JP2017179408A - Electrode material for water electrolysis and method for producing the same, and electrode for water electrolysis - Google Patents

Electrode material for water electrolysis and method for producing the same, and electrode for water electrolysis Download PDF

Info

Publication number
JP2017179408A
JP2017179408A JP2016064542A JP2016064542A JP2017179408A JP 2017179408 A JP2017179408 A JP 2017179408A JP 2016064542 A JP2016064542 A JP 2016064542A JP 2016064542 A JP2016064542 A JP 2016064542A JP 2017179408 A JP2017179408 A JP 2017179408A
Authority
JP
Japan
Prior art keywords
electrode
water electrolysis
oxide
electron conductive
conductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016064542A
Other languages
Japanese (ja)
Other versions
JP6779470B2 (en
Inventor
裕喜 穴井
Yuki Anai
裕喜 穴井
志云 野田
Zhiyun Noda
志云 野田
潤子 松田
Junko Matsuda
潤子 松田
雄也 立川
Yuya Tachikawa
雄也 立川
灯 林
To Hayashi
灯 林
衡平 伊藤
Hidehira Ito
衡平 伊藤
一成 佐々木
Kazunari Sasaki
一成 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2016064542A priority Critical patent/JP6779470B2/en
Publication of JP2017179408A publication Critical patent/JP2017179408A/en
Application granted granted Critical
Publication of JP6779470B2 publication Critical patent/JP6779470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material for water electrolysis that can reduce the amount of use of Ir, is stable even under potential in water electrolysis, and can show sufficient catalytic activity.SOLUTION: An electrode material for water electrolysis comprises a carbon-based conductive aid, an electron conductive oxide carrier carried on the carbon-based conductive aid, and iridium oxide particles that are dispersedly carried on the electron conductive oxide carrier and has an average particle size of 10 nm or less.SELECTED DRAWING: Figure 7

Description

本発明は、固体高分子形水電解セルに好適に用いられる水電解用電極材料及びその製造方法、並びに水電解用電極に関する。   The present invention relates to an electrode material for water electrolysis suitably used for a polymer electrolyte water electrolysis cell, a method for producing the same, and an electrode for water electrolysis.

固体高分子形燃料電池(PEFC)はすでに家庭用として市販されており、燃料電池自動車の市販も開始されている。燃料電池において性能を決める最も重要な部材は電極触媒を含む電極材料である。第一世代の燃料電池自動車にはカーボンブラックの表面に微細な白金系微粒子を担持した材料が使用されるが、カーボン担体は酸化し、担持された白金粒子が脱離して電池性能が劣化してしまうことが課題となっていた。
これまでに本発明者らは、炭素系材料の代わりに酸化スズ担体に貴金属粒子を分散させた電極材料を開発している(特許文献1)。当該電極材料はPEFCのカソードでの運転条件で熱力学的に安定であるため、当該電極材料を用いて製造したカソードは酸化腐食されることなく、燃料電池自動車の寿命に相当する6万回の電位サイクルに耐えることができる。さらに、本発明者らは、特許文献2で開示した燃料電池用電極材料の製造方法において、導電補助材である気相成長炭素繊維を含むカーボンナノチューブ系材料を高導電性パスとして使うことによって、炭素系担体材料と比較して電子を通しにくい導電性酸化物担体の欠点を改善して、電極全体の導電性を向上させ、PEFC用電極として優れた性能を得ることに成功している(特許文献2)。
A polymer electrolyte fuel cell (PEFC) has already been marketed for home use, and a fuel cell vehicle has also started to be marketed. The most important member for determining the performance in a fuel cell is an electrode material containing an electrode catalyst. The first generation fuel cell vehicle uses a material carrying fine platinum-based fine particles on the surface of carbon black. However, the carbon support is oxidized, and the supported platinum particles are detached, resulting in deterioration of battery performance. It became a problem.
So far, the present inventors have developed an electrode material in which noble metal particles are dispersed in a tin oxide support instead of a carbon-based material (Patent Document 1). Since the electrode material is thermodynamically stable under the operating conditions of the PEFC cathode, the cathode manufactured using the electrode material is not subject to oxidative corrosion. Can withstand potential cycles. Furthermore, in the method for producing a fuel cell electrode material disclosed in Patent Document 2, the present inventors use a carbon nanotube-based material including a vapor-grown carbon fiber as a conductive auxiliary material as a highly conductive path. It has succeeded in improving the overall conductivity of the electrode by improving the defects of the conductive oxide carrier that is less likely to pass electrons compared to carbon-based carrier materials, and obtaining excellent performance as a PEFC electrode (patent) Reference 2).

一方、PEFCと同様に固体高分子膜を使用した固体高分子形水電解セル(以下、単に「水電解セル」と記載する場合がある。)が知られている。図1に示すように水電解セルでは、水の電気分解によりアノード側で酸素が発生し、カソード側で水素が発生する。水の電気分解反応には、標準状態(25℃、1気圧)で1.23V以上の電圧が理論的に必要となる。   On the other hand, a solid polymer type water electrolysis cell using a solid polymer membrane as in the case of PEFC (hereinafter sometimes simply referred to as “water electrolysis cell”) is known. As shown in FIG. 1, in the water electrolysis cell, oxygen is generated on the anode side and hydrogen is generated on the cathode side by electrolysis of water. The water electrolysis reaction theoretically requires a voltage of 1.23 V or higher under standard conditions (25 ° C., 1 atm).

水電解セルは燃料電池セル(0.6V〜1.0V程度)よりも更に高い電位下で使用される。水電解セルを特に再生可能エネルギーの貯蔵を目的に利用する際には高い電位(1.5V〜2.0V程度)で電位変動の激しい状況下で用いられるため、水電解セル用電極には、PEFC用電極材料より高電位における高い耐久性が求められる。例えば、PEFC用電極材料で用いられる白金系電極触媒は水電解セルにおける電位条件(1.5V以上)の高電位では触媒活性の低いPt酸化物になったり、溶解して電解質膜に析出したりするため、そのまま水電解セル用電極材料に転用しても長期間の使用はできない。   The water electrolysis cell is used under a higher potential than the fuel cell (about 0.6 V to 1.0 V). When the water electrolysis cell is used particularly for the purpose of storing renewable energy, it is used in a situation where the potential fluctuation is high at a high potential (about 1.5 V to 2.0 V). High durability at a high potential is required compared with the electrode material for PEFC. For example, platinum-based electrocatalysts used in PEFC electrode materials become Pt oxides with low catalytic activity under high potential conditions (1.5 V or higher) in water electrolysis cells, or dissolve and deposit on electrolyte membranes. Therefore, even if diverted as it is to the electrode material for water electrolysis cells, it cannot be used for a long time.

そのため、水電解用電極材料に用いられる電極触媒として、Ptの代わりにより高価なイリジウム(Ir)を酸化物で用いることが多い。酸化イリジウム(IrO2)は、1.5V〜2.0Vの高電位でも安定であり、水電解におけるアノード反応に高い触媒活性を有する。水電解用電極材料の実用化のためには、高価なイリジウム貴金属材料の使用量をできるだけ少なくする必要があるが、現在、一般的に市販・使用されている水電解用の電極触媒は、数ミクロン径の酸化イリジウム(IrO2)粉末をそのまま用いることが多い。 Therefore, iridium (Ir), which is more expensive than Pt, is often used as an oxide as an electrode catalyst used for an electrode material for water electrolysis. Iridium oxide (IrO 2 ) is stable even at a high potential of 1.5 V to 2.0 V, and has a high catalytic activity for the anode reaction in water electrolysis. For practical use of electrode materials for water electrolysis, it is necessary to reduce the amount of expensive iridium noble metal materials used as much as possible, but there are currently several electrocatalysts for water electrolysis that are generally commercially available and used. In many cases, iridium oxide (IrO 2 ) powder having a micron diameter is used as it is.

一方、イリジウムの使用量の低減やイリジウムの代替となる触媒の開発が行われている。例えば、特許文献3には、酸化イリジウムと、無機酸化物とを複合化した水電解用電極材料が開示されており、TiO2、SiO2、Al23等の無機酸化物を触媒の全質量に対して20質量%未満複合化することにより、酸化イリジウムだけの場合よりも高い触媒活性を示すことが開示されている。この電極材料では、電子伝導性を確保するために、無機酸化物の量を20質量%未満に抑えなければならず、無機酸化物との複合化による酸化イリジウム使用量の低減効果は限定的である。
また、特許文献4には、酸素欠陥を設けた金属酸化物触媒を、Sn、Sb、Nb、Ta及びTiから電子伝導性を有する酸化物を含む担体に担持した水電解用電極材料が開示されている。当該電極材料では、非貴金属の金属酸化物を電極触媒としているため、イリジウム等の貴金属を使用するものではないが、触媒活性の面では改善の余地がある。
On the other hand, the reduction of the amount of iridium used and the development of a catalyst that can replace iridium are being carried out. For example, Patent Document 3 discloses an electrode material for water electrolysis in which iridium oxide and an inorganic oxide are combined, and an inorganic oxide such as TiO 2 , SiO 2 , and Al 2 O 3 is used as the catalyst. It is disclosed that, by combining less than 20% by mass with respect to mass, higher catalytic activity is exhibited than in the case of iridium oxide alone. In this electrode material, in order to ensure electronic conductivity, the amount of the inorganic oxide must be suppressed to less than 20% by mass, and the effect of reducing the amount of iridium oxide used by combining with the inorganic oxide is limited. is there.
Patent Document 4 discloses an electrode material for water electrolysis in which a metal oxide catalyst provided with oxygen defects is supported on a carrier containing an oxide having electron conductivity from Sn, Sb, Nb, Ta and Ti. ing. In the electrode material, since a metal oxide of a non-noble metal is used as an electrode catalyst, no noble metal such as iridium is used, but there is room for improvement in terms of catalytic activity.

特許第5322110号公報Japanese Patent No. 5322110 国際公開第2015/141595号パンフレットInternational Publication No. 2015/141595 Pamphlet 国際公開第2006/019128号パンフレットInternational Publication No. 2006/019128 Pamphlet 特開2015−129347号公報Japanese Patent Laying-Open No. 2015-129347

このようにイリジウム等の貴金属使用量をできるだけ少なくし、水電解における高電位(1.5V以上)でも安定であり、十分な触媒活性を示す水電解用電極材料の開発が求められている。
かかる状況下、本発明の目的は、Ir使用量を低減でき、かつ、水電解における電位下でも安定であり、十分な触媒活性を示すことが可能な水電解用電極材料及びその製造方法を提供することである。
Thus, there is a demand for the development of an electrode material for water electrolysis that minimizes the amount of noble metal such as iridium used, is stable even at a high potential (1.5 V or more) in water electrolysis, and exhibits sufficient catalytic activity.
Under such circumstances, an object of the present invention is to provide an electrode material for water electrolysis that can reduce the amount of Ir used, is stable even under potential in water electrolysis, and can exhibit sufficient catalytic activity, and a method for producing the same. It is to be.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the following inventions meet the above object, and have reached the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1> 炭素系導電補助材と、前記炭素系導電補助材に担持された電子伝導性酸化物と、前記電子伝導性酸化物に分散担持された、平均粒子径10nm以下の酸化イリジウム粒子とを含む水電解用電極材料。
<2> 炭素系導電補助材が、表面がグラファイト構造である繊維状炭素からなる導電補助材である<1>に記載の水電解用電極材料。
<3> 電子伝導性酸化物担体が、酸化スズを主体とする電子伝導性酸化物からなる<1>または<2>に記載の水電解用電極材料。
<4> 以下の工程を有する水電解用電極材料の製造方法。
(1)表面がグラファイト構造である繊維状炭素からなる導電補助材に、電子伝導性酸化物を担持する工程
(2)電子伝導性酸化物担体を担持した前記導電補助材を、酸化イリジウム前駆体を含む溶液に浸漬し、前記電子伝導性酸化物担体の表面上に酸化イリジウム前駆体を担持する工程
(3)電子伝導性酸化物担体に担持された酸化イリジウム前駆体を、酸化雰囲気下、300℃以上500℃以下で熱処理し、酸化イリジウムに変換する工程
<5> 工程(2)における担持が、蒸発乾固法による<4>に記載の水電解用電極材料の製造方法。
<6> 電子伝導性酸化物担体が、酸化スズを主体とする電子伝導性酸化物からなる<4>または<5>に記載の水電解用電極材料の製造方法。
<7> <1>から<3>のいずれかに記載の水電解用電極材料とプロトン伝導性電解質材料とを含む水電解用電極。
That is, the present invention relates to the following inventions.
<1> A carbon-based conductive auxiliary material, an electron conductive oxide supported on the carbon-based conductive auxiliary material, and iridium oxide particles dispersed and supported on the electron conductive oxide and having an average particle diameter of 10 nm or less. Contains electrode material for water electrolysis.
<2> The electrode material for water electrolysis according to <1>, wherein the carbon-based conductive auxiliary material is a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface.
<3> The electrode material for water electrolysis according to <1> or <2>, wherein the electron conductive oxide carrier is composed of an electron conductive oxide mainly composed of tin oxide.
<4> A method for producing an electrode material for water electrolysis having the following steps.
(1) A step of supporting an electron conductive oxide on a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface. (2) The conductive auxiliary material supporting an electron conductive oxide carrier is converted into an iridium oxide precursor. (3) The step of supporting the iridium oxide precursor on the surface of the electron conductive oxide carrier is carried out in an oxidizing atmosphere under a oxidative atmosphere. A process of heat-treating at a temperature of from ℃ to 500 ℃ and converting to iridium oxide <5> The method for producing an electrode material for water electrolysis according to <4>, wherein the supporting in the step (2) is performed by evaporation to dryness.
<6> The method for producing an electrode material for water electrolysis according to <4> or <5>, wherein the electron conductive oxide carrier is composed of an electron conductive oxide mainly composed of tin oxide.
<7> An electrode for water electrolysis comprising the electrode material for water electrolysis according to any one of <1> to <3> and a proton conductive electrolyte material.

<1a> 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、前記アノードが、上記<7>に記載の水電解用電極である膜電極接合体。
<2a> <1a>に記載の膜電極接合体を備えてなることを特徴とする固体高分子形水電解セル。
<1a> A membrane / electrode assembly including a solid polymer electrolyte membrane, a cathode bonded to one surface of the solid polymer electrolyte membrane, and an anode bonded to the other surface of the solid polymer electrolyte membrane. A membrane electrode assembly, wherein the anode is the electrode for water electrolysis according to <7>.
<2a> A polymer electrolyte water electrolysis cell comprising the membrane electrode assembly according to <1a>.

本発明によれば、酸化イリジウム微粒子が電子伝導性酸化物の上に高分散担持されて、水電解における電位下でも安定であり、十分な触媒活性を示すことが可能な水電解用電極材料が提供される。   According to the present invention, there is provided an electrode material for water electrolysis in which iridium oxide fine particles are highly dispersed and supported on an electron conductive oxide, are stable even under potential in water electrolysis, and can exhibit sufficient catalytic activity. Provided.

固体高分子形水電解セルの代表的な構成を示す概念図である。It is a conceptual diagram which shows the typical structure of a solid polymer type water electrolysis cell. 本発明の水電解用電極材料の模式図である。It is a schematic diagram of the electrode material for water electrolysis of the present invention. 本発明の膜電極接合体の断面模式図である。It is a cross-sectional schematic diagram of the membrane electrode assembly of this invention. 実施例1の電極材料のXRDプロファイルである。2 is an XRD profile of an electrode material of Example 1. FIG. 参考例1の電極材料のXRDプロファイルである。3 is an XRD profile of an electrode material of Reference Example 1. 電極材料のFE−SEM像であり、(a)は実施例1、(b)は参考例1の電極材料である。It is a FE-SEM image of an electrode material, (a) is Example 1 and (b) is the electrode material of Reference Example 1. 実施例1の電極材料のSTEM像及びEDSマッピングである。It is a STEM image and EDS mapping of the electrode material of Example 1. 実施例1の電極材料のSTEM像(高倍率)である。2 is a STEM image (high magnification) of the electrode material of Example 1. 参考例1の電極材料のSTEM像及びEDSマッピングである。It is a STEM image and EDS mapping of the electrode material of the reference example 1. XPSによる電極材料のIr(4f)スペクトルであり、(a)は実施例1、(b)は参考例1の電極材料である。It is an Ir (4f) spectrum of the electrode material by XPS, (a) is Example 1 and (b) is the electrode material of Reference Example 1. 比較例1の電極のFE−SEM像である。3 is an FE-SEM image of an electrode of Comparative Example 1. 実施例1、及び比較例1の水電解用電極のクロノアンペロメトリー(CA)による評価結果である。It is an evaluation result by the chronoamperometry (CA) of the electrode for water electrolysis of Example 1 and Comparative Example 1.

以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「〜」とはその前後の数値又は物理量を含む表現として用いるものとする。   Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In the present specification, “to” is used as an expression including numerical values or physical quantities before and after.

<1.水電解用電極材料>
本発明は、炭素系導電補助材と、前記炭素系導電補助材に担持された電子伝導性酸化物と、前記電子伝導性酸化物に分散担持された、平均粒子径10nm以下の酸化イリジウム粒子とを含む水電解用電極材料(以下、「本発明の電極材料」と記載する場合がある。)に関する。
<1. Electrode material for water electrolysis>
The present invention includes a carbon-based conductive auxiliary material, an electron conductive oxide supported on the carbon-based conductive auxiliary material, and iridium oxide particles having an average particle diameter of 10 nm or less dispersed and supported on the electron conductive oxide. The present invention relates to an electrode material for water electrolysis (hereinafter sometimes referred to as “electrode material of the present invention”).

本発明の電極材料では、電子伝導性酸化物に担持された電極触媒粒子(酸化イリジウム微粒子)は炭素系材料である導電補助材とほとんど接触しないため、従来の炭素系担体に電極触媒粒子を担持した際に生じる電気化学的酸化による炭素系担体の腐食に起因する電極性能の低下を回避できる。そして、本発明の電極材料を構成する導電補助材は相互接触性がよく、優れた電子伝導性を有する炭素系導電補助材であるため、当該電極材料を用いて、燃料電池用電極を構成した際に、前記導電補助材が互いに接触して低抵抗の導電パスが形成され、電子伝導性に優れた電極となる。
このように、本発明の電極材料は、電子伝導性酸化物に起因する電気化学的酸化への優れた耐久性と、炭素系導電補助材に起因する優れた電子伝導性を併せ持つ。そのため、当該電極材料で形成された水電解用電極は、優れた電極性能を示すと共に、耐久性が高く、水電解反応を長期間継続することができる。
In the electrode material of the present invention, the electrode catalyst particles (iridium oxide fine particles) supported on the electron conductive oxide hardly contact the conductive auxiliary material which is a carbon-based material, so that the conventional carbon-based support supports the electrode catalyst particles. It is possible to avoid a decrease in electrode performance due to the corrosion of the carbon-based support due to the electrochemical oxidation that occurs at the time. Since the conductive auxiliary material constituting the electrode material of the present invention is a carbon-based conductive auxiliary material having good mutual contact and excellent electronic conductivity, the electrode for the fuel cell is constituted using the electrode material. At this time, the conductive auxiliary materials come into contact with each other to form a low-resistance conductive path, and an electrode having excellent electron conductivity is obtained.
Thus, the electrode material of the present invention has both excellent durability to electrochemical oxidation caused by the electron conductive oxide and excellent electron conductivity caused by the carbon-based conductive auxiliary material. Therefore, the electrode for water electrolysis formed of the electrode material exhibits excellent electrode performance, has high durability, and can continue the water electrolysis reaction for a long period of time.

また、本願発明の水電解用電極材料では、電極の骨格としての役割を、炭素系導電補助材が担うため、電極触媒粒子(酸化イリジウム微粒子)が担持される電子伝導性酸化物担体の粒径(薄膜の場合は厚み)を小さくすることができる。そのため、本願発明の水電解用電極材料を用いて形成した水電解用電極では、電子伝導性酸化物に起因する電気抵抗を低減できる。   Moreover, in the electrode material for water electrolysis of the present invention, since the carbon-based conductive auxiliary material plays a role as the skeleton of the electrode, the particle size of the electron conductive oxide carrier on which the electrode catalyst particles (iridium oxide fine particles) are supported. (Thickness in the case of a thin film) can be reduced. Therefore, in the electrode for water electrolysis formed using the electrode material for water electrolysis of the present invention, the electric resistance due to the electron conductive oxide can be reduced.

また、電子伝導性酸化物に起因する電気抵抗を低減できるため、耐久性が高いが電子伝導性に乏しく、従来の水電解用電極材料では実用が困難であった電子伝導性酸化物(例えば、酸化チタン等)についても、本発明の電極材料として使用できる。   In addition, since the electrical resistance due to the electron conductive oxide can be reduced, the electron conductive oxide (for example, having a high durability but poor electron conductivity and difficult to be practically used in the conventional electrode material for water electrolysis (for example, Titanium oxide etc. can also be used as the electrode material of the present invention.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図2は本発明の電極材料の代表的な構成を示す模式図である。図1に示すように、本発明に係る水電解用電極材料1は、(炭素系)導電補助材2と、導電補助材2に担持された粒子状の電子伝導性酸化物3aと、電子伝導性酸化物3aに分散担持された電極触媒粒子3bによって構成される。   FIG. 2 is a schematic diagram showing a typical configuration of the electrode material of the present invention. As shown in FIG. 1, the electrode material 1 for water electrolysis according to the present invention includes a (carbon-based) conductive auxiliary material 2, particulate electron conductive oxide 3 a supported on the conductive auxiliary material 2, and electron conduction. The electrode catalyst particles 3b are dispersed and supported on the conductive oxide 3a.

導電補助材2は、好適には表面がグラファイト構造である繊維状炭素からなる炭素系導電補助材である。なお、本明細書において、「導電補助材」とは、水電解用電極材料に含まれ、水電解用電極を形成した際に電子伝導性を向上させる役割を有するものを意味する。導電補助材2は、炭素系材料由来の優れた電子伝導性を有し、電子伝導性酸化物3aを担持できる。水電解用電極材料1は、このような導電補助材2を用いているため、水電解用電極を形成した際に、隣接する導電補助材2が連続的に接触でき、かつ水電解用電極内の水素や酸素などのガス拡散及び水(蒸気)の排出がスムーズに行える程度の空間を形成できる。   The conductive auxiliary material 2 is a carbon-based conductive auxiliary material preferably made of fibrous carbon whose surface has a graphite structure. In the present specification, the “conductive auxiliary material” means a material that is included in the electrode material for water electrolysis and has a role of improving electron conductivity when the electrode for water electrolysis is formed. The conductive auxiliary material 2 has excellent electron conductivity derived from the carbon-based material, and can carry the electron conductive oxide 3a. Since the water electrolysis electrode material 1 uses such a conductive auxiliary material 2, when the water electrolysis electrode is formed, the adjacent conductive auxiliary material 2 can be continuously contacted, and the water electrolysis electrode inside A space capable of smoothly diffusing gas such as hydrogen and oxygen and discharging water (steam) can be formed.

炭素系導電補助材として、表面がグラファイト構造である繊維状炭素は相互接触性がよく、電子伝導性に優れるため、水電解用電極材料1を用いて水電解用電極を形成した際に導電パスが形成される   As a carbon-based conductive auxiliary material, fibrous carbon whose surface has a graphite structure has good mutual contact and excellent electronic conductivity. Therefore, when a water electrolysis electrode is formed using the water electrolysis electrode material 1, a conductive path is formed. Formed

繊維状炭素は、中空状あるいは繊維状の炭素材料であり、具体的にはカーボンナノチューブ(CNT)やカーボンナノファイバーが挙げられる。なお、本発明において、「カーボンナノチューブ」とは、単層CNT、2層CNT、複層CNT及びこれらの混合物を含む。   Fibrous carbon is a hollow or fibrous carbon material, and specifically includes carbon nanotubes (CNT) and carbon nanofibers. In the present invention, “carbon nanotube” includes single-walled CNT, double-walled CNT, multi-walled CNT, and a mixture thereof.

ここで、水電解用電極を形成した際の電極内の電気伝導性とガス拡散性を両立させるためには、繊維状炭素は直径2nm〜10μm、全長0.03〜500μmであることが好適である。
なお、中空状あるいは繊維状の炭素材料のうち、カーボンナノチューブに代表されるように、直径が100nm以下のもの、または、気相成長炭素繊維(Vaper Grown Carbon Fiber,VGCF)のような直径が100〜1000nm程度のもの、炭素繊維のような直径が1μm〜20μmのものを指すことが多いが、これらの炭素材料の長さと呼称についての明確な規定はないため、本明細書内ではこれらを合わせて繊維状炭素と称する。
Here, in order to achieve both electrical conductivity and gas diffusibility in the electrode when the electrode for water electrolysis is formed, the fibrous carbon preferably has a diameter of 2 nm to 10 μm and a total length of 0.03 to 500 μm. is there.
Of the hollow or fibrous carbon materials, as represented by carbon nanotubes, the diameter is 100 nm or less, or the diameter is 100 such as vapor grown carbon fiber (VGCF). The diameter of the carbon material is about 1 to 20 μm, and there is no clear definition about the length and the name of these carbon materials. This is called fibrous carbon.

また、表面がグラファイト構造である繊維状炭素であれば、化学的に安定で、表面積も小さいために電極触媒粒子が担持されにくく、大部分の電極触媒粒子が電子伝導性酸化物に選択的に担持される。そのため、全ての電極触媒粒子のうち、繊維状炭素と直接的に接触する電極触媒粒子の割合が小さくなり、水電解用電極として使用する際に繊維状炭素が電気化学的酸化腐食することが抑制される。表面がグラファイト構造である繊維状炭素としては、カーボンナノチューブ(単層CNT、2層CNT、複層CNTの何れも含む)、気相成長炭素繊維(VGCF)が挙げられ、高結晶性、高純度のものが好ましい。   In addition, if the surface is fibrous carbon having a graphite structure, it is chemically stable and the surface area is small, so that the electrode catalyst particles are difficult to be supported, and most of the electrode catalyst particles are selectively transferred to the electron conductive oxide. Supported. Therefore, the ratio of the electrode catalyst particles that are in direct contact with the fibrous carbon out of all the electrode catalyst particles is reduced, and the electrochemical oxidation corrosion of the fibrous carbon is suppressed when used as an electrode for water electrolysis. Is done. Examples of the fibrous carbon having a graphite structure on the surface include carbon nanotubes (including both single-walled CNTs, double-walled CNTs, and multi-walled CNTs) and vapor grown carbon fibers (VGCF). High crystallinity and high purity Are preferred.

(電子伝導性酸化物)
電子伝導性酸化物3aを構成する電子伝導性酸化物としては、固体高分子形水分解セルのアノード条件で十分な耐久性と電子伝導性を併せ持つものであればよい。
なお、アノード条件とは、固体高分子形水分解セルの通常運転時のアノードにおける条件であり、温度が室温〜150℃、水素を含む燃料ガスが供給される条件(還元雰囲気)であって、アノード-カソード間の電圧が1.5V以上2.0V以下を意味する。
(Electron conductive oxide)
As the electron conductive oxide constituting the electron conductive oxide 3a, any electron conductive oxide may be used as long as it has sufficient durability and electron conductivity under the anode conditions of the solid polymer water splitting cell.
The anode conditions are the conditions in the anode during normal operation of the solid polymer water splitting cell, the temperature is room temperature to 150 ° C., and the fuel gas containing hydrogen is supplied (reducing atmosphere), The voltage between the anode and the cathode means 1.5V or more and 2.0V or less.

電子伝導性酸化物として具体的には、酸化スズ、酸化モリブデン、酸化ニオブ、酸化タンタル、酸化チタン及び酸化タングステンから選択される1種を主体とする電子伝導性酸化物が挙げられる。ここで、本発明において「主体とする電子伝導性酸化物」とは、(A)母体酸化物のみからなるもの、及び(B)他元素をドープされた酸化物であって、母体酸化物が50mol%以上含まれるもの、を意味する。   Specific examples of the electron conductive oxide include an electron conductive oxide mainly composed of one selected from tin oxide, molybdenum oxide, niobium oxide, tantalum oxide, titanium oxide, and tungsten oxide. Here, in the present invention, the “mainly electron-conducting oxide” means (A) an oxide composed only of a base oxide and (B) an oxide doped with other elements, wherein the base oxide is It means that contained at 50 mol% or more.

ドープされる元素として、具体的には、Sn,Ti,Sb,Nb,Ta,W,Co,V,Cr,Mn,Moなどが挙げられる(但し、母体酸化物と異なる元素である。)。ドープされる元素は、母体酸化物より価数が高い元素であり、例えば、母体酸化物が酸化チタンの場合で例示すると、上記ドープ種元素のうち、Ti以外の元素(例えば、Nb)が選択される。   Specific examples of the element to be doped include Sn, Ti, Sb, Nb, Ta, W, Co, V, Cr, Mn, and Mo (however, they are elements different from the base oxide). The element to be doped is an element having a higher valence than the base oxide. For example, when the base oxide is titanium oxide, an element other than Ti (for example, Nb) is selected from the above doped seed elements. Is done.

この中でも、電子伝導性酸化物3aが、酸化スズを主体とする酸化物であることが好ましい。ここで、「主体とする酸化物」とは、対象となる酸化物を50mol%以上含む酸化物をいう。   Among these, the electron conductive oxide 3a is preferably an oxide mainly composed of tin oxide. Here, the “main oxide” refers to an oxide containing 50 mol% or more of the target oxide.

また、電子伝導性酸化物3aとして、SrTiO3等高い導電率を有する電子伝導性酸化物をコアとし、その表面に水電解セルのアノード条件での優れた耐久性を有する酸化物(TiO2等)からなるスキン層(層厚:数原子層〜数十原子層)で被覆したコアシェル構造を有する担体を使用することもできる。 Further, as the electron conductive oxide 3a, an electron conductive oxide having high conductivity such as SrTiO 3 is used as a core, and an oxide having excellent durability under the anode conditions of the water electrolysis cell (TiO 2 or the like) is formed on the surface thereof. It is also possible to use a carrier having a core-shell structure covered with a skin layer (layer thickness: several atomic layers to several tens of atomic layers).

本発明の水電解用電極材料1において、水電解用電極の骨格としての役割は導電補助材2が担うことから、電子伝導性が炭素系材料と比較して小さい電子伝導性酸化物3aは、電極触媒粒子3bが分散担持することができる範囲内で、粒径が小さい方が好ましい。電子伝導性酸化物3aは、一次粒子、二次粒子のいずれでもよい。但し、電子伝導性酸化物3aが一次粒子であることが好ましい。これは、電子伝導性酸化物3aが二次粒子の場合には二次粒子を構成する一次粒子間の粒界抵抗により電気抵抗が大きくなるためである。
電子伝導性酸化物3aは、好適には平均粒径1〜200nmの粒子状電子伝導性酸化物であり、より好適には実質的に一次粒子となる平均粒径1〜40nmの粒子状電子伝導性酸化物である。そして、水電解用電極材料1の導電性の観点からは、粒子状の電子伝導性酸化物3aが密集せずに、導電補助材2の一部が露出され、導電補助材2と他の導電補助材2との直接的な接触を阻害しない程度に電子伝導性酸化物3aが分散して担持されていることが好ましい。
In the electrode material 1 for water electrolysis of the present invention, since the conductive auxiliary material 2 plays a role as a skeleton of the electrode for water electrolysis, the electron conductive oxide 3a having a smaller electron conductivity than the carbon-based material is A smaller particle size is preferable as long as the electrode catalyst particles 3b can be dispersedly supported. The electron conductive oxide 3a may be either primary particles or secondary particles. However, the electron conductive oxide 3a is preferably primary particles. This is because when the electron conductive oxide 3a is a secondary particle, the electric resistance is increased due to the grain boundary resistance between the primary particles constituting the secondary particle.
The electron conductive oxide 3a is preferably a particulate electron conductive oxide having an average particle diameter of 1 to 200 nm, and more preferably a particulate electron conduction having an average particle diameter of 1 to 40 nm which is substantially a primary particle. Oxide. From the viewpoint of conductivity of the electrode material 1 for water electrolysis, part of the conductive auxiliary material 2 is exposed without the particulate electron conductive oxide 3a being densely packed, and the conductive auxiliary material 2 and other conductive materials are exposed. It is preferable that the electron conductive oxide 3a is dispersed and supported to such an extent that direct contact with the auxiliary material 2 is not hindered.

すなわち、本発明の水電解用電極材料における電子伝導性酸化物の好適な態様の一つは、前記導電補助材2の表面の一部が露出するように、粒子状電子伝導性酸化物が前記導電補助材2に担持されている態様である。導電補助材の露出部分は、当該露出部分のそれぞれが互いに接触できる程度であればよい。そして、粒子状電子伝導性酸化物の平均粒径が、1〜200nmが好適であり、平均粒径1〜40nmがより好適である。
なお、「粒子状電子伝導性酸化物の平均粒径」は、電子顕微鏡像より調べられる任意の粒子状電子伝導性酸化物(20個)の粒子径の平均値により得ることができる。
That is, one of the preferred embodiments of the electron conductive oxide in the electrode material for water electrolysis of the present invention is that the particulate electron conductive oxide is such that a part of the surface of the conductive auxiliary material 2 is exposed. In this embodiment, the conductive auxiliary material 2 is supported. The exposed portion of the conductive auxiliary material only needs to be in such a degree that the exposed portions can contact each other. The average particle size of the particulate electron conductive oxide is preferably 1 to 200 nm, and more preferably 1 to 40 nm.
The “average particle diameter of the particulate electron conductive oxide” can be obtained from the average value of the particle diameters of any particulate electron conductive oxide (20 particles) examined from an electron microscope image.

なお、図2では、電子伝導性酸化物3aは、導電補助材2に分散担持された粒子状電子伝導性酸化物であるがこれに限定されず、電子伝導性酸化物3aは導電補助材2に担持されていればよい。例えば、導電補助材2を薄膜状の電子伝導性酸化物が被覆する形態であってもよい。薄膜状電子伝導性酸化物は、例えば、蒸着などの乾式法で導電補助材に対し、電子伝導性酸化物を被覆することで形成できる。
水電解用電極材料1の導電性の観点からは、薄膜状電子伝導性酸化物の膜厚は、形成できる範囲でできるだけ薄い方が好ましい。すなわち、本発明の水電解用電極材料における電子伝導性酸化物の好適な態様の一つは、電子伝導性酸化物が平均膜厚1〜50nmの薄膜状電子伝導性酸化物であって、当該薄膜状電子伝導性酸化物の一部又は全部が前記導電補助材を被覆するように担持されてなる態様である。電子伝導性酸化物が平均膜厚1〜50nmであれば、電子伝導性酸化物に起因する電気抵抗が実質的に問題にならないため、導電補助材の露出部分が互いに接触する必要がない。なお、「薄膜状電子伝導性酸化物の平均膜厚」は、薄膜状電子伝導性酸化物の厚み方向の断面電子顕微鏡像より調べられる任意位置の厚み(5点)の平均値により得ることができる。
In FIG. 2, the electron conductive oxide 3 a is a particulate electron conductive oxide dispersedly supported on the conductive auxiliary material 2, but is not limited thereto, and the electron conductive oxide 3 a is the conductive auxiliary material 2. As long as it is supported on the surface. For example, the conductive auxiliary material 2 may be covered with a thin-film electron conductive oxide. The thin film electron conductive oxide can be formed, for example, by coating the conductive auxiliary material with the electron conductive oxide by a dry method such as vapor deposition.
From the viewpoint of the conductivity of the electrode material 1 for water electrolysis, the film thickness of the thin-film electron conductive oxide is preferably as thin as possible within the range that can be formed. That is, one of the preferred embodiments of the electron conductive oxide in the electrode material for water electrolysis of the present invention is a thin film electron conductive oxide having an average film thickness of 1 to 50 nm. In this embodiment, a part or all of the thin-film electron conductive oxide is supported so as to cover the conductive auxiliary material. If the electron conductive oxide has an average film thickness of 1 to 50 nm, the electrical resistance due to the electron conductive oxide is not substantially a problem, and therefore, the exposed portions of the conductive auxiliary material do not need to contact each other. The “average film thickness of the thin-film electron conductive oxide” can be obtained from the average value of the thicknesses (5 points) at arbitrary positions examined from the cross-sectional electron microscope image in the thickness direction of the thin-film electron conductive oxide. it can.

電子伝導性酸化物は、電極触媒の担持量を高めるために、機械的強度が保てる範囲で、表面積が大きい方が好ましい。   The electron conductive oxide preferably has a large surface area as long as the mechanical strength can be maintained in order to increase the amount of the electrode catalyst supported.

また、電子伝導性酸化物の担持量は、粒径(薄膜状の場合は膜厚)や表面積等の電子伝導性酸化物の物性、電子伝導性酸化物の製造方法によっても最適値がかわるため、十分な量の電極触媒粒子が担持できる範囲で適宜決定される。
酸化スズの場合を例示すると、導電補助材と電子伝導性酸化物の合計を100重量%としたときに、通常、5〜95重量%であり、好ましくは45〜95重量%である。電子伝導性酸化物の担持量が少なすぎると、水電解用電極材料として十分な量の電極触媒粒子が担持できなくなる。電子伝導性酸化物の担持量が多すぎると電子伝導性酸化物の粒径(薄膜状の場合は膜厚)が大きくなりすぎて水電解用電極材料の電気抵抗が高くなる場合がある。
In addition, the amount of the electron-conductive oxide supported varies depending on the physical properties of the electron-conductive oxide such as the particle size (film thickness in the case of a thin film) and surface area, and the manufacturing method of the electron-conductive oxide. It is determined as appropriate as long as a sufficient amount of electrode catalyst particles can be supported.
In the case of tin oxide, it is usually 5 to 95% by weight, preferably 45 to 95% by weight when the total of the conductive auxiliary material and the electron conductive oxide is 100% by weight. If the amount of the electron-conductive oxide supported is too small, a sufficient amount of electrode catalyst particles as an electrode material for water electrolysis cannot be supported. If the amount of the electron conductive oxide supported is too large, the particle size (or film thickness in the case of a thin film) of the electron conductive oxide becomes too large, and the electric resistance of the electrode material for water electrolysis may be increased.

ここで、電子伝導性酸化物が、酸化スズを主体とする酸化物である場合には、本発明の水電解用電極をアノードとして使用することが好ましい。
元素としてスズ(Sn)は、水電解セルのアノード条件で、酸化物であるSnO2が熱力学的に安定であり酸化分解が起こらない。また、酸化スズは、十分な電子伝導性を有し、電極触媒粒子(IrO2微粒子)を高分散で担持が可能な担体となる。
Here, when the electron conductive oxide is an oxide mainly composed of tin oxide, the electrode for water electrolysis of the present invention is preferably used as the anode.
As an element, tin (Sn) is an oxide of SnO 2 which is thermodynamically stable and does not undergo oxidative decomposition under the anode conditions of the water electrolysis cell. In addition, tin oxide has sufficient electron conductivity and becomes a carrier capable of supporting electrode catalyst particles (IrO 2 fine particles) with high dispersion.

酸化スズを主体とする酸化物の中でも、より優れた電極性能を有する水電解用電極が形成できる点で、ニオブ(Nb)を0.1〜20mol%ドープしたニオブドープ酸化スズが特に好ましい。   Among oxides mainly composed of tin oxide, niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium (Nb) is particularly preferable in that an electrode for water electrolysis having better electrode performance can be formed.

(電極触媒粒子)
電極触媒粒子3bは、酸化イリジウムからなり、電子伝導性酸化物3aに分散担持されている。電極触媒粒子3bは、電子伝導性酸化物に選択的に分散担持されていることが好ましい。ここで「電子伝導性酸化物に選択的に分散担持」とは、全ての電極触媒粒子(個数)のうち、80%以上、好適には90%以上、より好適には95%以上(100%を含む)が、電子伝導性酸化物に担持されていることを意味する。電子伝導性酸化物に担持された電極触媒粒子の割合は、評価対象となる水電解用電極材料を電磁顕微鏡で観察した任意の電極触媒粒子(100個以上)を選出し、そのうち、電子伝導性酸化物に担持された個数と、炭素系導電補助材に担持された個数とをカウントすることにより、評価することができる。
(Electrocatalyst particles)
The electrode catalyst particles 3b are made of iridium oxide and are dispersed and supported on the electron conductive oxide 3a. The electrode catalyst particles 3b are preferably selectively dispersed and supported on the electron conductive oxide. Here, “selectively dispersed and supported on the electron conductive oxide” means 80% or more, preferably 90% or more, more preferably 95% or more (100%) of all the electrode catalyst particles (number). Means that it is supported on an electron conductive oxide. The ratio of the electrocatalyst particles supported on the electron conductive oxide was determined by selecting any electrocatalyst particles (100 or more) obtained by observing the electrode material for water electrolysis to be evaluated with an electromagnetic microscope. Evaluation can be made by counting the number carried on the oxide and the number carried on the carbon-based conductive auxiliary material.

電極触媒粒子3bを構成する酸化イリジウムは、水の電気分解反応(H2O→2H++1/2O2+2e-)に対する優れた電気化学的触媒活性を有する。なお、電極触媒粒子3bは、その性能を損なわない範囲でIr以外の他の金属元素を含んでいてもよい。また、金属Ir粒子の表面を酸化して表面層が酸化イリジウム層である粒子でもよい。 The iridium oxide constituting the electrode catalyst particles 3b has an excellent electrochemical catalytic activity for water electrolysis (H 2 O → 2H + + 1 / 2O 2 + 2e ). The electrode catalyst particles 3b may contain a metal element other than Ir as long as the performance is not impaired. Alternatively, the surface of the metal Ir particle may be oxidized and the surface layer may be an iridium oxide layer.

電極触媒粒子3bの形状は、特に制限されず公知の電極触媒粒子と同様の形状のものが使用できる。具体的な形状として球形、楕円形、多面体、コアシェル構造等が挙げられる。また、電極触媒粒子3bの構造は、結晶に限定されず、非晶質であってよく、結晶と非晶質の混合体であってもよい。   The shape of the electrode catalyst particles 3b is not particularly limited, and those having the same shape as known electrode catalyst particles can be used. Specific examples include a spherical shape, an elliptical shape, a polyhedron, and a core-shell structure. The structure of the electrode catalyst particles 3b is not limited to crystals, and may be amorphous or a mixture of crystals and amorphous.

電極触媒粒子3bの大きさは、小さいほど電気化学反応が進行する有効表面積が増加するため、電気化学的触媒活性が高くなる傾向がある。しかし、その大きさが小さすぎると、電気化学的反応活性が低下する。従って、電極触媒粒子3bの大きさは、平均粒子径として10nm以下であり、好ましくは0.5nm〜5nmである。
なお、本発明における「電極触媒粒子の平均粒径」は、電子顕微鏡像より調べられる電極触媒粒子(20個)の粒子径の平均値により得ることができる。電子顕微鏡像による平均粒径算出時は、微粒子の形状が、球形以外の場合は、粒子における最大長を示す方向の長さをその粒径とする。
As the size of the electrode catalyst particle 3b is smaller, the effective surface area through which the electrochemical reaction proceeds increases, and therefore the electrochemical catalyst activity tends to increase. However, if the size is too small, the electrochemical reaction activity decreases. Therefore, the size of the electrode catalyst particles 3b is 10 nm or less, preferably 0.5 nm to 5 nm, as an average particle diameter.
The “average particle diameter of the electrode catalyst particles” in the present invention can be obtained from the average value of the particle diameters of the electrode catalyst particles (20 particles) examined from an electron microscope image. When calculating the average particle diameter based on the electron microscope image, if the shape of the fine particles is other than a spherical shape, the length in the direction indicating the maximum length of the particles is taken as the particle diameter.

電極触媒粒子の担持量は、触媒の種類、担体である電子伝導性酸化物の大きさ(厚み)等の条件を考慮して適宜決定される。触媒担持量が少なすぎると電極性能が不十分となり、多すぎると電極触媒粒子が凝集して性能が低下する場合がある。   The amount of the electrode catalyst particles supported is appropriately determined in consideration of conditions such as the type of catalyst and the size (thickness) of the electron conductive oxide as a carrier. If the amount of the catalyst supported is too small, the electrode performance becomes insufficient, and if it is too large, the electrode catalyst particles may aggregate to deteriorate the performance.

電極触媒粒子の担持量は、水電解用電極材料の全重量に対して、好ましくは1〜60質量%、より好ましくは10〜50質量%とすると、単位質量あたりの触媒活性に優れ、担持量に応じた所望の電極反応活性を得ることができる。
電極材料単位重量当たりの電極触媒粒子の担持量を増やすことによって、電極における電極触媒層の厚みを低減することができるため、電極全体としての水素や酸素などのガス拡散性や及び水(蒸気)の拡散性が向上する。
The supported amount of the electrode catalyst particles is preferably 1 to 60% by mass, more preferably 10 to 50% by mass with respect to the total weight of the electrode material for water electrolysis, and the supported amount is excellent per unit mass. It is possible to obtain a desired electrode reaction activity according to the above.
By increasing the amount of electrode catalyst particles supported per unit weight of the electrode material, the thickness of the electrode catalyst layer in the electrode can be reduced. Therefore, gas diffusibility such as hydrogen and oxygen as a whole electrode and water (steam) Improves diffusibility.

また、電極触媒粒子の担持量は、電子伝導性酸化物に対して、好ましくは10〜50質量%である。このような範囲であれば、単位質量あたりの触媒活性に優れ、担持量に応じた所望の電気化学的触媒活性を得ることができる。前記担持量が少なすぎる場合は、電極反応活性が不十分であり、多すぎる場合は電極触媒粒子の凝集が起こりやすく、有効表面積が低下するという問題がある。なお、電極触媒粒子の担持量は、例えば、誘導結合プラズマ発光分析(ICP)によって調べることができる。   The supported amount of the electrode catalyst particles is preferably 10 to 50% by mass with respect to the electron conductive oxide. If it is such a range, it will be excellent in the catalyst activity per unit mass, and can obtain the desired electrochemical catalyst activity according to the load. When the supported amount is too small, the electrode reaction activity is insufficient, and when it is too large, the electrode catalyst particles are likely to aggregate and the effective surface area is reduced. Note that the amount of electrode catalyst particles supported can be examined by, for example, inductively coupled plasma emission spectrometry (ICP).

<2.水電解用電極材料の製造方法>
上述した本発明の水電解用電極材料は、以下に説明する製造方法(以下、「本発明の製造方法」と称す。)によって好適に製造することができる。
すなわち、本発明の水電解用電極材料の製造方法は、以下の工程を含む。
(1)表面がグラファイト構造である繊維状炭素からなる導電補助材に、電子伝導性酸化物を担持する工程
(2)電子伝導性酸化物担体を担持した前記導電補助材を、酸化イリジウム前駆体を含む溶液に浸漬し、前記電子伝導性酸化物担体の表面上に酸化イリジウム前駆体を担持する工程
(3)電子伝導性酸化物担体に担持された酸化イリジウム前駆体を、酸化雰囲気下、300℃以上500℃以下で熱処理し、酸化イリジウムに変換する工程
<2. Manufacturing method of electrode material for water electrolysis>
The electrode material for water electrolysis of the present invention described above can be suitably manufactured by the manufacturing method described below (hereinafter referred to as “the manufacturing method of the present invention”).
That is, the manufacturing method of the electrode material for water electrolysis of the present invention includes the following steps.
(1) A step of supporting an electron conductive oxide on a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface. (2) The conductive auxiliary material supporting an electron conductive oxide carrier is converted into an iridium oxide precursor. (3) The step of supporting the iridium oxide precursor on the surface of the electron conductive oxide carrier is carried out in an oxidizing atmosphere under a oxidative atmosphere. Heat treatment at a temperature of from ℃ to 500 ℃ to convert to iridium oxide

以下、本発明の製造方法における各工程を詳細に説明する。   Hereafter, each process in the manufacturing method of this invention is demonstrated in detail.

「工程(1)」
工程(1)は、表面がグラファイト構造である繊維状炭素からなる導電補助材に、電子伝導性酸化物を担持する工程である。
導電補助材および電子伝導性酸化物は、<1.本発明の燃料電池用電極材料>で上述した通りであり、ここでは詳しい説明を省略する。本発明の製造方法の工程(1)は、電子伝導性酸化物として、特に酸化スズを主体とする電子伝導性酸化物を、表面がグラファイト構造である繊維状炭素に担持するのに適した方法である。酸化スズを主体とする電子伝導性酸化物については上述の通りであるため、説明を省略する。
"Process (1)"
Step (1) is a step of supporting an electron conductive oxide on a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface.
Conductive aids and electron conductive oxides are <1. As described above in the description of the fuel cell electrode material of the present invention, detailed description is omitted here. Step (1) of the production method of the present invention is a method suitable for supporting an electron-conductive oxide mainly composed of tin oxide on fibrous carbon having a graphite structure on the surface as an electron-conductive oxide. It is. Since the electron conductive oxide mainly composed of tin oxide is as described above, the description thereof is omitted.

導電補助材としては、表面がグラファイト構造である繊維状炭素が好ましい。導電補助材は、表面改質により表面の一部を酸化してもよい。このようにすることにより、電子伝導性酸化物の担持性が向上する可能性がある。導電補助材の表面改質の方法は特に制限はないが、0.5〜30%水(水蒸気)を含む不活性ガス(例えば、N2)で200〜400℃の温度で処理する方法が挙げられる。 The conductive auxiliary material is preferably fibrous carbon having a graphite structure on the surface. The conductive auxiliary material may oxidize a part of the surface by surface modification. By doing in this way, the supporting property of an electron conductive oxide may improve. The method for modifying the surface of the conductive auxiliary material is not particularly limited, but a method of treating with an inert gas (for example, N 2 ) containing 0.5 to 30% water (water vapor) at a temperature of 200 to 400 ° C. is exemplified. It is done.

本発明の製造方法では、表面がグラファイト構造である繊維状炭素からなる導電補助材に電子伝導性酸化物を担持したのちに、酸化イリジウム前駆体(IrO2前駆体)を担持させる。
すなわち、表面がグラファイト構造である繊維状炭素は、電子伝導性酸化物を担持することができるが、IrO2前駆体が担持されにくいという性質を有する。
導電補助材に電子伝導性酸化物を担持した後に、電極触媒前駆体(IrO2前駆体)を含む溶液に浸漬すると、電極触媒前駆体(IrO2前駆体)が選択的に電子伝導性酸化物に担持され、これを所定の条件で熱処理することによりIrO2微粒子に変換される。そのため、本発明の製造方法によれば、大部分の電極触媒粒子(IrO2微粒子)が選択的に電子伝導性酸化物に分散担持された水電解用電極材料を得ることができる。
In the production method of the present invention, after supporting an electron conductive oxide on a conductive auxiliary material made of fibrous carbon having a graphite structure, an iridium oxide precursor (IrO 2 precursor) is supported.
That is, fibrous carbon having a graphite structure on the surface can carry an electron conductive oxide, but has a property that it is difficult to carry an IrO 2 precursor.
After carrying an electron conductive oxide to conductive auxiliary material, when immersed in a solution containing the electrode catalyst precursor (IrO 2 precursor), the electrode catalyst precursor (IrO 2 precursor) is selectively electronically conducting oxide It is converted into IrO 2 fine particles by heat-treating it under predetermined conditions. Therefore, according to the production method of the present invention, an electrode material for water electrolysis in which most of the electrode catalyst particles (IrO 2 fine particles) are selectively dispersed and supported on the electron conductive oxide can be obtained.

電子伝導性酸化物を担持する方法としては、導電補助材に電子伝導性酸化物を担持できる方法であればいかなる方法も採用できる。その中でも以下に説明する電子伝導性酸化物の前駆体にアンモニアを直接反応させる「アンモニア沈殿法」や、尿素等のアンモニア発生化合物を分解して発生するアンモニアを反応させる「均一沈殿法」が好適である。
なお、均一沈殿法は詳しくは後述するように、アンモニア発生化合物の分解生成物としてのアンモニアを利用する点で、アンモニア沈殿法の一種でもあるが、本明細書においてはアンモニアそのものを直接利用する方法のみを「アンモニア沈殿法」と称し、アンモニア発生化合物を分解してアンモニアを生成する方法は除外して、両者を区別するものとする。
As a method for supporting the electron conductive oxide, any method can be adopted as long as it can support the electron conductive oxide on the conductive auxiliary material. Among them, the “ammonia precipitation method” in which ammonia is directly reacted with an electron conductive oxide precursor described below and the “homogeneous precipitation method” in which ammonia generated by decomposing an ammonia generating compound such as urea is reacted are suitable. It is.
As will be described in detail later, the homogeneous precipitation method is a kind of ammonia precipitation method in that it uses ammonia as a decomposition product of the ammonia generating compound, but in the present specification, a method of directly using ammonia itself. Only the “ammonia precipitation method” is referred to as “ammonia precipitation method”, and a method of decomposing an ammonia generating compound to produce ammonia is excluded, and the two are distinguished.

アンモニア沈殿法は、溶媒中で電子伝導性酸化物の前駆体とアンモニアとを直接反応させて生成する電子伝導性酸化物を導電補助材に担持する方法である。
この方法の利点として、アンモニア溶液を滴下しながら順次反応させ、アンモニア溶液の濃度や滴下スピードを変えることによって反応速度を制御できることが挙げられる。なお、アンモニア沈殿法における電子伝導性酸化物の前駆体としては、特に制限はなく、電子伝導性酸化物の構成金属元素(例えば、スズ)の硫酸塩、オキシ硝酸塩、オキシ硫酸塩、酢酸塩、塩化物、アンモニウム錯体、リン酸塩、カルボン酸塩などを使用することができる。電子伝導性酸化物が酸化スズの場合の好適な前駆体として、塩化スズ(水和物含む)が挙げられる。
The ammonia precipitation method is a method in which an electron conductive oxide generated by directly reacting an electron conductive oxide precursor and ammonia in a solvent is supported on a conductive auxiliary material.
An advantage of this method is that the reaction rate can be controlled by sequentially reacting while dropping the ammonia solution and changing the concentration and dropping speed of the ammonia solution. The precursor of the electron conductive oxide in the ammonia precipitation method is not particularly limited, and sulfate, oxynitrate, oxysulfate, acetate of constituent metal elements (for example, tin) of the electron conductive oxide, Chlorides, ammonium complexes, phosphates, carboxylates and the like can be used. A suitable precursor in the case where the electron conductive oxide is tin oxide is tin chloride (including hydrate).

溶媒としては電子伝導性酸化物の前駆体を溶解できる溶媒であればよく、例えば、水、メタノール、エタノール等の低級アルコールが挙げられる。
詳細な理由は現時点では完全に明らかではないが、溶媒として無水エタノールを使用すると、導電補助材に対する電子伝導性酸化物の担持量が増加するため好ましい。
The solvent may be any solvent that can dissolve the precursor of the electron conductive oxide, and examples thereof include water, lower alcohols such as methanol and ethanol.
Although the detailed reason is not completely clear at present, it is preferable to use anhydrous ethanol as the solvent because the amount of the electron conductive oxide supported on the conductive auxiliary material increases.

アンモニア沈殿法によって、導電補助材に担持された電子伝導性酸化物は、非晶質状態であるものを含むため、これを乾燥、焼成することで結晶性が高い電子伝導性酸化物を得ることができる。
乾燥方法は、特に制限がなく、加熱・減圧・自然乾燥などの方法で上述の水、エタノールなどの溶媒を蒸発させればよい。また、乾燥時の雰囲気は特に限定されるものではなく、酸素を含有する酸化性雰囲気中や大気雰囲気、窒素やアルゴンなどを含有する不活性雰囲気、水素を含有する還元性雰囲気などの雰囲気条件を任意に選ぶことができるが、通常、大気雰囲気である。
Electron-conducting oxides supported on the conductive auxiliary material by the ammonia precipitation method include those that are in an amorphous state. Therefore, by drying and firing this, an electron-conducting oxide with high crystallinity can be obtained. Can do.
The drying method is not particularly limited, and the above-described solvent such as water or ethanol may be evaporated by a method such as heating, decompression, or natural drying. Also, the atmosphere during drying is not particularly limited, and the atmospheric conditions such as an oxidizing atmosphere containing oxygen or an air atmosphere, an inert atmosphere containing nitrogen or argon, a reducing atmosphere containing hydrogen, etc. Although it can be chosen arbitrarily, it is usually an atmospheric atmosphere.

導電補助材の上にアンモニア沈殿法で形成して担持した電子伝導性酸化物を、酸素を含有する酸化性雰囲気(例えば、大気雰囲気下)で、300〜800℃、好適には、400〜700℃、特に好適には450〜650℃で熱処理することで、結晶性及び電子伝導性の高い電子伝導性酸化物を得ることができる。熱処理温度が低すぎる場合には、結晶性が低くなり、十分な電子伝導性が得られない場合があり、800℃を超える場合には、電子伝導性酸化物が凝集し、表面積が小さくなりすぎる場合や、導電補助材から電子伝導性酸化物が脱離する場合がある。   The electron conductive oxide formed and supported on the conductive auxiliary material by the ammonia precipitation method is 300 to 800 ° C., preferably 400 to 700, in an oxygen-containing oxidizing atmosphere (for example, in an air atmosphere). An electron conductive oxide having high crystallinity and high electron conductivity can be obtained by heat treatment at ° C., particularly preferably 450 to 650 ° C. When the heat treatment temperature is too low, the crystallinity is low and sufficient electron conductivity may not be obtained. When the temperature exceeds 800 ° C., the electron conductive oxide aggregates and the surface area becomes too small. In some cases, the electron conductive oxide may be detached from the conductive auxiliary material.

なお、炭素材料は、酸化雰囲気において高温(例えば、500℃)を超えると酸化(燃焼)するおそれがあるが、本発明で導電補助材として使用される、表面がグラファイト構造である繊維状炭素は高温耐久性が高い。そのため、上記温度範囲の中で実質的に燃焼せず、電子伝導性酸化物が脱離しない範囲で熱処理温度を決定すればよい。   The carbon material may oxidize (combust) when it exceeds a high temperature (for example, 500 ° C.) in an oxidizing atmosphere, but the fibrous carbon used as a conductive auxiliary material in the present invention has a graphite structure on the surface. High temperature durability. For this reason, the heat treatment temperature may be determined within the above temperature range so that it does not substantially burn and the electron conductive oxide does not desorb.

また、均一沈殿法は、電子伝導性酸化物の前駆体と、アンモニア発生化合物を分解して発生するアンモニアとを反応させて生成する電子伝導性酸化物を導電補助材に担持する方法である。均一沈殿法では、溶液中において、分子レベルでアンモニア発生化合物からアンモニアが生成されることで一様に反応が起こるために、均質な電子伝導性酸化物の沈殿物が生成し、導電補助材に担持される。
アンモニア発生化合物としては均一沈殿法を行う温度において分解し、アンモニアを発生する化合物であればよく、溶媒が水の場合には、100℃以下で分解する尿素や尿素誘導体が用いられる。
The uniform precipitation method is a method in which an electron conductive oxide produced by reacting a precursor of an electron conductive oxide with ammonia generated by decomposing an ammonia generating compound is supported on a conductive auxiliary material. In the uniform precipitation method, ammonia is generated from an ammonia generating compound at a molecular level in the solution, and the reaction occurs uniformly. Therefore, a homogeneous electron conductive oxide precipitate is generated, which becomes a conductive auxiliary material. Supported.
The ammonia generating compound may be any compound that decomposes at a temperature at which uniform precipitation is performed and generates ammonia. When the solvent is water, urea or urea derivatives that decompose at 100 ° C. or lower are used.

なお、均一沈殿法における電子伝導性酸化物の前駆体や溶媒は、アンモニア沈殿法と同様であるため、説明を省略する。なお、電子伝導性酸化物が酸化スズの場合の好適な前駆体として、塩化スズ(水和物含む)が挙げられる。   In addition, since the precursor and solvent of the electron conductive oxide in the uniform precipitation method are the same as those in the ammonia precipitation method, description thereof is omitted. In addition, tin chloride (including hydrate) can be cited as a suitable precursor when the electron conductive oxide is tin oxide.

均一沈殿法におけるアンモニア発生化合物を分解する方法としては、アンモニア発生化合物を含む溶液を、熱伝導を利用して直接加熱する方法(以下、均一沈殿法(加熱式)と記載する場合がある)でもよいが、より比表面積が大きい沈殿物(電子伝導性酸化物)を導電補助材に担持させることができる点で、以下に説明するマイクロ波加熱均一沈殿法が好適である。   As a method of decomposing the ammonia generating compound in the uniform precipitation method, a method of directly heating a solution containing the ammonia generating compound using heat conduction (hereinafter sometimes referred to as a uniform precipitation method (heating type)) The microwave heating uniform precipitation method described below is preferable in that a precipitate (electron conductive oxide) having a larger specific surface area can be supported on the conductive auxiliary material.

マイクロ波加熱均一沈殿法は、電子伝導性酸化物の前駆体と、アンモニア発生化合物を分解して発生するアンモニアとを反応させて生成する電子伝導性酸化物を導電補助材に担持する均一沈殿法において、マイクロ波照射によって加熱を行って、当該溶液中のアンモニア発生化合物を分解する方法である。電子伝導性酸化物が酸化スズを主体とする場合、マイクロ波加熱均一沈殿法では、粒径10nm以下(特には5nm以下)の粒状電子伝導性酸化物を製造することができる。また、製造条件によっては生成する電子伝導性酸化物を薄膜状とすることができ、薄膜状の電子伝導性酸化物が導電補助材の一部または全部を被覆するように担持された構造を製造することができる。   The microwave heating uniform precipitation method is a uniform precipitation method in which an electron conductive oxide produced by the reaction of a precursor of an electron conductive oxide and ammonia generated by decomposing an ammonia generating compound is supported on a conductive auxiliary material. In this method, the ammonia generating compound in the solution is decomposed by heating by microwave irradiation. When the electron conductive oxide is mainly composed of tin oxide, a granular electron conductive oxide having a particle size of 10 nm or less (particularly 5 nm or less) can be produced by the microwave heating uniform precipitation method. Depending on the manufacturing conditions, the generated electron conductive oxide can be formed into a thin film, and a structure in which the thin film of the electronic conductive oxide is supported so as to cover a part or all of the conductive auxiliary material is manufactured. can do.

マイクロ波加熱均一沈殿法では、アンモニア沈殿法よりも表面積が大きく、粒径(薄膜の場合は膜厚)の小さい電子伝導性酸化物を得ることができることに利点の一つがある。そのため、表面積が大きいため、多量の電極触媒粒子を担持でき、かつ、粒径(薄膜の場合は膜厚)の小さいため、電子伝導性酸化物に起因する電気抵抗を低減できる。   The microwave heating uniform precipitation method has one advantage in that an electron conductive oxide having a larger surface area and a smaller particle size (film thickness in the case of a thin film) can be obtained than the ammonia precipitation method. Therefore, since the surface area is large, a large amount of electrode catalyst particles can be supported, and since the particle size (film thickness in the case of a thin film) is small, the electrical resistance due to the electron conductive oxide can be reduced.

マイクロ波加熱均一沈殿法においても、電子伝導性酸化物を導電補助材に担持したのちに熱処理を行うこともできる。熱処理を行う場合の条件はアンモニア沈殿法と同様の条件である。   Also in the microwave heating uniform precipitation method, heat treatment can be performed after supporting the electron conductive oxide on the conductive auxiliary material. The conditions for the heat treatment are the same as in the ammonia precipitation method.

また、マイクロ波加熱均一沈殿法は、マイクロ波照射によって、溶液中での導電補助材の分散性を高めることができる点でも好適である。   The microwave heating uniform precipitation method is also preferable in that the dispersibility of the conductive auxiliary material in the solution can be improved by microwave irradiation.

溶媒としては電子伝導性酸化物の前駆体を溶解できる溶媒であればよく、例えば、水、メタノール、エタノール等の低級アルコールが挙げられる。   The solvent may be any solvent that can dissolve the precursor of the electron conductive oxide, and examples thereof include water, lower alcohols such as methanol and ethanol.

マイクロ波加熱均一沈殿法の例を、電子伝導性酸化物が酸化スズである場合で具体的に説明すると、例えば、塩化スズ(SnCl4・5H2O)等の酸化スズ前駆体と、アンモニア発生化合物である尿素を含む溶液に導電補助材を添加し、マイクロ波照射した状態で目的の温度まで加熱し、その後所定の時間保持することによって、溶液中で尿素が分解されて発生するアンモニアによって酸化スズ前駆体から酸化スズ粒子が生成し、導電補助材に均一に分散担持される。
マイクロ波照射の強度は、溶液の量、アンモニア発生化合物の分解性や導電補助材の分散性等を考慮して適宜決定される。反応温度は、電子伝導性酸化物の種類、アンモニア発生化合物の分解性等の諸条件を考慮して決定されるが、均一な品質の電子伝導性酸化物が形成される点で90〜100℃が好ましい。
An example of the microwave heating uniform precipitation method will be specifically described in the case where the electron conductive oxide is tin oxide. For example, a tin oxide precursor such as tin chloride (SnCl 4 .5H 2 O) and ammonia generation A conductive auxiliary material is added to a solution containing urea, which is a compound, heated to a target temperature in the state of microwave irradiation, and then held for a predetermined time, so that the urea is decomposed in the solution and oxidized by ammonia generated. Tin oxide particles are generated from the tin precursor and are uniformly dispersed and supported on the conductive auxiliary material.
The intensity of the microwave irradiation is appropriately determined in consideration of the amount of the solution, the decomposability of the ammonia generating compound, the dispersibility of the conductive auxiliary material, and the like. The reaction temperature is determined in consideration of various conditions such as the type of the electron conductive oxide and the decomposability of the ammonia generating compound, but it is 90 to 100 ° C. in that a uniform quality electron conductive oxide is formed. Is preferred.

「工程(2)」
工程(2)は、電子伝導性酸化物担体を担持した前記導電補助材を、酸化イリジウム前駆体を含む溶液に浸漬し、前記電子伝導性酸化物担体の表面上に酸化イリジウム前駆体を担持する工程である。
"Process (2)"
In the step (2), the conductive auxiliary material supporting the electron conductive oxide carrier is immersed in a solution containing the iridium oxide precursor, and the iridium oxide precursor is supported on the surface of the electron conductive oxide carrier. It is a process.

酸化イリジウム粒子は、高活性を保ったまま高分散担持することが技術的に難しく、これまでに有効に10nm以下(特には5nm以下)の微粒子を担持することができなかった。
本発明の製造方法の特徴のひとつは、工程(2)において、表面がグラファイト構造である繊維状炭素からなる導電補助材に担持された電子伝導性酸化物担体に対し、酸化イリジウム前駆体を選択的に担持するに当たり、酸化イリジウム前駆体を含む溶液に浸漬し、溶媒を留去する、いわゆる蒸発乾固法が適していることを見出したことにある。
It is technically difficult to carry highly dispersed iridium oxide particles while maintaining high activity, so far it has not been possible to carry fine particles of 10 nm or less (particularly 5 nm or less) effectively.
One of the features of the production method of the present invention is that in step (2), an iridium oxide precursor is selected for an electron conductive oxide carrier supported on a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface. In order to carry it, it has been found that a so-called evaporation-drying method in which the solvent is distilled off by immersing in a solution containing an iridium oxide precursor is suitable.

また、本発明者が特許文献2で報告した、Pt系貴金属触媒前駆体の担持方法である、貴金属アセチルアセトナート法も、酸化イリジウム前駆体の電子伝導性酸化物担体の表面上への担持方法に成り得る。   In addition, the present inventors reported a method for supporting a Pt-based noble metal catalyst precursor, which is reported in Patent Document 2, a method for supporting an iridium oxide precursor on the surface of an electron conductive oxide carrier. Can be

以下、蒸発乾固法の場合について説明する。
酸化イリジウム前駆体として、Irを含む無機化合物、有機化合物が選択できるが、好適な一例は、塩化イリジウム酸(H2IrCl6・nH2O)である。
Hereinafter, the case of the evaporation to dryness method will be described.
As the iridium oxide precursor, an inorganic compound or an organic compound containing Ir can be selected. A suitable example is chloroiridate (H 2 IrCl 6 .nH 2 O).

工程(2)における蒸発乾固法による、酸化イリジウム前駆体を例示すると、まず、酸化イリジウム前駆体を含む溶液を、溶媒の蒸発後に、目的とする酸化イリジウム担持量となる濃度に調整する。
次いで、この溶液に、工程(1)で得た所定量の電子伝導性酸化物を担持した導電補助材を、撹拌及び溶媒の留去を行うことにより、電極触媒前駆体(IrO2前駆体)の担持が行う。
この方法であれば、複雑な化学反応を伴わずとも、酸化イリジウム前駆体を、電子伝導性酸化物に高分散に担持することができる。また、溶液中に強い酸化剤や還元剤を用いることがないため、電子伝導性酸化物や炭素系の導電補助材が劣化することを回避できるという利点がある。
Exemplifying the iridium oxide precursor by the evaporation to dryness method in the step (2), first, the solution containing the iridium oxide precursor is adjusted to a concentration at which the target amount of iridium oxide is supported after the evaporation of the solvent.
Next, the conductive auxiliary material carrying the predetermined amount of the electron conductive oxide obtained in the step (1) is stirred into this solution and the solvent is distilled off, whereby an electrode catalyst precursor (IrO 2 precursor) is obtained. Is carried.
According to this method, the iridium oxide precursor can be supported on the electron conductive oxide with high dispersion without complicated chemical reaction. In addition, since a strong oxidizing agent or reducing agent is not used in the solution, there is an advantage that deterioration of the electron conductive oxide and the carbon-based conductive auxiliary material can be avoided.

また、蒸発乾固法では、水溶媒を使用することができることも利点の一つである。溶媒に水を使用しているため、酸化イリジウム前駆体が、疎水性である表面がグラファイトの炭素材料へは特に担持されづらいため、電子伝導性酸化物の表面に選択的に担持されやすい。   In addition, one of the advantages is that an aqueous solvent can be used in the evaporation to dryness method. Since water is used as the solvent, the iridium oxide precursor is easily supported on the surface of the electron conductive oxide because the hydrophobic surface is not particularly supported on the graphite carbon material.

なお、水溶媒には、蒸発速度を制御するなどの目的で、他の溶媒(エタノール等)を含んでいてもよい。   The water solvent may contain other solvent (ethanol or the like) for the purpose of controlling the evaporation rate.

「工程(3)」
工程(3)は、工程(2)において、電子伝導性酸化物担体に担持された酸化イリジウム前駆体を、酸化雰囲気下、300℃以上500℃以下で熱処理し、酸化イリジウムに変換する工程である。工程(2)において、電子伝導性酸化物に担持された酸化イリジウム前駆体は、そのままでは活性が低いため、酸化雰囲気下で熱処理することで酸化イリジウムに変換して活性化する。
本発明の製造方法の特徴のひとつは、工程(3)において、熱処理条件を、酸化雰囲気下、300℃以上500℃以下の温度範囲と規定することで、導電補助材や電子伝導性酸化物担体を劣化させることなく、酸化イリジウム本来の優れた電気化学的触媒活性を有する酸化イリジウム微粒子とすることができることにある。このような特定の担持方法、活性化方法を経る製造方法により、IrO2微粒子は、平均粒子径10nm以下の微粒子となり、高い触媒活性を有するため、担持量が少なくとも、優れた電極触媒となる。
"Process (3)"
The step (3) is a step of converting the iridium oxide precursor supported on the electron conductive oxide carrier in the step (2) into iridium oxide by heat treatment at 300 ° C. or more and 500 ° C. or less in an oxidizing atmosphere. . In the step (2), since the iridium oxide precursor supported on the electron conductive oxide has low activity as it is, it is converted into iridium oxide and activated by heat treatment in an oxidizing atmosphere.
One of the features of the production method of the present invention is that, in the step (3), the heat treatment condition is defined as a temperature range of 300 ° C. or more and 500 ° C. or less in an oxidizing atmosphere, whereby a conductive auxiliary material or an electron conductive oxide carrier is provided. Therefore, it is possible to obtain iridium oxide fine particles having an excellent electrochemical catalytic activity inherent to iridium oxide without degrading the quality. By such a specific supporting method and manufacturing method through the activation method, the IrO 2 fine particles become fine particles having an average particle diameter of 10 nm or less and have high catalytic activity, so that the supported amount is at least an excellent electrode catalyst.

熱処理条件は、電子伝導性酸化物や、前駆体の種類にもよっても変わり得るが、高活性なIrO2微粒子が得られ、かつ、電子伝導性酸化物や炭素系導電補助材への影響がない条件として、酸化雰囲気下、300℃以上500℃以下(好適には400℃以上450℃以下)の温度範囲である。温度が低すぎると高活性なIrO2微粒子が得られず、高すぎるとIrO2微粒子が凝集し、有効反応表面積が小さかったり、炭素系導電補助材が酸化(燃焼)分解するおそれがある。
なお、酸化雰囲気は、通常、大気雰囲気であるが、酸素のみ、酸素と不活性ガスの混合ガスを用いてもよい。雰囲気には必要に応じて水蒸気を加えてもよく、また、不活性ガスと水蒸気の混合ガスも酸化雰囲気となる。
The heat treatment conditions may vary depending on the type of the electron conductive oxide and the precursor, but highly active IrO 2 fine particles are obtained, and the influence on the electron conductive oxide and the carbon-based conductive auxiliary material is affected. As a condition that does not exist, the temperature range is 300 ° C. or higher and 500 ° C. or lower (preferably 400 ° C. or higher and 450 ° C. or lower) in an oxidizing atmosphere. If the temperature is too low, highly active IrO 2 fine particles cannot be obtained. If the temperature is too high, the IrO 2 fine particles may aggregate, the effective reaction surface area may be small, and the carbon-based conductive additive may be oxidized (burned) and decomposed.
The oxidizing atmosphere is usually an atmospheric atmosphere, but only oxygen or a mixed gas of oxygen and inert gas may be used. Water vapor may be added to the atmosphere as necessary, and a mixed gas of an inert gas and water vapor becomes an oxidizing atmosphere.

<3.水電解用電極>
本発明の水電解用電極は、上述の水電解用電極材料とプロトン伝導性電解質材料とを含むことを特徴とする。当該水電解用電極では、前記炭素系導電補助材が互いに接触して導電パスを形成する。
<3. Electrode for water electrolysis>
The electrode for water electrolysis of the present invention includes the above-described electrode material for water electrolysis and a proton conductive electrolyte material. In the water electrolysis electrode, the carbon-based conductive auxiliary materials come into contact with each other to form a conductive path.

このような構成であれば、上述した本発明の電極材料を構成する導電補助材が、長径で優れた電子伝導性を有する繊維状炭素であるため、水電解用電極全体として、電子伝導性に優れる。さらに、長径の導電補助材の隙間は、少なくとも通気性を発現する程度に空隙を作ることができるため、水素、酸素、水蒸気等の電極反応に関与するガスの拡散性に優れると共に、プロトン伝導性電解質材料を十分に保持できる。そのため、当該電極材料で形成された水電解用電極は、優れた電極性能を示すと共に、耐久性が高く、長期間水の電気分解を行うことができる。   With such a configuration, the conductive auxiliary material constituting the electrode material of the present invention described above is fibrous carbon having a long diameter and excellent electronic conductivity. Excellent. Furthermore, since the gap between the long-diameter conductive auxiliary materials can be formed at least to the extent that air permeability is exhibited, it has excellent diffusibility of gases involved in electrode reactions such as hydrogen, oxygen, and water vapor, and proton conductivity. The electrolyte material can be sufficiently retained. Therefore, the electrode for water electrolysis formed with the electrode material exhibits excellent electrode performance, has high durability, and can perform electrolysis of water for a long period of time.

以下に、本発明の水電解用電極材料を用いて形成した水電解用電極について説明する。   Below, the electrode for water electrolysis formed using the electrode material for water electrolysis of this invention is demonstrated.

本発明の水電解用電極は、上述の水電解用電極材料のみから構成されていてもよいが、通常、水電解の電解質に使用されるプロトン伝導性電解質材料(以下、「プロトン伝導性電解質材料」、または単に「電解質材料」と記載する場合がある。)を含む。水電解用電極材料と共に電極に含まれる電解質材料は、水電解用電解質膜に使用される電解質材料と同じであってもよく、異なってもよい。水電解用電極と電解質膜の密着性を向上させる観点から、同じものを用いることが好ましい。   The water electrolysis electrode of the present invention may be composed only of the above-mentioned water electrolysis electrode material, but is usually a proton conductive electrolyte material (hereinafter referred to as “proton conductive electrolyte material” used for water electrolysis. Or simply “electrolyte material”). The electrolyte material contained in the electrode together with the electrode material for water electrolysis may be the same as or different from the electrolyte material used for the electrolyte membrane for water electrolysis. From the viewpoint of improving the adhesion between the electrode for water electrolysis and the electrolyte membrane, it is preferable to use the same one.

水電解用電極と電解質膜とに使用される電解質材料としては、プロトン伝導性電解質材料が挙げられる。このプロトン伝導性電解質材料は、ポリマー骨格の全部または一部にフッ素原子を含むフッ素系電解質材料と、ポリマー骨格にフッ素原子を含まない炭化水素系電解質材料に大別され、この両者を電解質材料として使用することができる。   Examples of the electrolyte material used for the water electrolysis electrode and the electrolyte membrane include a proton conductive electrolyte material. This proton conductive electrolyte material is roughly classified into a fluorine-based electrolyte material that contains fluorine atoms in all or part of the polymer skeleton, and a hydrocarbon-based electrolyte material that does not contain fluorine atoms in the polymer skeleton. Can be used.

フッ素系電解質材料としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などが好適な一例として挙げられる。   Specific examples of fluorine-based electrolyte materials include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Can be mentioned.

炭化水素系電解質材料としては、具体的には、ポリスルホン酸、ポリスチレンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリフェニルスルホン酸、ポリベンズイミダゾールスルホン酸、ポリベンズイミダゾールホスホン酸、ポリイミドスルホン酸等のポリマーや、これらにアルキル基等の側鎖を有するポリマーが好適な一例として挙げられる。   Specific examples of the hydrocarbon electrolyte material include polymers such as polysulfonic acid, polystyrene sulfonic acid, polyaryl ether ketone sulfonic acid, polyphenyl sulfonic acid, polybenzimidazole sulfonic acid, polybenzimidazole phosphonic acid, and polyimide sulfonic acid. In addition, a polymer having a side chain such as an alkyl group can be mentioned as a suitable example.

上記水電解用電極材料と水電解用電極材料と混合する電解質材料との質量比は、これらの材料を用いて形成される電極内の良好なプロトン伝導性を付与し、かつ電極内のガス拡散及び水蒸気の排出をスムーズに行えるように適宜決定すればよい。ただし、水電解用電極材料に混合する電解質材料の量が多すぎるとプロトン伝導性はよくなるが、ガスの拡散性は低下する。逆に混合する電解質材料の量が少なすぎるとガス拡散性はよくなるが、プロトン伝導性は低下する。そのため、上記水電解用電極材料に対する電解質材料の質量比率は、10〜50質量%が好適な範囲である。この質量比率が10質量%より小さい場合は、プロトン伝導性を有する材料の連続性が悪くなり、水電解用電極として十分なプロトン伝導性が確保できない。逆に50質量%より大きい場合は水電解用電極材料の連続性が悪くなり、水電解用電極として十分な電子伝導性を有することができなくなる場合がある。さらには電極内部でのガス(酸素、水素、水蒸気)や水の拡散性が低下する場合がある。   The mass ratio of the electrode material for water electrolysis and the electrolyte material mixed with the electrode material for water electrolysis gives good proton conductivity in the electrode formed using these materials, and gas diffusion in the electrode In addition, it may be determined as appropriate so that water vapor can be discharged smoothly. However, when the amount of the electrolyte material mixed with the electrode material for water electrolysis is too large, the proton conductivity is improved, but the gas diffusibility is lowered. Conversely, when the amount of the electrolyte material to be mixed is too small, the gas diffusibility is improved, but the proton conductivity is lowered. Therefore, 10-50 mass% is a suitable range for the mass ratio of the electrolyte material to the electrode material for water electrolysis. When this mass ratio is smaller than 10% by mass, the continuity of the material having proton conductivity is deteriorated, and sufficient proton conductivity as an electrode for water electrolysis cannot be ensured. On the other hand, when it is larger than 50% by mass, the continuity of the electrode material for water electrolysis is deteriorated, and it may not be possible to have sufficient electronic conductivity as an electrode for water electrolysis. Furthermore, the diffusibility of gas (oxygen, hydrogen, water vapor) or water inside the electrode may be reduced.

本発明の水電解用電極は、本発明の目的を損なわない範囲で、上述の水電解用電極材料やプロトン伝導性材料以外の成分を含んでいてもよい。   The electrode for water electrolysis of the present invention may contain components other than the above-described electrode material for water electrolysis and proton conductive material as long as the object of the present invention is not impaired.

<4.膜電極接合体(MEA)>
本発明の膜電極接合体は、固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、前記アノードが、上記本発明の水電解用電極であることを特徴とする。
<4. Membrane electrode assembly (MEA)>
The membrane electrode assembly of the present invention comprises a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane. In the membrane electrode assembly, the anode is the electrode for water electrolysis according to the present invention.

本発明の好適な実施形態として、電子伝導性酸化物に酸化スズを主体とする酸化物を用いた電極材料を含む水電解用電極を本発明の水電解用電極をアノードに使用した膜電極接合体について説明する。
図3は本発明の実施形態に係る膜電極接合体の断面構造を模式的に示したものである。図3に示すように膜電極接合体10は、カソード4及びアノード5が固体高分子電解質膜6に対面して配置された構造を有する。
As a preferred embodiment of the present invention, an electrode for water electrolysis including an electrode material using an oxide mainly composed of tin oxide as an electron conductive oxide is used as a membrane electrode joint using the electrode for water electrolysis of the present invention as an anode. Explain the body.
FIG. 3 schematically shows a cross-sectional structure of the membrane electrode assembly according to the embodiment of the present invention. As shown in FIG. 3, the membrane electrode assembly 10 has a structure in which the cathode 4 and the anode 5 are arranged facing the solid polymer electrolyte membrane 6.

カソード4は、電極触媒層4aとガス拡散層4bで構成され、その構成に特に制限はなく、それぞれ水電解用セルのカソードとして従来公知の電極触媒層、ガス拡散層を使用することができる。   The cathode 4 is composed of an electrode catalyst layer 4a and a gas diffusion layer 4b, and there is no particular limitation on the configuration thereof, and conventionally known electrode catalyst layers and gas diffusion layers can be used as cathodes for water electrolysis cells.

アノード5は、電極触媒層5aとガス拡散層5bで構成され、電極触媒層5aは、上述の通り、本発明の水電解用電極(電子伝導性酸化物:酸化スズを主体とする酸化物)を用いているため、詳細な説明は省略する。
アノード5のガス拡散層5bは、カソード4で説明したガス拡散層4bと同様に、水電解用セルの従来公知のガス拡散層が使用できる。
The anode 5 is composed of an electrode catalyst layer 5a and a gas diffusion layer 5b. As described above, the electrode catalyst layer 5a is an electrode for water electrolysis according to the present invention (electroconductive oxide: oxide mainly composed of tin oxide). Therefore, detailed description is omitted.
As the gas diffusion layer 5 b of the anode 5, a conventionally known gas diffusion layer of a water electrolysis cell can be used in the same manner as the gas diffusion layer 4 b described for the cathode 4.

固体高分子電解質膜6としては、プロトン伝導性を有し、化学的安定性及び熱的安定性を有するものであれば公知の固体高分子形水電解セル用電解質膜を用いればよい。なお、図3では厚みを強調して図示しているが、電気抵抗を低くするため固体高分子電解質膜6の厚みは破損が発生しない程度で薄膜であることが好ましい。   As the solid polymer electrolyte membrane 6, a known electrolyte membrane for a solid polymer type water electrolysis cell may be used as long as it has proton conductivity and has chemical stability and thermal stability. In FIG. 3, the thickness is shown with emphasis, but in order to reduce the electrical resistance, the thickness of the solid polymer electrolyte membrane 6 is preferably a thin film that does not cause damage.

固体高分子電解質膜6を構成する電解質材料としては、水電解用セルの運転条件で分解が起こらないものを使用すればよく、水電解用セルの電解質材料として従来公知の材料が使用され、例えば、フッ素系電解質材料、炭化水素系電解質材料が挙げられる。特にフッ素系電解質材料で形成されている電解質膜が、耐熱性、化学的安定性などに優れているため好ましい。具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などが好適例として挙げられる。
炭化水素系高分子電解質材料としては、例えば、ポリスルホン酸、ポリスチレンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリフェニルスルホン酸、ポリベンズイミダゾールスルホン酸、ポリベンズイミダゾールホスホン酸、ポリイミドスルホン酸等のポリマーや、これらにアルキル基等の側鎖を有するポリマー等が挙げられる。また、電解質膜として、無機系プロトン伝導体であるリン酸塩、硫酸塩などからなる電解質膜を使用することもできる。
As the electrolyte material constituting the solid polymer electrolyte membrane 6, a material that does not decompose under the operating conditions of the water electrolysis cell may be used, and conventionally known materials are used as the electrolyte material of the water electrolysis cell. , Fluorine-based electrolyte materials, and hydrocarbon-based electrolyte materials. In particular, an electrolyte membrane formed of a fluorine-based electrolyte material is preferable because of its excellent heat resistance, chemical stability, and the like. Specific examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
Examples of the hydrocarbon polymer electrolyte material include polymers such as polysulfonic acid, polystyrene sulfonic acid, polyaryl ether ketone sulfonic acid, polyphenyl sulfonic acid, polybenzimidazole sulfonic acid, polybenzimidazole phosphonic acid, and polyimide sulfonic acid. These include polymers having side chains such as alkyl groups. Further, as the electrolyte membrane, an electrolyte membrane made of an inorganic proton conductor such as phosphate or sulfate can also be used.

以上、図面を参照して本発明のMEAの実施形態について述べたが、これらは本発明のMEAの例示であり、アノードとして本発明の水電解用電極を採用する限り、上記以外の様々な構成を採用することもできる。   The embodiments of the MEA of the present invention have been described above with reference to the drawings. However, these are examples of the MEA of the present invention, and various configurations other than the above are employed as long as the water electrolysis electrode of the present invention is employed as an anode. Can also be adopted.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

使用した原料化合物、導電補助材は以下の通りである。
(Sn前駆体)
塩化スズ水和物(SnCl2・2H2O)(キシダ化学株式会社)
(Nb前駆体)
塩化ニオブ(NbCl5)(三津和化学薬品株式会社)
(Ir前駆体)
塩化イリジウム酸(H2IrCl6・nH2O)(和光純薬工業株式会社)
(導電補助材)
以下の物性を有する繊維状炭素(昭和電工株式会社製、気相法炭素繊維、VGCF−H(登録商標))を使用した。
繊維径:150nm
真密度:2.1g/cm3
比表面積:11.4m2/g
熱伝導率:1200W/(m・K)
導電率:1×10-4Ωcm
The raw material compounds and conductive auxiliary materials used are as follows.
(Sn precursor)
Tin chloride hydrate (SnCl 2 · 2H 2 O) (Kishida Chemical Co., Ltd.)
(Nb precursor)
Niobium chloride (NbCl 5 ) (Mitsuwa Chemical Co., Ltd.)
(Ir precursor)
Chlorinated iridium acid (H 2 IrCl 6 · nH 2 O) (Wako Pure Chemical Industries, Ltd.)
(Conductive auxiliary material)
Fibrous carbon having the following physical properties (made by Showa Denko KK, vapor grown carbon fiber, VGCF-H (registered trademark)) was used.
Fiber diameter: 150 nm
True density: 2.1 g / cm 3
Specific surface area: 11.4m 2 / g
Thermal conductivity: 1200W / (m · K)
Conductivity: 1 × 10 −4 Ωcm

1.電極触媒材料の製造
<実施例1>
工程(1)
工程(1−1):ニオブドープ酸化スズ担持繊維状炭素の製造
実施例1においては、アンモニア沈殿法でニオブドープ酸化スズ(Nb-SnO2)粒子を担持した繊維状炭素を製造した。
まず、上記繊維状炭素(0.2519g)に超純水を加え、超音波ホモジナイザーで攪拌し、繊維状炭素の分散液を得た。この分散液に塩化スズ水和物(SnCl2・2H2O)(0.7698g)を入れ、さらに塩化ニオブ(NbCl5)を、Sn:Nb=98:2(mol比)の割合で添加し、ホットスターラーで50℃に保持して、攪拌しながらアンモニア水(NH328重量%)をビュレットで滴下した(5cc/分)。アンモニア水の滴下後、1時間攪拌を続けたのちに、分散液の濾過、洗浄を行い、100℃で10時間乾燥させた。乾燥後大気雰囲気下、600℃で2時間の熱処理を行い、実施例1の酸化スズ粒子を担持した繊維状炭素を得た。
また、熱分析装置(株式会社リガク製、ThermoPlus TG8120)を用いて、酸化スズ粒子を担持した繊維状炭素を、大気雰囲気下で800℃まで昇温し、昇温前後の質量差を重量減少分を燃焼した繊維状炭素の重量として、酸化スズ粒子の担持率を求めたところ、75重量%であった。
1. Production of Electrocatalyst Material <Example 1>
Process (1)
Step (1-1): Production of niobium-doped tin oxide-supported fibrous carbon In Example 1, fibrous carbon carrying niobium-doped tin oxide (Nb-SnO 2 ) particles was produced by an ammonia precipitation method.
First, ultrapure water was added to the fibrous carbon (0.2519 g), and the mixture was stirred with an ultrasonic homogenizer to obtain a fibrous carbon dispersion. Tin chloride hydrate (SnCl 2 .2H 2 O) (0.7698 g) was added to this dispersion, and niobium chloride (NbCl 5 ) was further added at a ratio of Sn: Nb = 98: 2 (mol ratio). While maintaining at 50 ° C. with a hot stirrer, ammonia water (NH 3 28 wt%) was added dropwise with a burette while stirring (5 cc / min). After dropping ammonia water, stirring was continued for 1 hour, and then the dispersion was filtered and washed, and dried at 100 ° C. for 10 hours. After drying, heat treatment was performed at 600 ° C. for 2 hours in an air atmosphere to obtain fibrous carbon carrying the tin oxide particles of Example 1.
Also, using a thermal analyzer (ThermoPlus TG8120, manufactured by Rigaku Corporation), the temperature of the fibrous carbon carrying tin oxide particles was raised to 800 ° C in an air atmosphere, and the mass difference before and after the temperature increase was reduced by weight. As the weight of the fibrous carbon burned, the supporting rate of the tin oxide particles was determined to be 75% by weight.

工程(1−2):蒸発乾固法によるIrO2前駆体の担持
工程(1)で得られた、酸化スズ粒子を担持した繊維状炭素(以下、「担体粉末」と記載する場合がある)に、蒸発乾固法により、電極触媒粒子であるIrO2前駆体を担持した。蒸発乾固法は、蒸発皿に所定量の担体粉末、純水、IrO2前駆体(H2IrCl6・nH2O)を加え、それを撹拌しながら液体が蒸発するまで加熱することにより、担体粉末にIrO2前駆体を担持した。
Step (1-2): Supporting IrO 2 Precursor by Evaporation Drying Method Fibrous carbon carrying tin oxide particles obtained in step (1) (hereinafter sometimes referred to as “carrier powder”) Then, an IrO 2 precursor as electrode catalyst particles was supported by an evaporation to dryness method. In the evaporation to dryness method, a predetermined amount of carrier powder, pure water, and IrO 2 precursor (H 2 IrCl 6 · nH 2 O) are added to an evaporating dish and heated until the liquid evaporates while stirring. An IrO 2 precursor was supported on the carrier powder.

工程(2)
工程(1−2)で得られた粉末を、Air雰囲気中で440℃、1時間保持(昇温速度:2℃/分)の条件で熱処理を施すことで、実施例1の電極材料(IrO2/Nb-SnO2/VGCF)を得た。なお、実施例1の電極材料のIrO2担持量は23wt%であった。IrO2担持量は、TG−DTAから求めた繊維状炭素の燃焼前後の重量変化、及びニオブドープ酸化スズと繊維状炭素の重量比(仕込み)から算出した値である。
Process (2)
The electrode material of Example 1 (IrO) was obtained by subjecting the powder obtained in the step (1-2) to heat treatment in an air atmosphere at 440 ° C. for 1 hour (temperature increase rate: 2 ° C./min). 2 / Nb-SnO 2 / VGCF). Note that the amount of IrO 2 supported by the electrode material of Example 1 was 23 wt%. The amount of IrO 2 supported is a value calculated from the change in the weight of fibrous carbon before and after combustion determined from TG-DTA and the weight ratio (preparation) of niobium-doped tin oxide and fibrous carbon.

<参考例1>
工程(2)において、熱処理条件を、5%H2-N2雰囲気中で150℃、1時間とした以外は、実施例1と同様にして、参考例1の電極材料(Ir/Nb-SnO2/VGCF)を得た。
<Reference Example 1>
In the step (2), the electrode material (Ir / Nb-SnO) of Reference Example 1 was used in the same manner as in Example 1 except that the heat treatment condition was 150 ° C. for 1 hour in a 5% H 2 —N 2 atmosphere. 2 / VGCF).

2.評価
2−1:XRDによる評価
実施例1及び参考例1の電極触媒材料をX線回折法にて評価した。
図4に示すように実施例1の電極触媒材料では、SnやSnOのシグナルは確認されず、SnO2のシグナルのみが確認された。また、実施例1におけるSnO2は、純粋なSnO2と比較してシグナルがシフトしていることから、Nbがドープされていることが確認された。一方、IrO2についてはXRDでは明確なシグナルは確認されなかった。
一方、図5に示すように参考例1の電極触媒材料では、SnO2と共にSnOのシグナルが確認された。また、Irについては、Irのシグナルのみが確認された。
2. Evaluation 2-1: Evaluation by XRD The electrode catalyst materials of Example 1 and Reference Example 1 were evaluated by the X-ray diffraction method.
As shown in FIG. 4, in the electrocatalyst material of Example 1, Sn and SnO signals were not confirmed, but only SnO 2 signals were confirmed. In addition, SnO 2 in Example 1 was confirmed to be doped with Nb because the signal was shifted as compared with pure SnO 2 . On the other hand, for IrO 2 , no clear signal was confirmed by XRD.
On the other hand, as shown in FIG. 5, in the electrode catalyst material of Reference Example 1, a SnO signal was confirmed together with SnO 2 . For Ir, only the Ir signal was confirmed.

2−2:電子顕微鏡による評価
(1)走査型電子顕微鏡(FE−SEM)による評価
実施例1及び参考例1の電極触媒材料の微細構造観察を行った。図6(a)に実施例1の電極触媒材料、図6(b)に参考例1の電極触媒材料のFE−SEM像をそれぞれ示す。図6(a)に示す実施例1の電極触媒材料のFE−SEM像では、導電補助材である繊維状炭素の表面上にSnO2が担持されていることが確認されるが、IrO2微粒子単独では確認されなかった。一方、図6(b)から参考例1の電極触媒材料では、繊維状炭素の表面上にSnO2(SnO)が担持されていることが確認され、Ir粒子も単独では確認された。
2-2: Evaluation with an electron microscope (1) Evaluation with a scanning electron microscope (FE-SEM) The microstructure of the electrode catalyst material of Example 1 and Reference Example 1 was observed. FIG. 6A shows an FE-SEM image of the electrode catalyst material of Example 1, and FIG. 6B shows an FE-SEM image of the electrode catalyst material of Reference Example 1. The FE-SEM image of the electrode catalyst material of Example 1 shown in FIG. 6 (a), it is confirmed that SnO 2 is supported on the surface of the fibrous carbon is a conductive auxiliary material, IrO 2 particles It was not confirmed alone. On the other hand, from FIG. 6B, it was confirmed that SnO 2 (SnO) was supported on the surface of the fibrous carbon in the electrode catalyst material of Reference Example 1, and Ir particles were also confirmed alone.

(2)走査型透過電子顕微鏡(STEM)及びEDSマッピングによる評価
実施例1及び参考例1の電極触媒材料の走査型透過電子顕微鏡(STEM) 及びEDSマッピングを用いてさらに詳細に微細構造の評価を行った。実施例1の電極触媒材料について図7にSTEM像及びEDSマッピング、図8にSTEM像(高倍率)、図8に参考例1の電極触媒材料のSTEM像及びEDSマッピングをそれぞれ示す。
図7から実施例1の電極触媒材料では、EDSマッピングにおけるIr原子の分布は担体粉末(SnO2を担持した繊維状炭素)のSnO2部分に広がっており、図8に示すSTEM像(高倍率)から、約10〜数十nm径のSnO2粒子表面上に直径10nm以下のIrO2が担持されていることが確認された。そのため、IrO2はSnO2に表面担持した状態で存在すると考えられる。
また、図9に示すように、参考例1の電極触媒材料では、SnO2(SnO)表面上に直径10nm以下のIr粒子が存在することが確認された。
(2) Evaluation by Scanning Transmission Electron Microscope (STEM) and EDS Mapping Evaluation of the microstructure in more detail using the scanning transmission electron microscope (STEM) and EDS mapping of the electrode catalyst material of Example 1 and Reference Example 1 went. 7 shows the STEM image and EDS mapping, FIG. 8 shows the STEM image (high magnification), and FIG. 8 shows the STEM image and EDS mapping of the electrode catalyst material of Reference Example 1, respectively.
The electrode catalyst material of Example 1 from 7, the distribution of Ir atoms in the EDS mapping is spread SnO 2 portions of support powder (fibrous carrying SnO 2 carbon), STEM images (high magnification shown in Figure 8 ), It was confirmed that IrO 2 having a diameter of 10 nm or less was supported on the surface of SnO 2 particles having a diameter of about 10 to several tens of nm. Therefore, it is considered that IrO 2 exists in a state where the surface is supported on SnO 2 .
Further, as shown in FIG. 9, it was confirmed that Ir particles having a diameter of 10 nm or less were present on the SnO 2 (SnO) surface in the electrode catalyst material of Reference Example 1.

2−3:XPSによる評価
試料表面の成分構成を確認するため、XPSによる評価を行った。図10(a)に実施例1の電極触媒材料、図10(b)に参考例1の電極触媒材料のIr(4f)スペクトルをそれぞれ示す。
図10(a)と図10(b)を対比すると、62eV付近のピークと65eV付近のピークの比が異なっており、実施例1の電極触媒材料における表面成分から、IrO2であるといえる。すなわち、実施例1の電極触媒材料の表面にはIrO2微粒子が存在していることがXPSによる評価で確認された。
2-3: Evaluation by XPS In order to confirm the component composition of the sample surface, evaluation by XPS was performed. FIG. 10 (a) shows the Ir (4f) spectrum of the electrode catalyst material of Example 1, and FIG. 10 (b) shows the Ir (4f) spectrum of the electrode catalyst material of Reference Example 1, respectively.
When comparing FIG. 10A and FIG. 10B, the ratio of the peak near 62 eV and the peak near 65 eV is different, and it can be said that it is IrO 2 from the surface component in the electrode catalyst material of Example 1. That is, it was confirmed by XPS that IrO 2 fine particles were present on the surface of the electrode catalyst material of Example 1.

2−4.電気化学的評価(ハーフセル)
以下の電極触媒材料を用いて評価用電極を作製し、電位ステップ法(クロノアンペロメトリー(CA))により、それぞれの性能を比較した。
実施例1の電極触媒材料(IrO2/Nb-SnO2/VGCF)
比較例1の電極触媒材料(市販のIrO2粉末、株式会社徳力本店製)
2-4. Electrochemical evaluation (half-cell)
Electrodes for evaluation were prepared using the following electrode catalyst materials, and their performances were compared by a potential step method (chronoamperometry (CA)).
Electrocatalyst material of Example 1 (IrO 2 / Nb-SnO 2 / VGCF)
Electrocatalyst material of Comparative Example 1 (commercially available IrO 2 powder, manufactured by Tokuri Honten)

評価用の電極として、直径5mmのGC(グラッシーカーボン、北斗電工(株)、HR2−D1−GC5)上に、電極触媒材料と2−プロパノール、5%ナフィオン分散液をFCCJの評価プロトコル(固体高分子形燃料電池の目標・研究開発課題と評価方法の提案、平成23年1月発行)に則った割合で混合したものを、IrO2担持量が17.3μg/cm2になるように塗布し電極を使用した。
図11に比較例1の電極触媒材料(μmオーダーのIrO2粉末)を用いた電極のFE−SEM像を示す。
As an electrode for evaluation, an electrode catalyst material, 2-propanol, and 5% Nafion dispersion were placed on a GC (Glassy Carbon, Hokuto Denko Co., Ltd., HR2-D1-GC5) having a diameter of 5 mm. Applying the mixture in proportion to the target / research and development issues and evaluation method for molecular fuel cells (issued in January 2011) so that the amount of IrO 2 supported is 17.3 μg / cm 2 An electrode was used.
FIG. 11 shows an FE-SEM image of an electrode using the electrode catalyst material of Comparative Example 1 (μm order IrO 2 powder).

CAの測定条件は以下の通りである。
測定:三電極式セル(作用極:電極触媒材料/GC,対極:Pt,参照極:Ag/AgCl)
電解液:0.1M HClO4(pH:約1)
印加電圧:1.6V
回転数:1600rpm
電圧保持時間:30min
測定は、測定開始(0min時)に0Vから1.6Vまでステップ的に電圧変化させてその後30min保持することによって行った。
The measurement conditions for CA are as follows.
Measurement: Three-electrode cell (working electrode: electrode catalyst material / GC, counter electrode: Pt, reference electrode: Ag / AgCl)
Electrolyte: 0.1M HClO 4 (pH: about 1)
Applied voltage: 1.6V
Rotation speed: 1600rpm
Voltage holding time: 30 min
The measurement was performed by changing the voltage stepwise from 0 V to 1.6 V at the start of measurement (at 0 min) and then holding for 30 min.

図12に実施例1、比較例1のCAの結果を示す。なお、図12において、縦軸は電流密度であり、数値が大きいほど水電解反応が進むことを意味する。
図12からわかるように、IrO2粉末を用いた比較例1の電極に比べて、IrO2微粒子が担持された実施例1の電極の方が、一定電圧値(1.6V)における電流密度が高いことが確認された。この結果より、本発明の電極触媒材料からなる電極は、少ないIrO2量でも高性能の電極を与えることができることが示唆される。
FIG. 12 shows the CA results of Example 1 and Comparative Example 1. In FIG. 12, the vertical axis represents the current density, and the larger the value, the more water electrolysis reaction proceeds.
As can be seen from FIG. 12, the current density at a constant voltage value (1.6 V) is higher in the electrode of Example 1 on which IrO 2 fine particles are supported than in the electrode of Comparative Example 1 using IrO 2 powder. It was confirmed to be high. This result suggests that the electrode made of the electrocatalyst material of the present invention can provide a high-performance electrode even with a small amount of IrO 2 .

本発明によれば、Ir使用量を低減でき、かつ、水電解における電位下でも安定であり、十分な触媒活性を示すことが可能な水電解用電極材料の低コストでの生産が可能となり、余剰が電力を水素にして蓄えるシステムの中核となる水電解システムの高コストの問題を、根本的に解決できるブレイクスルーとなり得るため、産業的に有望である。   According to the present invention, it is possible to produce an electrode material for water electrolysis that can reduce the amount of Ir used, is stable even under potential in water electrolysis, and can exhibit sufficient catalytic activity, at a low cost. The surplus is promising industrially because it can be a breakthrough that can fundamentally solve the high-cost problem of the water electrolysis system, which is the core of the system that stores electric power as hydrogen.

1 水分解用電極材料
2 導電補助材
3a (粒子状の)電子伝導性酸化物
3b 電極触媒粒子
4 水分解セル用電極(カソード)
4a カソード電極層
4b ガス拡散層
5 水分解セル用電極(アノード)
5a カソード電極層
5b ガス拡散層
6 固体高分子電解質膜
10 膜電極接合体(MEA)
DESCRIPTION OF SYMBOLS 1 Electrolytic material for water splitting 2 Conductive auxiliary material 3a (Particulate) electron conductive oxide 3b Electrocatalyst particles 4 Electrode for water splitting cell (cathode)
4a Cathode electrode layer 4b Gas diffusion layer 5 Water splitting cell electrode (anode)
5a Cathode electrode layer 5b Gas diffusion layer 6 Solid polymer electrolyte membrane 10 Membrane electrode assembly (MEA)

Claims (7)

炭素系導電補助材と、前記炭素系導電補助材に担持された電子伝導性酸化物担体と、前記電子伝導性酸化物担体に分散担持された、平均粒子径10nm以下の酸化イリジウム粒子とを含むことを特徴とする水電解用電極材料。   A carbon-based conductive auxiliary material, an electron conductive oxide carrier supported on the carbon-based conductive auxiliary material, and iridium oxide particles having an average particle diameter of 10 nm or less dispersed and supported on the electron conductive oxide carrier. The electrode material for water electrolysis characterized by the above-mentioned. 炭素系導電補助材が、表面がグラファイト構造である繊維状炭素からなる導電補助材である請求項1に記載の水電解用電極材料。   The electrode material for water electrolysis according to claim 1, wherein the carbon-based conductive auxiliary material is a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface. 電子伝導性酸化物担体が、酸化スズを主体とする電子伝導性酸化物からなる請求項1または2に記載の水電解用電極材料。   The electrode material for water electrolysis according to claim 1 or 2, wherein the electron conductive oxide support is composed of an electron conductive oxide mainly composed of tin oxide. 以下の工程を有することを特徴とする水電解用電極材料の製造方法。
(1)表面がグラファイト構造である繊維状炭素からなる導電補助材に、電子伝導性酸化物担体を担持する工程
(2)電子伝導性酸化物担体を担持した前記導電補助材を、酸化イリジウム前駆体を含む溶液に浸漬し、前記電子伝導性酸化物の表面上に酸化イリジウム前駆体を担持する工程
(3)電子伝導性酸化物担体に担持された酸化イリジウム前駆体を、酸化雰囲気下、300℃以上500℃以下で熱処理し、酸化イリジウムに変換する工程
The manufacturing method of the electrode material for water electrolysis characterized by having the following processes.
(1) A step of supporting an electron conductive oxide carrier on a conductive auxiliary material made of fibrous carbon having a graphite structure on the surface. (2) The conductive auxiliary material supporting the electron conductive oxide carrier is converted into an iridium oxide precursor. (3) iridium oxide precursor supported on the electron conductive oxide support is immersed in an oxidizing atmosphere in an oxidizing atmosphere. Heat treatment at a temperature of from ℃ to 500 ℃ to convert to iridium oxide
工程(2)における担持が、蒸発乾固法による請求項4に記載の水電解用電極材料の製造方法。   The method for producing an electrode material for water electrolysis according to claim 4, wherein the supporting in the step (2) is performed by an evaporation to dryness method. 電子伝導性酸化物担体が、酸化スズを主体とする電子伝導性酸化物からなる請求項4または5に記載の水電解用電極材料の製造方法。   The method for producing an electrode material for water electrolysis according to claim 4 or 5, wherein the electron conductive oxide carrier is composed of an electron conductive oxide mainly composed of tin oxide. 請求項1から3のいずれかに記載の水電解用電極材料とプロトン伝導性電解質材料を含み、前記導電補助材が互いに接触して導電パスを形成している水電解用電極。   An electrode for water electrolysis comprising the electrode material for water electrolysis according to any one of claims 1 to 3 and a proton conductive electrolyte material, wherein the conductive auxiliary material is in contact with each other to form a conductive path.
JP2016064542A 2016-03-28 2016-03-28 Electrode material for water electrolysis and its manufacturing method, electrode for water electrolysis and solid polymer type water electrolysis cell Active JP6779470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064542A JP6779470B2 (en) 2016-03-28 2016-03-28 Electrode material for water electrolysis and its manufacturing method, electrode for water electrolysis and solid polymer type water electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064542A JP6779470B2 (en) 2016-03-28 2016-03-28 Electrode material for water electrolysis and its manufacturing method, electrode for water electrolysis and solid polymer type water electrolysis cell

Publications (2)

Publication Number Publication Date
JP2017179408A true JP2017179408A (en) 2017-10-05
JP6779470B2 JP6779470B2 (en) 2020-11-04

Family

ID=60006641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064542A Active JP6779470B2 (en) 2016-03-28 2016-03-28 Electrode material for water electrolysis and its manufacturing method, electrode for water electrolysis and solid polymer type water electrolysis cell

Country Status (1)

Country Link
JP (1) JP6779470B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906287A (en) * 2016-10-28 2019-06-18 巴斯夫欧洲公司 Electrocatalyst composition comprising the metal oxide containing precious metals being supported on tin oxide
JP2020019980A (en) * 2018-07-31 2020-02-06 株式会社グラヴィトン Electrolysis device, and method of producing electrode
JP2020094282A (en) * 2018-12-11 2020-06-18 カーリットホールディングス株式会社 Electrode for water electrolysis and production method thereof
JP2020161273A (en) * 2019-03-26 2020-10-01 国立大学法人九州大学 Manufacturing method of electrode material
CN112105762A (en) * 2018-07-06 2020-12-18 舍弗勒技术股份两合公司 Catalytic device for an electrolysis cell system or a fuel cell system, electrolysis cell system, fuel cell system, use of a catalytic device and method for producing a catalytic device
WO2021025157A1 (en) * 2019-08-08 2021-02-11 凸版印刷株式会社 Membrane-electrode assembly for fuel cells, and solid polymer fuel cell
CN112640169A (en) * 2018-09-18 2021-04-09 株式会社科特拉 Anode catalyst layer for fuel cell and fuel cell using the same
JP2021095618A (en) * 2019-12-19 2021-06-24 三井金属鉱業株式会社 Electrode catalyst, electrode catalyst layer, membrane-electrode assembly, and water electrolysis apparatus
CN114540865A (en) * 2022-03-18 2022-05-27 中国科学院长春应用化学研究所 Preparation method of iridium oxide catalyst for hydrogen production by water electrolysis
JP2022540820A (en) * 2019-07-10 2022-09-20 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー Catalyst for oxygen evolution reaction during water electrolysis
CN115786974A (en) * 2022-12-20 2023-03-14 苏州擎动动力科技有限公司 Catalyst for water electrolysis and preparation method thereof
WO2023095431A1 (en) * 2021-11-28 2023-06-01 国立大学法人信州大学 Electrode catalyst including iridium oxide nanosheet as catalytic promoter
US11735746B2 (en) 2019-06-27 2023-08-22 Hyundai Motor Company Catalyst complex for fuel cell and method of manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322631A1 (en) * 2011-12-22 2014-10-30 Umicore Ag & Co., Kg Precious metal oxide catalyst for water electrolysis
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
US20150368817A1 (en) * 2014-06-17 2015-12-24 Giner, Inc. Anode catalyst suitable for use in an electrolyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322631A1 (en) * 2011-12-22 2014-10-30 Umicore Ag & Co., Kg Precious metal oxide catalyst for water electrolysis
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
US20150368817A1 (en) * 2014-06-17 2015-12-24 Giner, Inc. Anode catalyst suitable for use in an electrolyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"「固体高分子形水電解用IrOx/SnO2系触媒の合成と酸素発生特性」", 第56回電池討論会講演要旨集, JPN6020004084, 10 November 2015 (2015-11-10), pages 145, ISSN: 0004208093 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906287A (en) * 2016-10-28 2019-06-18 巴斯夫欧洲公司 Electrocatalyst composition comprising the metal oxide containing precious metals being supported on tin oxide
CN109906287B (en) * 2016-10-28 2022-06-21 巴斯夫欧洲公司 Electrocatalyst compositions comprising noble metal oxides supported on tin oxide
JP2021531401A (en) * 2018-07-06 2021-11-18 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Catalysts for electrolyzer systems or fuel cell systems, electrolyzer systems, fuel cell systems, use of catalysts and methods of manufacturing catalysts.
JP7185005B2 (en) 2018-07-06 2022-12-06 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Catalyst device for electrolyzer system or fuel cell system, electrolyzer system, fuel cell system, use of catalyzer and method of manufacturing catalyzer
CN112105762A (en) * 2018-07-06 2020-12-18 舍弗勒技术股份两合公司 Catalytic device for an electrolysis cell system or a fuel cell system, electrolysis cell system, fuel cell system, use of a catalytic device and method for producing a catalytic device
CN112105762B (en) * 2018-07-06 2024-05-24 舍弗勒技术股份两合公司 Catalytic device for an electrolyser system or fuel cell system, electrolyser system, fuel cell system, use of catalytic device
EP3818198B1 (en) * 2018-07-06 2023-07-26 Schaeffler Technologies AG & Co. KG Catalytic arrangement for an electrolyzer system or a fuel cell system, electrolyzer system, fuel cell system, use of a catalytic arrangement and method for producing a catalytic arrangement
US12009527B2 (en) 2018-07-06 2024-06-11 Schaeffler Technologies AG & Co. KG Catalytic arrangement for an electrolyzer system or a fuel cell system, electrolyzer system, fuel cell system, use of a catalytic arrangement and method for producing a catalytic arrangement
JP2020019980A (en) * 2018-07-31 2020-02-06 株式会社グラヴィトン Electrolysis device, and method of producing electrode
CN112640169A (en) * 2018-09-18 2021-04-09 株式会社科特拉 Anode catalyst layer for fuel cell and fuel cell using the same
JP2020094282A (en) * 2018-12-11 2020-06-18 カーリットホールディングス株式会社 Electrode for water electrolysis and production method thereof
JP2020161273A (en) * 2019-03-26 2020-10-01 国立大学法人九州大学 Manufacturing method of electrode material
JP7246704B2 (en) 2019-03-26 2023-03-28 国立大学法人九州大学 Manufacturing method of electrode material
US11735746B2 (en) 2019-06-27 2023-08-22 Hyundai Motor Company Catalyst complex for fuel cell and method of manufacturing same
JP2022540820A (en) * 2019-07-10 2022-09-20 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー Catalyst for oxygen evolution reaction during water electrolysis
JP7316436B2 (en) 2019-07-10 2023-07-27 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー Catalyst for oxygen evolution reaction during water electrolysis
WO2021025157A1 (en) * 2019-08-08 2021-02-11 凸版印刷株式会社 Membrane-electrode assembly for fuel cells, and solid polymer fuel cell
JP7349343B2 (en) 2019-12-19 2023-09-22 三井金属鉱業株式会社 Electrode catalysts, electrode catalyst layers, membrane electrode assemblies, and water electrolysis devices
JP2021095618A (en) * 2019-12-19 2021-06-24 三井金属鉱業株式会社 Electrode catalyst, electrode catalyst layer, membrane-electrode assembly, and water electrolysis apparatus
WO2023095431A1 (en) * 2021-11-28 2023-06-01 国立大学法人信州大学 Electrode catalyst including iridium oxide nanosheet as catalytic promoter
CN114540865A (en) * 2022-03-18 2022-05-27 中国科学院长春应用化学研究所 Preparation method of iridium oxide catalyst for hydrogen production by water electrolysis
CN115786974A (en) * 2022-12-20 2023-03-14 苏州擎动动力科技有限公司 Catalyst for water electrolysis and preparation method thereof
CN115786974B (en) * 2022-12-20 2023-09-26 苏州擎动动力科技有限公司 Catalyst for water electrolysis and preparation method thereof

Also Published As

Publication number Publication date
JP6779470B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6779470B2 (en) Electrode material for water electrolysis and its manufacturing method, electrode for water electrolysis and solid polymer type water electrolysis cell
JP6598159B2 (en) ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
US9123964B2 (en) Fuel cell electrode and production process thereof
US9929411B2 (en) Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
Saha et al. Composite of Pt–Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol
Shi et al. PtCo@ NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell
Kim et al. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells
Anwar et al. Recent advances in hybrid support material for Pt‐based electrocatalysts of proton exchange membrane fuel cells
JP2002298861A (en) Fuel cell, fuel cell electrode and manufacutring method therefor
KR20130039456A (en) Nitrogen doped core/shell nanostructure catalyst and its preparation method
JP2008183508A (en) Composite material and its manufacturing method
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
Hsieh et al. Electrochemical activity and durability of Pt–Sn alloys on carbon-based electrodes prepared by microwave-assisted synthesis
Tsuji et al. Highly durable platelet carbon nanofiber-supported platinum catalysts for the oxygen reduction reaction
JP7112739B2 (en) Electrode material, manufacturing method thereof, electrode, membrane electrode assembly, and polymer electrolyte fuel cell
KR20220058260A (en) Precious metal single atom-nanoparticle catalysts derived from single atom sites using hydrothermal method and Manufacturing method of the Same
Saha et al. Nanowire-based three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchange membrane fuel cells
JP6852886B2 (en) Core-shell carrier for electrode material, its manufacturing method, and electrode material
JP6345663B2 (en) ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP7246704B2 (en) Manufacturing method of electrode material
JP7432969B2 (en) Electrode materials, electrodes using the same, membrane electrode assemblies, and polymer electrolyte fuel cells
JP7228942B1 (en) Fuel cell electrode material, and fuel cell electrode, membrane electrode assembly and polymer electrolyte fuel cell using the same
WO2023063265A1 (en) Electrode catalyst for hydrogen fuel cell anode
WO2023068086A1 (en) Electrode catalyst for hydrogen fuel cell anodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6779470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250