between the side in contact with the power supply body 6.
Therefore, although not necessarily limited, the ratio of the volume of the voids filled by the ionomer (layer) 4 to the void volume of the catalyst-supporting porous electrode substrate 3 itself (hereinafter referred to as “filling ratio”). In some cases) is preferably 10% by volume or more and 90% by volume or less, more preferably 20% by volume or more and 80% by volume or less, and particularly preferably 30% by volume or more and 70% by volume or less.
The above numerical values are average values in the thickness direction of the electrode base material 3 when the abundance (filling rate) of the ionomer 4 differs in the thickness direction of the electrode base material 3.

すなわち、本発明は、上記アイオノマー層4が、上記触媒担持多孔質電極基材3の多孔質空隙内にも貫入され、かつ、当該触媒担持多孔質電極基材3が有する空隙容量のうち、該アイオノマー層4により空隙が充填される割合が10体積%以上90体積%以下である上記の水電解用電極2でもある。 That is, according to the present invention, the ionomer layer 4 penetrates into the porous voids of the catalyst-supporting porous electrode substrate 3 and, in the void volume of the catalyst-supporting porous electrode substrate 3, It is also the above-mentioned electrode 2 for water electrolysis in which the ratio of the voids filled with the ionomer layer 4 is 10% by volume or more and 90% by volume or less.

該アイオノマー(層)4の上記効果は、水電解用電極2を水電解用陰極とするか、水電解用陽極とするかを問わずに、何れの電極に対しても好適に奏される(図1参照)。 The above effect of the ionomer (layer) 4 is suitably exerted on any electrode regardless of whether the electrode 2 for water electrolysis is used as a cathode for water electrolysis or an anode for water electrolysis ( (See FIG. 1).

アイオノマー層4の形成やアイオノマー4の充填は、例えば、触媒3cが担持された電極基材3に、アイオノマー分散液を塗布して形成することができる。アイオノマー分散液の塗布方法としては、刷毛塗り法、噴霧法、スプレー塗布法等が挙げられる。
アイオノマー分散液を塗布後、60℃前後でアイオノマー分散液の溶媒を揮発させ、その後、好ましくは120℃以上200℃以下で、好ましくは1分以上1時間以下で、熱処理を行うことが好ましい。
The formation of the ionomer layer 4 and the filling of the ionomer 4 can be performed, for example, by applying the ionomer dispersion liquid to the electrode base material 3 carrying the catalyst 3c. Examples of the method for applying the ionomer dispersion liquid include a brush coating method, a spraying method, and a spray coating method.
After coating the ionomer dispersion liquid, it is preferable to volatilize the solvent of the ionomer dispersion liquid at about 60° C., and then perform heat treatment at 120° C. or higher and 200° C. or lower, preferably 1 minute or longer and 1 hour or shorter.

<<<アイオノマーの化学構造>>>
上記アイオノマー4は、イオン伝導性、特にプロトン伝導性を有し、水電解セル1において使用可能のものならば特に限定はない。すなわち、本発明の「アイオノマー」とは、プロトン伝導性ポリマーのことを言う。
該アイオノマー4は、特に限定はなく、分子内にフッ素原子を有するフッ素系アイオノマーであってもよく、分子内にフッ素原子を有さない非フッ素系アイオノマーであってもよい。
<<<Chemical structure of ionomer>>>>
The ionomer 4 is not particularly limited as long as it has ion conductivity, particularly proton conductivity, and can be used in the water electrolysis cell 1. That is, the “ionomer” of the present invention refers to a proton conductive polymer.
The ionomer 4 is not particularly limited, and may be a fluorine-based ionomer having a fluorine atom in the molecule or a non-fluorine-based ionomer having no fluorine atom in the molecule.

限定はされないが、中でもフッ素系アイオノマーが好ましく、主鎖としてポリフルオロエチレン骨格を有し、側鎖として末端にスルホン酸基を有するフルオロエチレンエーテル骨格を有するイオン伝導性ポリマー(プロトン伝導性ポリマー)であることがより好ましい。該フルオロエチレンエーテル骨格は、パーフルオロエチレンエーテル骨格であることが特に好ましい。
特に限定はされないが、本発明に用いられる好ましいアイオノマー4の例を以下に示す。
Although not limited thereto, a fluorine-based ionomer is preferable among them, and it is an ion conductive polymer (proton conductive polymer) having a polyfluoroethylene skeleton as a main chain and a fluoroethylene ether skeleton having a sulfonic acid group at a terminal as a side chain. More preferably. The fluoroethylene ether skeleton is particularly preferably a perfluoroethylene ether skeleton.
Although not particularly limited, examples of preferable ionomer 4 used in the present invention are shown below.

[式(1)中、mは自然数] [In Formula (1), m is a natural number]

[式(2)中、pは自然数] [In Expression (2), p is a natural number]

[式(3)中、nは自然数] [In the formula (3), n is a natural number]

式(1)で表されるアイオノマーは、主鎖としてポリテトラフルオロエチレン(PTFE)骨格と、末端にスルホン酸基を有するパーフルオロエーテルペンダント側鎖からなるポリマーである。側鎖が比較的長いので、長側鎖(LSC:long-side-chain)アイオノマーと言われているものである。
式(1)で表されるアイオノマーの等価質量(EW:equivalent weight)(1モルのプロトンを供給するのに必要なポリマーの質量)は、限定はされないが、900g/mol〜1200g/molであることが特に好ましい。式(1)のmの好ましい範囲は、該等価質量から計算できる範囲である。
The ionomer represented by the formula (1) is a polymer having a polytetrafluoroethylene (PTFE) skeleton as a main chain and a perfluoroether pendant side chain having a sulfonic acid group at the terminal. Since the side chain is relatively long, it is called a long-side-chain (LSC) ionomer.
The equivalent mass (EW: equivalent weight) of the ionomer represented by the formula (1) (mass of polymer required to supply 1 mol of protons) is, but not limited to, 900 g/mol to 1200 g/mol. Is particularly preferable. A preferable range of m in the formula (1) is a range that can be calculated from the equivalent mass.

式(1)で表される長側鎖(LSC)アイオノマーとしては、限定はされないが市販品が好適に使用され、DuPont社製のナフィオン(Nafion(登録商標))等が挙げられる。
式(1)で表される長側鎖(LSC)アイオノマーとしては、ナフィオン(Nafion(登録商標))(EW=1100g/mol、式(1)におけるmの平均値が6.6)等が好ましい。
The long side chain (LSC) ionomer represented by the formula (1) is preferably, but not limited to, a commercially available product such as Nafion (Nafion (registered trademark)) manufactured by DuPont.
As the long side chain (LSC) ionomer represented by the formula (1), Nafion (Nafion (registered trademark)) (EW=1100 g/mol, the average value of m in the formula (1) is 6.6) and the like are preferable. ..

式(2)又は式(3)で表されるアイオノマーは、主鎖としてポリテトラフルオロエチレン(PTFE)骨格と、末端にスルホン酸基を有するパーフルオロペンダント側鎖からなるポリマーである。側鎖が比較的短いので、短側鎖(SSC:short-side-chain)アイオノマーと言われているものである。
式(2)又は式(3)で表されるアイオノマーの等価質量(EW)は、限定はされないが、700g/mol〜950g/molであることが特に好ましい。式(2)のpの好ましい範囲と、式(3)のnの好ましい範囲は、該等価質量からそれぞれ計算できる範囲である。
The ionomer represented by the formula (2) or the formula (3) is a polymer having a polytetrafluoroethylene (PTFE) skeleton as a main chain and a perfluoro pendant side chain having a sulfonic acid group at the terminal. Since the side chain is relatively short, it is referred to as a short-side-chain (SSC) ionomer.
The equivalent mass (EW) of the ionomer represented by formula (2) or formula (3) is not particularly limited, but 700 g/mol to 950 g/mol is particularly preferable. The preferable range of p in the formula (2) and the preferable range of n in the formula (3) are ranges that can be calculated from the equivalent mass.

式(2)又は式(3)で表される短側鎖(SSC)アイオノマーは、限定はされないが市販品も使用され、例えば、3M Corporation社製の3Mアイオノマー等が挙げられる。 The short side chain (SSC) ionomer represented by the formula (2) or the formula (3) is not limited, but a commercially available product is also used, and examples thereof include 3M ionomer manufactured by 3M Corporation.

<水電解用陰極及び/又は水電解用陽極としての使用>
上記した本発明の水電解用電極2は、水電解用陰極とすることも、水電解用陽極とすることもできる。
本発明の水電解用電極2は、水電解用陰極として使用しても、水電解用陽極として使用しても、低い電圧で電流密度(A/cm)を上げられる効果がある(定電流密度で電解を行ったときは、セル電圧を下げられる効果がある)。
また、アイオノマー層4やアイオノマー4を設けることで、陰極であっても陽極であっても、セル電圧降下の効果が生じる。すなわち、アイオノマー層の効果は陰極か陽極かを問わない。
<Use as cathode for water electrolysis and/or anode for water electrolysis>
The above-mentioned electrode 2 for water electrolysis of the present invention can be used as either a cathode for water electrolysis or an anode for water electrolysis.
The water electrolysis electrode 2 of the present invention has an effect of increasing the current density (A/cm 2 ) at a low voltage regardless of whether it is used as a water electrolysis cathode or a water electrolysis anode (constant current). When electrolyzed at a density, it has the effect of lowering the cell voltage).
Further, by providing the ionomer layer 4 and the ionomer 4, the cell voltage drop effect is produced regardless of whether it is the cathode or the anode. That is, the effect of the ionomer layer does not matter whether it is a cathode or an anode.

ただし、多孔質基体3aが多孔質炭素基体の場合には、陽極で発生する酸素に対する安全性確保の点から、本発明の水電解用電極2を、水電解用陰極とすることが好ましい。
本発明においては、多孔質炭素基体に特殊な方法で担持された触媒(特に白金(Pt)、酸化白金、パラジウム(Pd)、酸化パラジウム等)が、陰極のときに特に優位であるために、本発明の水電解用電極2は、多孔質基体3aが多孔質炭素基体の場合には、少なくとも陰極に使用することが好ましい。
However, when the porous substrate 3a is a porous carbon substrate, the water electrolysis electrode 2 of the present invention is preferably used as a water electrolysis cathode from the viewpoint of ensuring safety against oxygen generated at the anode.
In the present invention, the catalyst (particularly platinum (Pt), platinum oxide, palladium (Pd), palladium oxide, etc.) supported on the porous carbon substrate by a special method is particularly superior when it is the cathode, The electrode 2 for water electrolysis of the present invention is preferably used at least as a cathode when the porous substrate 3a is a porous carbon substrate.

[水電解用電極の製造方法]
本発明は、前記の水電解用電極2の製造方法であって、該水電解用電極2が有する触媒担持多孔質電極基材3の製造を、多孔質基体3aに金属触媒又は金属触媒前駆体を付着させ、次いで焼成して触媒3cを多孔質電極基材3に担持させることを特徴とする「水電解用電極の製造方法」でもある。
該製造方法の工程については前記した通りであり、該製造方法の好ましい態様も前記した通りである。
[Method for producing water electrolysis electrode]
The present invention is a method for producing the above-mentioned electrode 2 for water electrolysis, in which the catalyst-supporting porous electrode substrate 3 included in the electrode 2 for water electrolysis is produced by using a metal catalyst or a metal catalyst precursor on the porous substrate 3a. Is also adhered and then calcined to support the catalyst 3c on the porous electrode substrate 3, which is also a "method for producing an electrode for water electrolysis".
The steps of the production method are as described above, and the preferred embodiments of the production method are also as described above.

上記「水電解用電極の製造方法」において、上記触媒担持多孔質電極基材3の、上記固体高分子電解質膜(PEM)5に隣接する側に、更にアイオノマー層4を形成させる工程を有することが好ましい。アイオノマー層4の形成方法、態様(形状)、効果等については、前記した通りである。 In the above "method for producing electrode for water electrolysis", there is a step of further forming an ionomer layer 4 on the side of the catalyst-supporting porous electrode base material 3 adjacent to the solid polymer electrolyte membrane (PEM) 5. Is preferred. The method of forming the ionomer layer 4, the mode (shape), the effect, and the like are as described above.

[水電解セル]
本発明は、少なくとも、前記の水電解用電極2、及び、固体高分子電解質膜(PEM)5を有してなる水電解セル1でもある。
本発明は、少なくとも、前記の水電解用電極2である水電解用陰極、固体高分子電解質膜(PEM)5、及び、水電解用陽極をこの順に有してなるものであることを特徴とする水電解セル1であることが特に好ましい(例えば、図1、図5(a)参照)。
なお、本発明の水電解セル1は、図1や図5(a)に示した以外の他の層の存在を排除するものではない。
例えば、図1、図5(a)に示したように、水電解用電極2の外側には、給電体6、樹脂槽体7が設けられていることが好ましい。該給電体6や該樹脂槽体7としては、特に限定はなく、公知のものが用いられ得る。
[Water electrolysis cell]
The present invention also provides a water electrolysis cell 1 including at least the above-mentioned electrode 2 for water electrolysis and a solid polymer electrolyte membrane (PEM) 5.
The present invention is characterized by comprising at least a water electrolysis cathode, which is the above-mentioned water electrolysis electrode 2, a solid polymer electrolyte membrane (PEM) 5, and a water electrolysis anode in this order. It is particularly preferable to use the water electrolysis cell 1 (see, for example, FIG. 1 and FIG. 5A).
The water electrolysis cell 1 of the present invention does not exclude the presence of layers other than those shown in FIGS. 1 and 5(a).
For example, as shown in FIG. 1 and FIG. 5A, it is preferable that a power supply body 6 and a resin tank body 7 are provided outside the water electrolysis electrode 2. The power supply body 6 and the resin tank body 7 are not particularly limited, and known materials can be used.

更に、少なくとも、前記の水電解用電極2、及び、固体高分子電解質膜(PEM)5を有してなる水電解セル1であり、好ましくは、少なくとも、「前記の水電解用電極2、固体高分子電解質膜(PEM)5、前記の水電解用電極2」をこの順で有してなる水電解セル1であるが、図6に示したように、双極板8を挟んで、2個以上の上記「 」内を積層してなる水電解スタックセル9であることも好ましい。
ここで、「双極板」とは、循環する水、発生する水素等を、2個以上の上記「 」内の単位に割り振って供給する(供給できる)ような構造をしているものである。
Furthermore, it is a water electrolysis cell 1 comprising at least the above-mentioned electrode 2 for water electrolysis and a solid polymer electrolyte membrane (PEM) 5, and preferably at least "the above-mentioned electrode 2 for water electrolysis, solid. The water electrolysis cell 1 comprises a polymer electrolyte membrane (PEM) 5 and the above-mentioned electrode 2 for water electrolysis in this order, but as shown in FIG. It is also preferable that the water electrolysis stack cell 9 is formed by stacking the inside of the above "".
Here, the “bipolar plate” has a structure in which circulating water, generated hydrogen, and the like are distributed (supplied) by dividing into two or more units in the above “”.

すなわち、本発明は、「前記の水電解用電極2である水電解用陰極、固体高分子電解質膜(PEM)5、及び、前記の水電解用電極2である水電解用陽極をこの順に有してなる単位」が複数個直列にスタックされているものである水電解スタックセル9でもある。 That is, the present invention has “a water electrolysis cathode which is the above-mentioned water electrolysis electrode 2, a solid polymer electrolyte membrane (PEM) 5, and a water electrolysis anode which is the above-mentioned water electrolysis electrode 2 in this order. This is also the water electrolysis stack cell 9 in which a plurality of "units formed by" are stacked in series.

図6は、2個の上記「 」内を有するが、水電解スタックセル9の場合の該個数は、2個以上12個以下が好ましく、3個以上10個以下がより好ましく、4個以上8個以下が特に好ましい。上記個数の範囲であると、単位時間における水素の生成量(取得効率)が上がり、一方、定電流で電解を行ったときに1つの水電解スタックセル9に印加する電圧が高くなり過ぎない。 Although FIG. 6 has two inside “”, the number of water electrolysis stack cells 9 is preferably 2 or more and 12 or less, more preferably 3 or more and 10 or less, and 4 or more 8 The number of pieces or less is particularly preferable. When the number is in the above range, the amount of hydrogen produced per unit time (acquisition efficiency) increases, while the voltage applied to one water electrolysis stack cell 9 does not become too high when electrolysis is performed at a constant current.

以下に、実施例及び比較例等を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
以下、特に断りのない限り、比や%に関する値は、質量比や質量%である。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.
Hereinafter, values relating to ratios and% are mass ratios and mass% unless otherwise specified.

実施例1
[多孔質炭素基体に触媒が担持された水電解用電極]
多孔質炭素基体に、金属触媒又は金属触媒前駆体を付着させ、次いで焼成することによって、「金属触媒又は金属酸化物が担持されている触媒担持多孔質電極基材」を調製した。
Example 1
[Water electrolysis electrode in which catalyst is supported on porous carbon substrate]
A "catalyst-supporting porous electrode base material supporting a metal catalyst or a metal oxide" was prepared by depositing a metal catalyst or a metal catalyst precursor on a porous carbon substrate and then calcining it.

<基体>
・基体1
<<陰極及び/又は陽極用多孔質炭素基体>>
多孔質炭素基体として、素材が炭素繊維であるカーボンペーパー(炭素繊維の集合体)であり、繊維径10μm、空隙率78体積%を有し、大きさが25mm×25mmで厚みが0.28mmの多孔質炭素基体を作製した。
<Substrate>
・Base 1
<< Porous Carbon Substrate for Cathode and/or Anode >>
As the porous carbon substrate, carbon paper (aggregate of carbon fibers) whose material is carbon fiber, having a fiber diameter of 10 μm and a porosity of 78% by volume, having a size of 25 mm×25 mm and a thickness of 0.28 mm A porous carbon substrate was prepared.

・基体2
<<陽極用基体>>
材質がチタンペーパーであり、繊維径50μm、空隙率60体積%を有し、大きさが25mm×25mmで厚みが0.5mmの基体を、塩酸12mol/Lであるエッチング液を用いてエッチング処理をし、その後に純水で洗浄・乾燥して基体を作製した。
・Base 2
<<Substrate for anode>>
The material is titanium paper, the fiber diameter is 50 μm, the porosity is 60% by volume, and the substrate having a size of 25 mm×25 mm and a thickness of 0.5 mm is etched using an etching solution of hydrochloric acid 12 mol/L. After that, the substrate was prepared by washing with pure water and drying.

<金属触媒又は金属触媒前駆体の塗布液>
・塗布液1
触媒用の金属原料として、塩化白金(IV)酸六水和物を、有機溶媒として、塩酸を1質量%含有させたイソプロパノールを用い、モル比で1:25となるように配合し、窒素雰囲気下で1時間撹拌することで、塗布液1を調製した。
<Coating liquid of metal catalyst or metal catalyst precursor>
・Coating liquid 1
Platinum (IV) chloride hexahydrate was used as the metal raw material for the catalyst, and isopropanol containing 1% by mass of hydrochloric acid was used as the organic solvent. The coating liquid 1 was prepared by stirring for 1 hour under.

・塗布液2
触媒用の金属原料として、塩化白金(IV)酸六水和物を、有機溶媒として、塩酸を1質量%含有させたイソプロパノールを用い、モル比で2:10となるように配合し、窒素雰囲気下で1時間撹拌することで、塗布液2を調製した。
・Coating liquid 2
Platinum (IV) chloride hexahydrate was used as the metal raw material for the catalyst, and isopropanol containing 1% by mass of hydrochloric acid was used as the organic solvent. The coating liquid 2 was prepared by stirring for 1 hour under.

・塗布液3
触媒用の金属原料として、塩化パラジウム(II)を用いた他は、塗布液2と同様にして塗布液3を調製した。
・Coating liquid 3
A coating liquid 3 was prepared in the same manner as the coating liquid 2 except that palladium (II) chloride was used as the metal raw material for the catalyst.

・塗布液4
触媒用の金属原料として、塩化ルテニウム(II)水和物を用いた他は、塗布液2と同様にして塗布液4を調製した。
・Coating liquid 4
A coating liquid 4 was prepared in the same manner as the coating liquid 2 except that ruthenium (II) chloride hydrate was used as the metal raw material for the catalyst.

・塗布液5
触媒用の金属原料として、塩化イリジウム酸(IV)酸六水和物を用いた他は、塗布液2と同様にして塗布液5を調製した。
・Coating liquid 5
A coating liquid 5 was prepared in the same manner as the coating liquid 2 except that iridium chloride (IV) acid hexahydrate was used as the metal raw material for the catalyst.

・塗布液6
触媒用の金属原料として、塩化ニッケル(II)無水物を用いた他は、塗布液2と同様にして塗布液6を調製した。
・Coating liquid 6
A coating liquid 6 was prepared in the same manner as the coating liquid 2 except that nickel (II) chloride anhydride was used as the metal raw material for the catalyst.

・塗布液7
触媒用の金属原料として、塩化イリジウム(IV)酸六水和物を、有機溶媒として、塩酸を1質量%含有させたイソプロパノールを用い、モル比で1:3となるように配合し、窒素雰囲気下で1時間撹拌することで、塗布液7を調製した。
・Coating liquid 7
Iridium (IV) chloride hexahydrate was used as the metal raw material for the catalyst, isopropanol containing 1% by mass of hydrochloric acid was used as the organic solvent, and the mixture was mixed at a molar ratio of 1:3 to obtain a nitrogen atmosphere. The coating liquid 7 was prepared by stirring under 1 hour.

<アイオノマー分散液>
・アイオノマーA分散液
[水]:[1−プロパノール]:[2−プロパノール]=20:40:40の組成の液に、下記のアイオノマーAを25%分散した状態のアイオノマーA分散液を準備した。
「アイオノマーA」は、アイオノマーの等価質量が、950g/molである前記式(1)で表される長側鎖(LSC)アイオノマーである。
<Ionomer dispersion>
Ionomer A dispersion liquid [Ionomer A dispersion liquid in which 25% of the following ionomer A was dispersed in a liquid composition of [water]:[1-propanol]:[2-propanol]=20:40:40 was prepared. ..
“Ionomer A” is a long side chain (LSC) ionomer represented by the above formula (1) in which the equivalent mass of the ionomer is 950 g/mol.

・アイオノマーB分散液
水に、下記のアイオノマーBを20%分散した状態のアイオノマーB分散液を準備した。
「アイオノマーB」は、アイオノマーの等価質量が、720g/molである前記式(3)で表される短側鎖(SSC)アイオノマーである。
Ionomer B Dispersion Liquid An ionomer B dispersion liquid in which 20% of the following ionomer B was dispersed was prepared.
"Ionomer B" is a short side chain (SSC) ionomer represented by the above formula (3) in which the equivalent mass of the ionomer is 720 g/mol.

<質量残存率の計算方法>
・走査型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(SEM−EDX)を用いて、「金属触媒前駆体等を付着させ乾燥後で焼成前の表面」と「焼成後の電極基材の表面」を分析し、炭素と白金の質量比を測定した。測定した質量比、及び、多孔質炭素基体の質量と焼成後の電極基材の質量から、焼成前後の炭素基体の質量変化を求め、焼成による多孔質炭素基体の「質量残存率(%)」を計算した。
<Calculation method of mass residual rate>
-Using a scanning electron microscope and an analyzer (SEM-EDX) that uses energy dispersive X-ray spectroscopy, "the surface after deposition of the metal catalyst precursor and the like before drying and before firing" and "the electrode after firing" The "surface of the substrate" was analyzed and the mass ratio of carbon and platinum was measured. From the measured mass ratio and the mass of the porous carbon substrate and the mass of the electrode substrate after firing, the mass change of the carbon substrate before and after firing was obtained, and the "mass residual ratio (%)" of the porous carbon substrate by firing was obtained. Was calculated.

<電極の作製>
・電極1
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液1を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置し、水電解用電極(電極基材)を作製した。
焼成前の基体の炭素質量に対する、焼成後の基体の炭素質量である「質量残存率(%)」は94質量%であった。
<Production of electrode>
・Electrode 1
The coating liquid 1 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours to prepare a water electrolysis electrode (electrode base material).
The “mass residual ratio (%)”, which is the carbon mass of the substrate after baking, was 94% by mass with respect to the carbon mass of the substrate before baking.

・電極2
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液1を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置後、電極の片面に、上記「アイオノマーA分散液」を50mg/cmとなるように塗布し、140℃で10分間熱処理してアイオノマー層を形成させて水電解用電極(電極基材)を作製した。
焼成前の基体の炭素質量に対する、焼成後の基体の炭素質量である「質量残存率(%)」は94質量%であった。
・Electrode 2
The coating liquid 1 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, then the above “ionomer A dispersion” was applied on one side of the electrode so that the concentration was 50 mg/cm 2, and heat treatment was performed at 140° C. for 10 minutes to form an ionomer layer and water. An electrode for electrolysis (electrode base material) was produced.
The “mass residual ratio (%)”, which is the carbon mass of the substrate after baking, was 94% by mass with respect to the carbon mass of the substrate before baking.

・電極3
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液1を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置後、上記「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理してアイオノマー層を形成させて水電解用電極(電極基材)を作製した。
焼成前の基体の炭素質量に対する、焼成後の基体の炭素質量である「質量残存率(%)」は94%であった。
・Electrode 3
The coating liquid 1 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, then the above “ionomer B dispersion” was applied at 40 mg/cm 2 and heat-treated at 160° C. for 10 minutes to form an ionomer layer, which was then used as an electrode for water electrolysis (electrode). A base material) was prepared.
The “mass residual ratio (%)”, which is the carbon mass of the substrate after baking, was 94% with respect to the carbon mass of the substrate before baking.

・電極4
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)に、化学薬品を用いたエッチングによって粗面化処理を施した後、粗面化処理を施した基体の表面に、塗布液1を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置後、「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理して水電解用電極(電極基材)を作製した。
焼成前の基体の炭素質量に対する、焼成後の基体の炭素質量である「質量残存率(%)」は93質量%であった。
・Electrode 4
The porous carbon substrate (substrate 1, carbon paper substrate) produced above is subjected to a roughening treatment by etching with a chemical, and then the coating liquid 1 is applied to the surface of the roughened substrate. It was applied by a brush coating method and baked in air at 400° C. for 1 hour. After leaving the baked substrate at room temperature for 3 hours, "Ionomer B dispersion liquid" is applied at 40 mg/cm 2 and heat-treated at 160°C for 10 minutes to prepare an electrode for water electrolysis (electrode substrate). did.
The “mass residual ratio (%)”, which is the carbon mass of the substrate after baking, was 93% by mass with respect to the carbon mass of the substrate before baking.

・電極5
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液2を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。塗布液2の塗布と焼成は合計3回行った。それ以外の条件は電極3と同様とした。
焼成前の基体の炭素質量に対する、焼成後の基体の炭素質量である「質量残存率(%)」は56質量%であった。
・Electrode 5
The coating liquid 2 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) produced above by a brush coating method, and baked in air at 400° C. for 1 hour. Coating and baking of the coating liquid 2 were performed three times in total. The other conditions were the same as those for the electrode 3.
The “mass residual ratio (%)”, which is the carbon mass of the substrate after baking, was 56% by mass with respect to the carbon mass of the substrate before baking.

・電極15
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液3を刷毛塗り法で塗布した。それ以外の条件は電極3と同様とした。
・Electrode 15
The coating liquid 3 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method. The other conditions were the same as those for the electrode 3.

・電極16
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液4を刷毛塗り法で塗布した。それ以外の条件は電極3と同様とした。
・Electrode 16
The coating liquid 4 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method. The other conditions were the same as those for the electrode 3.

・電極17
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液5を刷毛塗り法で塗布した。それ以外の条件は電極3と同様とした
・Electrode 17
The coating liquid 5 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method. The other conditions were the same as those for the electrode 3.

・電極18
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液6を刷毛塗り法で塗布した。それ以外の条件は電極3と同様とした。
・Electrode 18
The coating liquid 6 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method. The other conditions were the same as those for the electrode 3.

・電極19
上記で作製した多孔質炭素基体(基体1、カーボンペーパー基体)の表面に、塗布液1を刷毛塗り法で塗布し、焼成を行なわずに70℃にて1時間乾燥した。それ以外の条件は電極2と同様とした。
「質量残存率(%)」は、焼成を行っていないので、101質量%であった。
・Electrode 19
The coating liquid 1 was applied to the surface of the porous carbon substrate (substrate 1, carbon paper substrate) prepared above by a brush coating method and dried at 70° C. for 1 hour without firing. The other conditions were the same as those of the electrode 2.
The “mass residual ratio (%)” was 101% by mass because firing was not performed.

・電極A
上記チタンペーパー基体(基体2)の表面に、塗布液7を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置して電極を作製した。
・Electrode A
The coating liquid 7 was applied to the surface of the titanium paper substrate (substrate 2) by a brush coating method, and baked in air at 400° C. for 1 hour. The baked substrate was left standing at room temperature for 3 hours to prepare an electrode.

・電極B
上記チタンペーパー基体(基体2)の表面に、塗布液7を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置後、アイオノマーA分散液を50mg/cmとなるように塗布し、140℃で10分間熱処理して電極を作製した。
・Electrode B
The coating liquid 7 was applied to the surface of the titanium paper substrate (substrate 2) by a brush coating method, and baked in air at 400° C. for 1 hour. After the calcined substrate was left standing at room temperature for 3 hours, the ionomer A dispersion liquid was applied at 50 mg/cm 2 and heat-treated at 140° C. for 10 minutes to prepare an electrode.

・電極C
上記チタンペーパー基体(基体2)の表面に、塗布液7を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置後、アイオノマーB分散液を40mg/cmとなるように塗布し、160℃で10分間熱処理して電極を作製した。
・Electrode C
The coating liquid 7 was applied to the surface of the titanium paper substrate (substrate 2) by a brush coating method, and baked in air at 400° C. for 1 hour. After the baked substrate was allowed to stand at room temperature for 3 hours, the ionomer B dispersion liquid was applied at 40 mg/cm 2 and heat-treated at 160° C. for 10 minutes to prepare an electrode.

<固体高分子電解質膜>
等価質量が1100g/molである前記式(1)で表される長側鎖(LSC)アイオノマーからなる、大きさが35mm×35mmで厚みが120μmの固体高分子電解質膜A(実施例6以外)、又は、等価質量が870g/molである前記式(3)で表される短側鎖(SSC)アイオノマーからなる、大きさが35mm×35mmで厚みが120μmの固体高分子電解質膜B(実施例6のみ)を用いた。
<Solid polymer electrolyte membrane>
A solid polymer electrolyte membrane A having a size of 35 mm×35 mm and a thickness of 120 μm, which is composed of a long side chain (LSC) ionomer represented by the above formula (1) having an equivalent mass of 1100 g/mol (other than Example 6). Alternatively, a solid polymer electrolyte membrane B having a size of 35 mm×35 mm and a thickness of 120 μm, which is composed of a short side chain (SSC) ionomer represented by the formula (3) and has an equivalent mass of 870 g/mol (Examples). 6 only) was used.

<水電解セル>
下記構成で評価用の小型の水電解セルを組み立てた。
<Water electrolysis cell>
A small water electrolysis cell for evaluation was assembled with the following configuration.

水電解用陽極 水電解用陰極 固体高分子電解質膜
実施例 1 電極A 電極 1 固体高分子電解質膜A
実施例 2 電極B 電極 2 固体高分子電解質膜A
実施例 3 電極C 電極 3 固体高分子電解質膜A
実施例 4 電極C 電極 4 固体高分子電解質膜A
実施例 5 電極C 電極 5 固体高分子電解質膜A
実施例 6 電極C 電極 3 固体高分子電解質膜B
実施例13 電極1 電極 1 固体高分子電解質膜A
実施例14 電極3 電極 3 固体高分子電解質膜A
実施例15 電極C 電極15 固体高分子電解質膜A
実施例16 電極C 電極16 固体高分子電解質膜A
実施例17 電極C 電極17 固体高分子電解質膜A
実施例18 電極C 電極18 固体高分子電解質膜A
比較例 1 電極B 電極19 固体高分子電解質膜A
Anode for water electrolysis Cathode for water electrolysis Solid polymer electrolyte membrane Example 1 Electrode A Electrode 1 Solid polymer electrolyte membrane A
Example 2 Electrode B Electrode 2 Solid polymer electrolyte membrane A
Example 3 Electrode C Electrode 3 Solid polymer electrolyte membrane A
Example 4 Electrode C Electrode 4 Solid polymer electrolyte membrane A
Example 5 Electrode C Electrode 5 Solid polymer electrolyte membrane A
Example 6 Electrode C Electrode 3 Solid polymer electrolyte membrane B
Example 13 Electrode 1 Electrode 1 Solid polymer electrolyte membrane A
Example 14 Electrode 3 Electrode 3 Solid polymer electrolyte membrane A
Example 15 Electrode C Electrode 15 Solid polymer electrolyte membrane A
Example 16 Electrode C Electrode 16 Solid polymer electrolyte membrane A
Example 17 Electrode C Electrode 17 Solid polymer electrolyte membrane A
Example 18 Electrode C Electrode 18 Solid polymer electrolyte membrane A
Comparative Example 1 Electrode B Electrode 19 Solid Polymer Electrolyte Membrane A

<水電解セル評価方法>
上記し評価用の小型の水電解セルに、温度20℃の純水をポンプで循環させ、水電解セル1の陽極側へ電解用の純水を供給し、直流電源を用いて所定の電流密度における水電解時のセル電圧の値を記録した。実施例1〜14、及び、比較例1の評価結果を、抜粋して、それぞれ、図3、図4に示した。
表1の実施例3、15〜18については、100A/dmの電流密度におけるセル電圧の値を表1に示した。
<Water electrolysis cell evaluation method>
Pure water having a temperature of 20° C. is circulated by a pump in the small water electrolysis cell for evaluation described above, pure water for electrolysis is supplied to the anode side of the water electrolysis cell 1, and a predetermined current density is obtained using a DC power supply. The value of the cell voltage during water electrolysis was recorded. The evaluation results of Examples 1 to 14 and Comparative Example 1 are extracted and shown in FIGS. 3 and 4, respectively.
For Examples 3 to 15 to 18 in Table 1, the cell voltage values at a current density of 100 A/dm 2 are shown in Table 1.

<評価結果>
全て白金触媒(粒子)に統一して評価した図3及び図4から分かるように、焼成を行っていない電極19を水電解用陰極に用いた比較例1は、セル電圧が高くなり過ぎて不合格であったが、他の実施例1〜14については、全てセル電圧が高くなり過ぎずに合格レベルであった。
<Evaluation result>
As can be seen from FIGS. 3 and 4 in which all the platinum catalysts (particles) were evaluated in a unified manner, Comparative Example 1 in which the non-calcined electrode 19 was used as the cathode for water electrolysis was too high in cell voltage and was unsatisfactory. Although the results were acceptable, all of the other Examples 1 to 14 were acceptable levels without the cell voltage becoming too high.

中でも、焼成温度を統一して評価した、アイオノマーBのアイオノマー層を有する水電解用陰極を用いた実施例3〜6は、セル電圧が極めて低く優れていた。すなわち、水電解用陰極に何れも電極3を使用した実施例3と実施例6、水電解用陰極に電極4を用いた実施例4、水電解用陰極に電極5を用いた実施例5は、極めてセル電圧が低く優れていた(図3参照)。
アイオノマー層のない電極1を使用した実施例1と、アイオノマーAのアイオノマー層を有する電極2を使用した実施例2は、合格レベルではあるが、実施例3〜6に比べて若干セル電圧が高くなった。
Among them, Examples 3 to 6 using the cathode for water electrolysis having the ionomer layer of the ionomer B, which were evaluated by unifying the firing temperatures, were excellent in that the cell voltage was extremely low. That is, Examples 3 and 6 in which the electrode 3 is used for the water electrolysis cathode, Example 4 in which the electrode 4 is used in the water electrolysis cathode, and Example 5 in which the electrode 5 is used for the water electrolysis cathode are The cell voltage was extremely low and excellent (see FIG. 3).
Example 1 using the electrode 1 having no ionomer layer and Example 2 using the electrode 2 having the ionomer layer of the ionomer A are at the passing level, but the cell voltage is slightly higher than those of Examples 3 to 6. became.

また、多孔質炭素基体に金属触媒(前駆体)を付着させて焼成して得られた触媒(粒子)担持多孔質電極基材を水電解用陰極として用いた実施例は全て、ガスリフトによる触媒膜の剥離や触媒(粒子)の脱離が起こり難くなり、性能劣化が発生しなくなり、耐久性に優れていた。
一方、焼成を行っていない電極19を水電解用陰極に用いた比較例1は、触媒膜の剥離や触媒(粒子)の脱離が起こり易く、耐久性に劣っていた(図示せず)。
Further, in all the examples in which the catalyst (particle)-supporting porous electrode substrate obtained by adhering the metal catalyst (precursor) to the porous carbon substrate and firing it was used as the cathode for water electrolysis, the catalyst film by gas lift was used. Peeling off and desorption of catalyst (particles) did not occur easily, performance deterioration did not occur, and it was excellent in durability.
On the other hand, in Comparative Example 1 in which the non-calcined electrode 19 was used as the cathode for water electrolysis, the catalyst film was easily peeled off and the catalyst (particles) was easily detached, and the durability was poor (not shown).

図4の実施例13と実施例14は、陰極のみならず、陽極にも「多孔質炭素基体(基体1、カーボンペーパー基体)の表面に白金系の触媒(粒子)を担持させた炭素系の電極基材」を用いたものであるが、実施例13の陰極と陽極の電極1も、実施例14の陰極と陽極の電極3も何れも、空気中で400℃にて1時間焼成したものであるので、極めてセル電圧が低く優れていた。
一方、焼成を行っていない電極19を陰極に用いた比較例1は、セル電圧が高くなり過ぎて不合格であった。
In Example 13 and Example 14 of FIG. 4, not only the cathode but also the anode was prepared from the carbon-based material in which the platinum-based catalyst (particles) was supported on the surface of the porous carbon substrate (base 1, carbon paper substrate). The "electrode base material" was used, but both the cathode and anode electrodes 1 of Example 13 and the cathode and anode electrodes 3 of Example 14 were fired in air at 400°C for 1 hour. Therefore, the cell voltage was extremely low and excellent.
On the other hand, in Comparative Example 1 in which the electrode 19 which was not fired was used as the cathode, the cell voltage was too high and was rejected.

図4において、中でも、アイオノマー層のない電極1を両極に用いた実施例13より、アイオノマーBのアイオノマー層を有する電極3を両極に用いた実施例14の方が、よりセル電圧が低く優れていた。 In FIG. 4, in particular, Example 14 using the electrode 3 having the ionomer layer of the ionomer B in both electrodes was superior to Example 13 using the electrode 1 having no ionomer layer in both electrodes, and was excellent in cell voltage. It was

表1は、全て、同様の多孔質炭素基体(基体1、カーボンペーパー)に、各金属触媒前駆体を含有する塗布液を塗布し、空気中で400℃にて1時間焼成し、アイオノマーBのアイオノマー層を形成させた電極を用いたものであるが、表1から分かるように、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、ニッケル(Ni)の金属(酸化物)触媒の何れでも、100A/dmの電流密度におけるセル電圧が低かった。
「セル電圧の低さ」の良好さの傾向としては、Pt=Pd≧Ru≧Ir≧Ni(左に行く程低くて良好)であった。
Table 1 shows that all of the same porous carbon substrates (substrate 1, carbon paper) were coated with a coating liquid containing each metal catalyst precursor, and baked at 400° C. for 1 hour in air to obtain ionomer B. As shown in Table 1, platinum (Pt), ruthenium (Ru), iridium (Ir), palladium (Pd), nickel (Ni) metal (oxidation) is used, although an electrode having an ionomer layer is used. The cell voltage at a current density of 100 A/dm 2 was low for all the catalysts).
The tendency of good "low cell voltage" was Pt=Pd≥Ru≥Ir≥Ni (lower and better toward the left).

実施例2
[多孔質チタン族系基体に触媒が担持された水電解用電極]
多孔質チタン族系基体として多孔質チタン基体を採用し、該多孔質チタン基体に、金属触媒又は金属触媒前駆体を付着させ、次いで焼成することによって、「金属触媒又は金属酸化物が担持されている触媒担持多孔質電極基材」を調製した。
Example 2
[Electrode for water electrolysis in which catalyst is supported on porous titanium group-based substrate]
A porous titanium substrate is adopted as the porous titanium-group-based substrate, a metal catalyst or a metal catalyst precursor is attached to the porous titanium substrate, and then firing is performed, whereby "a metal catalyst or a metal oxide is supported. A catalyst-supporting porous electrode base material" was prepared.

<基体>
<<陰極及び/又は陽極用多孔質チタン基体>>
材質がチタンペーパーであり、繊維径50μm、空隙率60体積%を有し、大きさが25mm×25mmで厚みが0.5mmの基体を、塩酸12mol/Lであるエッチング液を用いてエッチング処理をし、その後に純水で洗浄・乾燥して多孔質チタン基体を作製した。
<Substrate>
<< Porous Titanium Substrate for Cathode and/or Anode >>
The material is titanium paper, the fiber diameter is 50 μm, the porosity is 60% by volume, and the substrate having a size of 25 mm×25 mm and a thickness of 0.5 mm is etched using an etching solution of hydrochloric acid 12 mol/L. Then, it was washed with pure water and dried to prepare a porous titanium substrate.

<金属触媒又は金属触媒前駆体の塗布液>
・塗布液21
触媒用の金属原料として、塩化白金(IV)酸六水和物を、有機溶媒として、塩酸を1質量%含有させたイソプロパノールを用い、モル比で2:10となるように配合し、窒素雰囲気下で1時間撹拌することで、塗布液21を調製した。
<Coating liquid of metal catalyst or metal catalyst precursor>
・Coating liquid 21
Platinum (IV) chloride hexahydrate was used as the metal raw material for the catalyst, and isopropanol containing 1% by mass of hydrochloric acid was used as the organic solvent. The coating liquid 21 was prepared by stirring under 1 hour.

・塗布液22
触媒用の金属原料として、塩化パラジウム(II)を用いた以外は、塗布液21と同様にして塗布液22を調製した。
・Coating liquid 22
A coating liquid 22 was prepared in the same manner as the coating liquid 21 except that palladium (II) chloride was used as the metal raw material for the catalyst.

・塗布液23
触媒用の金属原料として、塩化イリジウム酸(IV)酸六水和物を用いた以外は、塗布液21と同様にして塗布液23を調製した。
・Coating liquid 23
A coating liquid 23 was prepared in the same manner as the coating liquid 21, except that iridium chloro(IV) chloride hexahydrate was used as the metal raw material for the catalyst.

・塗布液24
触媒用の金属原料として、塩化ニッケル(II)無水物を用いた以外は、塗布液21と同様にして塗布液24を調製した。
・Coating liquid 24
A coating liquid 24 was prepared in the same manner as the coating liquid 21, except that nickel (II) chloride anhydride was used as the metal raw material for the catalyst.

<アイオノマー分散液>
・アイオノマーA分散液
[水]:[1−プロパノール]:[2−プロパノール]=20:40:40の組成の液に、下記のアイオノマーAを25%分散した状態のアイオノマーA分散液を準備した。
「アイオノマーA」は、アイオノマーの等価質量が、950g/molである前記式(1)で表される長側鎖(LSC)アイオノマーである。
<Ionomer dispersion>
Ionomer A dispersion liquid [Ionomer A dispersion liquid in which 25% of the following ionomer A was dispersed in a liquid composition of [water]:[1-propanol]:[2-propanol]=20:40:40 was prepared. ..
“Ionomer A” is a long side chain (LSC) ionomer represented by the above formula (1) in which the equivalent mass of the ionomer is 950 g/mol.

・アイオノマーB分散液
水に、下記のアイオノマーBを20%分散した状態のアイオノマーB分散液を準備した。
「アイオノマーB」は、アイオノマーの等価質量が、720g/molである前記式(3)で表される短側鎖(SSC)アイオノマーである。
Ionomer B Dispersion Liquid An ionomer B dispersion liquid in which 20% of the following ionomer B was dispersed was prepared.
"Ionomer B" is a short side chain (SSC) ionomer represented by the above formula (3) in which the equivalent mass of the ionomer is 720 g/mol.

<電極の作製>
・電極21
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成して電極基材とした。
<Production of electrode>
・Electrode 21
The coating solution 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour to obtain an electrode substrate.

・電極22
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置後、電極の片面に、上記「アイオノマーA分散液」を40mg/cmとなるように塗布し、140℃で10分間熱処理してアイオノマー層を形成させて電極基材を作製した(図7参照)。
・Electrode 22
The coating liquid 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, then the above “ionomer A dispersion liquid” was applied to one surface of the electrode so that the concentration was 40 mg/cm 2, and heat treatment was performed at 140° C. for 10 minutes to form an ionomer layer. A base material was prepared (see FIG. 7).

・電極23
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置後、電極の片面に、上記「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理してアイオノマー層を形成させて電極基材を作製した(図7参照)。
・Electrode 23
The coating liquid 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, and then the above “ionomer B dispersion liquid” was applied to one surface of the electrode so as to have a concentration of 40 mg/cm 2 and heat-treated at 160° C. for 10 minutes to form an ionomer layer. A base material was prepared (see FIG. 7).

・電極24
上記で作製した多孔質チタン族基体(チタンペーパー基体)の表面に、塗布液22を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後、常温で3時間静置後、上記「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理してアイオノマー層を形成させて電極基材を作製した。
・Electrode 24
The coating liquid 22 was applied to the surface of the porous titanium group substrate (titanium paper substrate) prepared above by a brush coating method, and baked in air at 400° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, then the above "ionomer B dispersion liquid" was applied at 40 mg/cm 2 and heat-treated at 160°C for 10 minutes to form an ionomer layer to prepare an electrode substrate. ..

・電極25
上記で作製した多孔質チタン基体(チタンペーパー基体)に、塗布液23を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置後、「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理して電極基材を作製した。
・Electrode 25
The coating liquid 23 was applied to the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and the coating was baked in air at 400° C. for 1 hour. The baked substrate was allowed to stand at room temperature for 3 hours, then the “ionomer B dispersion liquid” was applied at 40 mg/cm 2 and heat-treated at 160° C. for 10 minutes to prepare an electrode substrate.

・電極26
上記で作製した多孔質チタン基体(チタンペーパー基体)に、塗布液24を刷毛塗り法で塗布し、空気中で400℃にて1時間焼成した。焼成後の基体を常温で3時間静置後、「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理して電極基材を作製した。
・Electrode 26
The coating liquid 24 was applied to the porous titanium substrate (titanium paper substrate) produced above by a brush coating method, and the coating was baked in air at 400° C. for 1 hour. The baked substrate was allowed to stand at room temperature for 3 hours, then the “ionomer B dispersion liquid” was applied at 40 mg/cm 2 and heat-treated at 160° C. for 10 minutes to prepare an electrode substrate.

・電極27(比較例21用の電極)
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、焼成を行なわずに70℃にて1時間乾燥して電極基材とした。
-Electrode 27 (electrode for Comparative Example 21)
The coating solution 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and dried at 70° C. for 1 hour without firing to obtain an electrode substrate.

・電極28(比較例22用の電極)
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、焼成を行なわずに70℃にて1時間乾燥した。乾燥後の基体を常温で3時間静置後、「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理して電極基材を作製した。
-Electrode 28 (electrode for Comparative Example 22)
The coating liquid 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and dried at 70° C. for 1 hour without firing. After the dried substrate was allowed to stand at room temperature for 3 hours, "Ionomer B dispersion liquid" was applied at 40 mg/cm 2 and heat-treated at 160°C for 10 minutes to prepare an electrode substrate.

・電極29(比較例23用の電極)
上記で作製した多孔質チタン基体(チタンペーパー基体)の表面に、塗布液21を刷毛塗り法で塗布し、空気中で150℃にて1時間焼成した。焼成後、常温で3時間静置後、電極の片面に、上記「アイオノマーB分散液」を40mg/cmとなるように塗布し、160℃で10分間熱処理してアイオノマー層を形成させて電極基材とした。
-Electrode 29 (electrode for Comparative Example 23)
The coating liquid 21 was applied to the surface of the porous titanium substrate (titanium paper substrate) prepared above by a brush coating method, and baked in air at 150° C. for 1 hour. After firing, the mixture was allowed to stand at room temperature for 3 hours, then the above “ionomer B dispersion liquid” was applied to one surface of the electrode so that the concentration was 40 mg/cm 2, and heat treatment was performed at 160° C. for 10 minutes to form an ionomer layer. It was used as a base material.

・電極30(比較例24用の電極)
等価質量が1100g/molである前記式(1)で表される長側鎖(LSC)アイオノマーからなる、大きさが25mm×25mmで厚みが120μmの固体高分子電解質膜Aの両面上に白金/カーボン分散液を塗布、乾燥することで電極触媒層を形成し、膜電極接合体(MEA)とした(図5(b)参照)。
-Electrode 30 (electrode for Comparative Example 24)
Platinum on both sides of a solid polymer electrolyte membrane A having a size of 25 mm×25 mm and a thickness of 120 μm, which is composed of a long side chain (LSC) ionomer represented by the above formula (1) having an equivalent mass of 1100 g/mol, An electrode catalyst layer was formed by applying and drying the carbon dispersion liquid to obtain a membrane electrode assembly (MEA) (see FIG. 5B).

<固体高分子電解質膜>
等価質量が1100g/molである前記式(1)で表される長側鎖(LSC)アイオノマーからなる、大きさが35mm×35mmで厚みが120μmの固体高分子電解質膜(PEM)を用いた。
<Solid polymer electrolyte membrane>
A solid polymer electrolyte membrane (PEM) having a size of 35 mm×35 mm and a thickness of 120 μm, which is composed of a long side chain (LSC) ionomer represented by the above formula (1) and has an equivalent mass of 1100 g/mol, was used.

<水電解セル>
下記表2に示した構成で評価用の小型の水電解セルを組み立てた(図5(a))。
<Water electrolysis cell>
A small water electrolysis cell for evaluation was assembled with the configuration shown in Table 2 below (FIG. 5A).

<水電解セルの初期特性評価方法>
上記した評価用の小型の水電解セル1に、温度20℃の純水をポンプで循環させ、水電解セル1の陽極側へ電解用の純水を供給し、直流電源を用いて所定の電流密度における水電解時のセル電圧の値を記録した。
実施例21〜27、及び比較例21〜24の50A/dm、及び100A/dmの電流密度におけるセル電圧の値を評価結果として表3に示す。
<Method for evaluating initial characteristics of water electrolysis cell>
Pure water having a temperature of 20° C. is circulated by a pump in the small water electrolysis cell 1 for evaluation described above, pure water for electrolysis is supplied to the anode side of the water electrolysis cell 1, and a predetermined current is supplied using a DC power supply. The value of the cell voltage during water electrolysis at the density was recorded.
Table 3 shows the cell voltage values of Examples 21 to 27 and Comparative Examples 21 to 24 at the current densities of 50 A/dm 2 and 100 A/dm 2 as evaluation results.

<水電解セル耐久性評価方法>
上記した評価用の小型の水電解セルに、温度20℃の純水をポンプで循環させ、水電解セル1の陽極側へ電解用の純水を供給し、直流電源を用いて、50A/dmの電流密度で電解を継続し、時間経過によるセル電圧の変化を記録した。
実施例21〜27及び比較例21〜24の初期(0時間)と、250時間経過時のセル電圧の値を評価結果として表4に示す。
<Water electrolysis cell durability evaluation method>
Pure water having a temperature of 20° C. is circulated by a pump in the small-sized water electrolysis cell for evaluation described above, pure water for electrolysis is supplied to the anode side of the water electrolysis cell 1, and a DC power source is used to generate 50 A/dm. Electrolysis was continued at a current density of 2 and the change in cell voltage over time was recorded.
Table 4 shows the initial (0 hour) and 250 hour elapsed cell voltage values of Examples 21 to 27 and Comparative Examples 21 to 24 as evaluation results.

<初期特性評価結果>
焼成を行っていない比較例21及び比較例22、低温200℃で焼成した比較例23、触媒を塗布、乾燥させて形成させた膜電極接合体(MEA)を用いた比較例24においては、セル電圧が高くなる結果となった。
実施例21では、400℃で焼成を行うことでセル電圧は低くなり、また、固体電解質膜(PEM)に接する面にアイオノマー層を設けた実施例22〜27は、更にセル電圧の低下が確認できた。
<Results of initial characteristic evaluation>
In Comparative Example 21 and Comparative Example 22 not fired, Comparative Example 23 fired at a low temperature of 200° C., and Comparative Example 24 using the membrane electrode assembly (MEA) formed by applying and drying a catalyst, This resulted in higher voltage.
In Example 21, the cell voltage was lowered by firing at 400° C., and in Example 22 to 27 in which the ionomer layer was provided on the surface in contact with the solid electrolyte membrane (PEM), further decrease in cell voltage was confirmed. did it.

<耐久性評価結果>
「多孔質チタン基体に金属触媒(前駆体)を付着させて焼成して得られた触媒担持多孔質電極基材」を水電解用陰極として用いた実施例21〜27は、ガスリフトによる触媒膜の剥離や触媒(粒子)の脱離が起こり難くなり、性能劣化が発生しなくなり、耐久性に優れていた。
<Durability evaluation result>
Examples 21 to 27 using the "catalyst-supporting porous electrode base material obtained by adhering a metal catalyst (precursor) to a porous titanium base material and firing" as a cathode for water electrolysis are the catalyst films by gas lift. Peeling and desorption of catalyst (particles) became difficult to occur, performance deterioration did not occur, and durability was excellent.

一方、焼成を行っていない比較例21及び比較例22、低温200℃での焼成とした比較例23、「電極触媒を塗布、乾燥させて形成させた膜電極接合体(MEA)」を用いた比較例24は、触媒膜の剥離や触媒(粒子)の脱離が起こり易く、耐久性に劣っていた。 On the other hand, Comparative Examples 21 and 22 that were not fired, Comparative Example 23 that was fired at a low temperature of 200° C., and “Membrane electrode assembly (MEA) formed by applying and drying an electrode catalyst” were used. In Comparative Example 24, peeling of the catalyst film and desorption of the catalyst (particles) were likely to occur, and the durability was poor.

本発明の水電解用電極を用いた水電解セルは、定電流で電解を行ったときに、安定してセル電圧が低く、触媒が電極基材から脱離することが防止されていて、製造性や耐久性に優れているので、水素や酸素を必要とするあらゆる分野に広く利用されるものである。 The water electrolysis cell using the electrode for water electrolysis of the present invention, when electrolyzing at a constant current, the cell voltage is stable low, the catalyst is prevented from desorption from the electrode substrate, Since it has excellent properties and durability, it is widely used in all fields that require hydrogen and oxygen.

1 水電解セル
2 水電解用電極
3 触媒担持多孔質電極基材
3a 多孔質チタン族系基体又は多孔質基体
3b チタン繊維又は炭素繊維
3c 金属触媒(粒子)又は金属酸化物触媒(粒子)
4 アイオノマー層又はアイオノマー
5 固体高分子電解質膜(PEM)
6 給電体
7 樹脂槽体
8 双極板
9 水電解スタックセル
1 Water Electrolysis Cell 2 Electrode for Water Electrolysis 3 Catalyst-Supporting Porous Electrode Base Material 3a Porous Titanium Group Substrate or Porous Substrate 3b Titanium Fiber or Carbon Fiber 3c Metal Catalyst (Particle) or Metal Oxide Catalyst (Particle)
4 Ionomer layer or ionomer 5 Solid polymer electrolyte membrane (PEM)
6 Feeder 7 Resin tank 8 Bipolar plate 9 Water electrolysis stack cell

Claims (15)

水電解セルにおいて固体高分子電解質膜(PEM)に隣接する水電解用電極であって、
多孔質基体に金属触媒又は金属触媒前駆体を付着させて焼成してなる「金属触媒又は金属酸化物触媒が担持された触媒担持多孔質電極基材」を有することを特徴とする水電解用電極。
An electrode for water electrolysis adjacent to a solid polymer electrolyte membrane (PEM) in a water electrolysis cell,
An electrode for water electrolysis, which has a "catalyst-supporting porous electrode base material on which a metal catalyst or a metal oxide catalyst is supported", which is obtained by adhering a metal catalyst or a metal catalyst precursor to a porous substrate and firing it. ..
上記触媒担持多孔質電極基材の、上記固体高分子電解質膜に隣接する側に、更にアイオノマー層を有する請求項1に記載の水電解用電極。 The electrode for water electrolysis according to claim 1, further comprising an ionomer layer on the side of the catalyst-supporting porous electrode substrate adjacent to the solid polymer electrolyte membrane. 上記アイオノマー層が、主鎖としてポリフルオロエチレン骨格を有し、側鎖として末端にスルホン酸基を有するフルオロエチレンエーテル骨格を有するイオン伝導性ポリマーの層である請求項2に記載の水電解用電極。 The electrode for water electrolysis according to claim 2, wherein the ionomer layer is a layer of an ion conductive polymer having a polyfluoroethylene skeleton as a main chain and a fluoroethylene ether skeleton having a sulfonic acid group at a terminal as a side chain. .. 上記アイオノマー層が、上記触媒担持多孔質電極基材の多孔質空隙内にも貫入され、かつ、当該触媒担持多孔質電極基材が有する空隙容量のうち、該アイオノマー層により空隙が充填される割合が10体積%以上90体積%以下である請求項2又は請求項3に記載の水電解用電極。 The ionomer layer is also penetrated into the porous voids of the catalyst-supporting porous electrode substrate, and in the void volume of the catalyst-supporting porous electrode substrate, the proportion of voids filled by the ionomer layer Is 10 vol% or more and 90 vol% or less, The electrode for water electrolysis according to claim 2 or 3. 上記焼成が、酸素含有気体の存在下に、200℃以上600℃未満でなされるものである請求項1ないし請求項4の何れかの請求項に記載の水電解用電極。 The electrode for water electrolysis according to any one of claims 1 to 4, wherein the firing is performed at 200°C or higher and lower than 600°C in the presence of an oxygen-containing gas. 上記多孔質基体が、多孔質チタン族基体、多孔質チタン族合金基体若しくは多孔質チタン族化合物基体、又は、多孔質炭素基体である請求項1ないし請求項5の何れかの請求項に記載の水電解用電極。 6. The porous substrate according to claim 1, wherein the porous substrate is a porous titanium group substrate, a porous titanium group alloy substrate, a porous titanium group compound substrate, or a porous carbon substrate. Electrode for water electrolysis. 上記多孔質チタン族基体が多孔質チタン基体であり、上記多孔質チタン族合金基体が多孔質チタン合金基体である請求項6に記載の水電解用電極。 The electrode for water electrolysis according to claim 6, wherein the porous titanium group substrate is a porous titanium substrate, and the porous titanium group alloy substrate is a porous titanium alloy substrate. 上記多孔質基体が、チタン族繊維、チタン族合金繊維若しくはチタン族化合物繊維、又は、炭素繊維の集合体である請求項1ないし請求項6の何れかの請求項に記載の水電解用電極。 The electrode for water electrolysis according to any one of claims 1 to 6, wherein the porous substrate is an aggregate of titanium group fibers, titanium group alloy fibers or titanium group compound fibers, or carbon fibers. 上記多孔質基体が多孔質炭素基体であり、上記焼成が、焼成後の多孔質炭素基体の質量が、焼成前の上記多孔質炭素基体の質量の55質量%以上99質量%以下になるように行われるものである請求項1ないし請求項6の何れかの請求項に記載の水電解用電極。 The porous substrate is a porous carbon substrate, and the firing is performed such that the mass of the porous carbon substrate after firing is 55% by mass or more and 99% by mass or less of the mass of the porous carbon substrate before firing. The electrode for water electrolysis according to any one of claims 1 to 6, which is performed. 上記金属触媒又は金属触媒前駆体の金属が、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、タンタル(Ta)、及び、ニッケル(Ni)よりなる群から選ばれる金属である請求項1ないし請求項9の何れかの請求項に記載の水電解用電極。 The metal of the metal catalyst or metal catalyst precursor is a metal selected from the group consisting of platinum (Pt), ruthenium (Ru), iridium (Ir), palladium (Pd), tantalum (Ta), and nickel (Ni). The water electrolysis electrode according to any one of claims 1 to 9. 請求項1ないし請求項10の何れかの請求項に記載の水電解用電極の製造方法であって、
該水電解用電極が有する触媒担持多孔質電極基材の製造を、多孔質基体に金属触媒又は金属触媒前駆体を付着させ、次いで焼成して触媒を多孔質電極基材に担持させることを特徴とする水電解用電極の製造方法。
A method for manufacturing an electrode for water electrolysis according to any one of claims 1 to 10,
Production of a catalyst-supporting porous electrode substrate included in the electrode for water electrolysis is characterized in that a metal catalyst or a metal catalyst precursor is attached to a porous substrate, and then the catalyst is supported on the porous electrode substrate by firing. And a method for producing an electrode for water electrolysis.
上記触媒担持多孔質電極基材の、上記固体高分子電解質膜(PEM)に隣接する側に、更にアイオノマー層を形成させる工程を有する請求項11に記載の水電解用電極の製造方法。 The method for producing an electrode for water electrolysis according to claim 11, further comprising a step of forming an ionomer layer on a side of the catalyst-supporting porous electrode substrate adjacent to the solid polymer electrolyte membrane (PEM). 少なくとも、請求項1ないし請求項10の何れかの請求項に記載の水電解用電極、及び、固体高分子電解質膜(PEM)を有してなるものであることを特徴とする水電解セル。 A water electrolysis cell comprising at least the electrode for water electrolysis according to any one of claims 1 to 10 and a solid polymer electrolyte membrane (PEM). 少なくとも、請求項1ないし請求項10の何れかの請求項に記載の水電解用電極である水電解用陰極、固体高分子電解質膜(PEM)、及び、請求項1ないし請求項10の何れかの請求項に記載の水電解用電極である水電解用陽極をこの順に有してなる請求項13に記載の水電解セル。 At least a cathode for water electrolysis, which is the electrode for water electrolysis according to any one of claims 1 to 10, a solid polymer electrolyte membrane (PEM), and any one of claims 1 to 10. 14. The water electrolysis cell according to claim 13, comprising a water electrolysis anode which is the electrode for water electrolysis according to claim 1 in this order. 請求項1ないし請求項10の何れかの請求項に記載の水電解用電極である水電解用陰極、固体高分子電解質膜(PEM)、及び、請求項1ないし請求項10の何れかの請求項に記載の水電解用電極である水電解用陽極をこの順に有してなる単位が複数個直列にスタックされているものであることを特徴とする水電解スタックセル。
A cathode for water electrolysis, which is the electrode for water electrolysis according to any one of claims 1 to 10, a solid polymer electrolyte membrane (PEM), and any one of claims 1 to 10. A water electrolysis stack cell, wherein a plurality of units each having a water electrolysis anode, which is the water electrolysis electrode according to the item, are stacked in series.
JP2019220004A 2018-12-11 2019-12-05 Electrode for water electrolysis and production method thereof Pending JP2020094282A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018231698 2018-12-11
JP2018231698 2018-12-11

Publications (1)

Publication Number Publication Date
JP2020094282A true JP2020094282A (en) 2020-06-18

Family

ID=71085453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220004A Pending JP2020094282A (en) 2018-12-11 2019-12-05 Electrode for water electrolysis and production method thereof

Country Status (1)

Country Link
JP (1) JP2020094282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218790B1 (en) 2021-12-24 2023-02-07 トヨタ自動車株式会社 MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
WO2023243449A1 (en) * 2022-06-14 2023-12-21 Toppanホールディングス株式会社 Laminate for water electrolysis device, membrane electrode assembly for water electrolysis device, and water electrolysis device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131392A (en) * 1990-09-21 1992-05-06 Permelec Electrode Ltd Electrode for electrochemical use
JP2005235556A (en) * 2004-02-19 2005-09-02 Sony Corp Method of manufacturing catalytic electrode, membrane electrode junction, and electrochemical device
JP2007514520A (en) * 2003-10-29 2007-06-07 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Noble metal oxide catalysts for water electrolysis
JP2007522612A (en) * 2004-01-22 2007-08-09 ゼネラル・モーターズ・コーポレーション Durable membrane electrode assembly catalyst-coated diffusion media without adhesion to the membrane
JP2008066017A (en) * 2006-09-05 2008-03-21 Toppan Printing Co Ltd Paste for forming catalyst layer, catalyst electrode using it, membrane electrode assembly using it, and manufacturing methods of them
US20080283412A1 (en) * 2007-05-16 2008-11-20 Commonwealth Scientific And Industrial Research Organisation PEM water electrolysis for oxygen generation method and apparatus
CN104726891A (en) * 2015-03-16 2015-06-24 中国科学院广州能源研究所 Proton exchange membrane water-electrolyzer with internal hydrogen removing function and producing method thereof
JP2017179408A (en) * 2016-03-28 2017-10-05 国立大学法人九州大学 Electrode material for water electrolysis and method for producing the same, and electrode for water electrolysis
US20180062192A1 (en) * 2016-08-25 2018-03-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
JP2018076576A (en) * 2016-11-11 2018-05-17 学校法人 工学院大学 Catalytic electrode for water electrolysis, water electrolysis device, and production method of catalytic electrode for water electrolysis

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131392A (en) * 1990-09-21 1992-05-06 Permelec Electrode Ltd Electrode for electrochemical use
JP2007514520A (en) * 2003-10-29 2007-06-07 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Noble metal oxide catalysts for water electrolysis
JP2007522612A (en) * 2004-01-22 2007-08-09 ゼネラル・モーターズ・コーポレーション Durable membrane electrode assembly catalyst-coated diffusion media without adhesion to the membrane
JP2005235556A (en) * 2004-02-19 2005-09-02 Sony Corp Method of manufacturing catalytic electrode, membrane electrode junction, and electrochemical device
JP2008066017A (en) * 2006-09-05 2008-03-21 Toppan Printing Co Ltd Paste for forming catalyst layer, catalyst electrode using it, membrane electrode assembly using it, and manufacturing methods of them
US20080283412A1 (en) * 2007-05-16 2008-11-20 Commonwealth Scientific And Industrial Research Organisation PEM water electrolysis for oxygen generation method and apparatus
CN104726891A (en) * 2015-03-16 2015-06-24 中国科学院广州能源研究所 Proton exchange membrane water-electrolyzer with internal hydrogen removing function and producing method thereof
JP2017179408A (en) * 2016-03-28 2017-10-05 国立大学法人九州大学 Electrode material for water electrolysis and method for producing the same, and electrode for water electrolysis
US20180062192A1 (en) * 2016-08-25 2018-03-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
JP2018076576A (en) * 2016-11-11 2018-05-17 学校法人 工学院大学 Catalytic electrode for water electrolysis, water electrolysis device, and production method of catalytic electrode for water electrolysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218790B1 (en) 2021-12-24 2023-02-07 トヨタ自動車株式会社 MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
JP2023094924A (en) * 2021-12-24 2023-07-06 トヨタ自動車株式会社 Membrane electrode assembly and manufacturing method for membrane electrode assembly
WO2023243449A1 (en) * 2022-06-14 2023-12-21 Toppanホールディングス株式会社 Laminate for water electrolysis device, membrane electrode assembly for water electrolysis device, and water electrolysis device

Similar Documents

Publication Publication Date Title
EP2792639B1 (en) Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method of preparing carbon-based material
JP6430969B2 (en) Barrier layer in electrochemical device, electrochemical device including the barrier layer, membrane electrode assembly, catalyst coating membrane, gas diffusion electrode, carbon-based gas diffusion layer, and barrier layer, membrane electrode assembly, catalyst coating Use of coatings, gas diffusion electrodes, or gas diffusion layers
JP6125580B2 (en) Three-way platinum alloy catalyst
JP6282321B2 (en) catalyst
JP4629699B2 (en) Supported catalyst and production method thereof, electrode and fuel cell using the same
KR20170095296A (en) Membrane electrode assembly
WO2021084935A1 (en) Catalyst-supporting porous substrate for electrolysis, electrode for electrolysis, gas diffusion layer, stack cell for electrolysis, and cell module for electrolysis
KR20170098298A (en) Porous adhesive network in electrochemical devices
KR101884642B1 (en) Oxygen Electrode For Regenerative Fuel Cell, Regenerative Fuel Cell Including The Same and Method For Preparing The Oxygen Electrode
JP5072652B2 (en) Water electrolysis equipment
JP2010280974A (en) Gas diffusion electrode and method of manufacturing the same
JP2020094282A (en) Electrode for water electrolysis and production method thereof
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
JP6852886B2 (en) Core-shell carrier for electrode material, its manufacturing method, and electrode material
JP2018081740A (en) Carbon powder for fuel cell, catalyst arranged by use thereof, electrode catalyst layer, membrane-electrode assembly and fuel cell
JP5028836B2 (en) Method for producing fuel cell catalyst
KR20240035414A (en) oxygen generation reaction catalyst
JP5123565B2 (en) Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode
JP2009043472A (en) Manufacturing method of membrane electrode assembly
Ioroi et al. PEM-type water electrolysis/fuel cell reversible cell with low PGM catalyst loadings
Takasu et al. A gas-diffusion cathode coated with oxide-catalyst for polymer electrolyte fuel cells using neither platinum catalyst nor carbon catalyst-support
KR20240031601A (en) Anodic electrode, water electrolysis device including the same and method for preparing the same
JP2017160475A (en) Catalyst layer, membrane electrode assembly, electrolytic cell, and method for producing catalyst layer
KR20240035956A (en) oxygen generation reaction catalyst
JP2005267884A (en) Catalyst for fuel cell, manufacturing method of the same, electrode for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240402