JP2005235556A - Method of manufacturing catalytic electrode, membrane electrode junction, and electrochemical device - Google Patents

Method of manufacturing catalytic electrode, membrane electrode junction, and electrochemical device Download PDF

Info

Publication number
JP2005235556A
JP2005235556A JP2004042810A JP2004042810A JP2005235556A JP 2005235556 A JP2005235556 A JP 2005235556A JP 2004042810 A JP2004042810 A JP 2004042810A JP 2004042810 A JP2004042810 A JP 2004042810A JP 2005235556 A JP2005235556 A JP 2005235556A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
electrode
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042810A
Other languages
Japanese (ja)
Other versions
JP4407308B2 (en
Inventor
Kenji Katori
健二 香取
Isato Motomura
勇人 本村
Minehisa Imazato
峰久 今里
Hajime Sudo
業 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004042810A priority Critical patent/JP4407308B2/en
Publication of JP2005235556A publication Critical patent/JP2005235556A/en
Application granted granted Critical
Publication of JP4407308B2 publication Critical patent/JP4407308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a catalytic electrode having an effect of improving in an output when applied to a solid polymer electrolyte fuel cell, etc., and to provide a method of manufacturing a membrane electrode junction (MEA) and a method of manufacturing an electrochemical device. <P>SOLUTION: After a mixture of platinum supporting carbon particulate, etc., a hydrogen ion conductive resin such as Nafion (R), etc. and a solvent such as an alcohol, are applied to conductive porous materials 1, 5 such as carbon paper, etc. having water repellence, the solvent is evaporated at 60-80°C in the atmosphere, and catalyst layers 3, 7 are formed. Then, the catalyst layers 3, 7 are heated at the temperature of 100-140°C and the pressure of 2×10Pa or more in the atmosphere in which an oxygen below oxygen partial pressure or less exists for 0.2-6 hours, and heat treated oxygen pole catalyst layer 3a and fuel electrode catalyst layer 7a are manufactured. Then, a hydrogen ion conduction film 9 is held between the oxygen pole 4 and the fuel pole 8, heated at 100-150°C, press bonded, and the MEA 10 is manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子電解質型燃料電池等に好適に用いられる触媒層の製造方法、膜電極接合体(MEA:Membrane-Electrode Assembly)の製造方法、及び電気化学デバイスの製造方法に関するものである。   The present invention relates to a method for producing a catalyst layer, a method for producing a membrane-electrode assembly (MEA), and a method for producing an electrochemical device, which are preferably used for a solid polymer electrolyte fuel cell or the like. .

燃料電池は、燃料が酸化される際に発生する燃焼熱を高い効率で電気エネルギーに変換することを可能にする装置であり、窒素酸化物などの環境汚染物質を生成せずクリーンであることなどから、次世代の電気エネルギー発生装置として注目され、各方面で盛んに開発が進められている。   A fuel cell is a device that makes it possible to convert combustion heat generated when fuel is oxidized into electrical energy with high efficiency, and it is clean without producing environmental pollutants such as nitrogen oxides. Therefore, it has been attracting attention as a next-generation electric energy generator and is being actively developed in various fields.

その一つである固体高分子電解質型燃料電池(以下、PEFCと略記する。)は、主として燃料極、酸素極、及び両電極間に挟持された水素イオン(プロトン)伝導膜で構成され、これらの電極に供給される燃料と酸素との反応による起電力が燃料極と酸素極との間に発生する。   One of them, a solid polymer electrolyte fuel cell (hereinafter abbreviated as PEFC), is mainly composed of a fuel electrode, an oxygen electrode, and a hydrogen ion (proton) conductive membrane sandwiched between both electrodes. An electromotive force is generated between the fuel electrode and the oxygen electrode due to the reaction between the fuel and oxygen supplied to the electrode.

例えば、燃料が水素である場合には、燃料極に供給された水素は、下記(式1)
2H2 → 4H+ +4e- (式1)
の反応により酸化され、燃料極に電子を与える。生じた水素イオンH+(プロトン)は、水素イオン伝導膜を介して酸素極へ移動する。
For example, when the fuel is hydrogen, the hydrogen supplied to the fuel electrode is expressed by the following (formula 1):
2H 2 → 4H + + 4e (Formula 1)
Oxidized by this reaction, electrons are given to the fuel electrode. The generated hydrogen ions H + (protons) move to the oxygen electrode through the hydrogen ion conductive membrane.

酸素極へ移動した水素イオンは、酸素極に供給される酸素と下記(式2)
2 +4H+ +4e- → 2H2O (式2)
のように反応し、水を生成する。このとき、酸素は、酸素極から電子を取り込み、還元される。
The hydrogen ions that have moved to the oxygen electrode are the oxygen supplied to the oxygen electrode and the following (formula 2)
O 2 + 4H + + 4e → 2H 2 O (Formula 2)
To produce water. At this time, oxygen takes in electrons from the oxygen electrode and is reduced.

このようにして、燃料極では水素が酸化され、酸素極では酸素が還元され、燃料電池全体では下記(式3)
2H2 + O2 → 2H2O (式3)
の水素の燃焼反応が進行する。このとき、電流が酸素極から燃料極へ流れ、燃料電池から電気エネルギーを取り出すことができる。
In this way, hydrogen is oxidized at the fuel electrode and oxygen is reduced at the oxygen electrode.
2H 2 + O 2 → 2H 2 O (Formula 3)
The hydrogen combustion reaction proceeds. At this time, an electric current flows from the oxygen electrode to the fuel electrode, and electric energy can be extracted from the fuel cell.

固体高分子電解質型燃料電池は、電解質に固体高分子状の水素イオン伝導膜を用いているため、電解質の飛散が無く、振動に強く、小型軽量化が可能で出力密度が大きい等、他の燃料電池にはない優れた特徴をもつ。   The solid polymer electrolyte fuel cell uses a solid polymer hydrogen ion conductive membrane for the electrolyte, so there is no scattering of the electrolyte, it is resistant to vibration, can be reduced in size and weight, and has a high output density. Excellent characteristics not found in fuel cells.

水素イオン伝導膜としては、従来、パーフルオロアルキルスルホン酸系樹脂(Du Pont 社製のNafion(登録商標)(商品名)など)膜が一般的に用いられているが、その他にも、より安価な炭化水素系イオン交換膜や、無加湿下でも水素イオン伝導能を有するフラーレン誘導体膜など、種々の水素イオン伝導膜の研究開発が活発に行われている。   Conventionally, as the hydrogen ion conductive membrane, a perfluoroalkyl sulfonic acid resin membrane (such as Nafion (registered trademark) (trade name) manufactured by Du Pont) is generally used. Research and development of various hydrogen ion conductive membranes, such as a hydrocarbon-based ion exchange membrane and a fullerene derivative membrane having hydrogen ion conductivity even under non-humidified conditions, has been actively conducted.

ところで、(式3)の反応は、自発的に進む反応ではあるが、活性化エネルギーが大きい。このため、一般的なPEFCの動作温度で十分な反応速度を実現するには、白金等の触媒の助けが必要になる。そこで、多くのPEFCでは、触媒である白金又は白金合金などをカーボン微粒子に担持し、これをカーボンシートやカーボンクロスなどの導電性多孔質支持体の表面に塗布したものを燃料極及び酸素極とし、これらを水素イオン伝導膜と接合して膜電極接合体(MEA:Membrane-Electrode Assembly)を形成して用いている。   By the way, although the reaction of (Formula 3) is a reaction that proceeds spontaneously, the activation energy is large. For this reason, in order to achieve a sufficient reaction rate at a general PEFC operating temperature, the assistance of a catalyst such as platinum is required. Therefore, in many PEFCs, platinum or a platinum alloy, which is a catalyst, is supported on carbon fine particles, and this is applied to the surface of a conductive porous support such as a carbon sheet or carbon cloth as a fuel electrode and an oxygen electrode. These are joined to a hydrogen ion conductive membrane to form a membrane-electrode assembly (MEA).

触媒層は、MEAを形成したときに高い出力密度が得られ、燃料からできるだけ効率よくエネルギーを取り出し得るものが望ましい。このためには、触媒層は、ガス拡散性が向上するように、ガス拡散性電極から連続的に多孔体構造が形成されることが望ましい。また、反応ガス/触媒/電解質の三相界面が十分に確保され、反応サイトの面積が増大するように、触媒層内に電解質が立体構造的に入り込むことが望ましい。   It is desirable that the catalyst layer has a high power density when the MEA is formed and can extract energy from the fuel as efficiently as possible. For this purpose, it is desirable that the catalyst layer has a porous structure continuously formed from the gas diffusible electrode so that the gas diffusibility is improved. Further, it is desirable that the electrolyte enters the catalyst layer in a three-dimensional structure so that a three-phase interface of the reaction gas / catalyst / electrolyte is sufficiently secured and the area of the reaction site is increased.

図6は、従来のPEFCに一般的に用いられている触媒電極とMEAの作製工程を示す概略断面図である。   FIG. 6 is a schematic cross-sectional view showing a manufacturing process of a catalyst electrode and MEA generally used in a conventional PEFC.

まず、図6(a)に示すように、カーボンブラックと撥水性樹脂、例えばフッ素系樹脂(ポリテトラフルオロエチレンPTFEやポリフルオロエチレンFEP)とを混錬した塗料を、カーボンシートやカーボンクロスなどの導電性で多孔質の導電性多孔体1、5の表面に塗布し、これを樹脂が融ける温度まで加熱し、撥水性拡散層2、6を有する導電性多孔体1と5を作製する。   First, as shown in FIG. 6A, a paint obtained by kneading carbon black and a water-repellent resin, for example, a fluorine-based resin (polytetrafluoroethylene PTFE or polyfluoroethylene FEP) is used as a carbon sheet or carbon cloth. The conductive porous bodies 1 and 5 having the water-repellent diffusion layers 2 and 6 are prepared by applying the conductive porous bodies 1 and 5 on the surface of the conductive porous bodies 1 and 5 and heating them to a temperature at which the resin melts.

次に、図6(b)に示すように、白金系触媒などの触媒を担持させたカーボン微粒子などと水素イオン伝導性高分子材料(例えば、デュポン社製のNafion(登録商標)など)とをアルコールなどの溶媒に分散させて混錬した混合物を作製し、撥水性の導電性多孔体1と5の上に塗布した後、60〜80℃に加温して溶媒を蒸発させ、酸素極触媒層3と燃料極触媒層7とを形成し、ガス拡散性触媒電極54(酸素極)とガス拡散性触媒電極58(燃料極)とをそれぞれ作製する。   Next, as shown in FIG. 6B, carbon fine particles carrying a catalyst such as a platinum-based catalyst and a hydrogen ion conductive polymer material (for example, Nafion (registered trademark) manufactured by DuPont) are used. An oxygen electrode catalyst is prepared by preparing a kneaded mixture by dispersing in a solvent such as alcohol and applying the mixture onto the water-repellent conductive porous bodies 1 and 5 and then heating the mixture to 60 to 80 ° C. to evaporate the solvent. The layer 3 and the fuel electrode catalyst layer 7 are formed, and the gas diffusible catalyst electrode 54 (oxygen electrode) and the gas diffusible catalyst electrode 58 (fuel electrode) are respectively produced.

次に、図6(c)に示すように、酸素極54の触媒層3と燃料極58の触媒層7との間にNafion(登録商標)などの水素イオン伝導膜9を挟持し、加熱圧着して接合し、MEA60を作製する。   Next, as shown in FIG. 6C, a hydrogen ion conductive membrane 9 such as Nafion (registered trademark) is sandwiched between the catalyst layer 3 of the oxygen electrode 54 and the catalyst layer 7 of the fuel electrode 58, and thermocompression bonded. Then, the MEA 60 is manufactured.

上記のような工程が、ガス拡散性の多孔体構造と反応ガス/触媒/電解質の三相界面とを有する触媒層を形成する上で有効であることは一般に認められているが、溶媒を蒸発させて触媒層を形成した後の触媒層の処理に関して定まった方法が確立されていない。   It is generally accepted that the above process is effective in forming a catalyst layer having a gas diffusible porous structure and a reaction gas / catalyst / electrolyte three-phase interface. No fixed method has been established for the treatment of the catalyst layer after forming the catalyst layer.

例えば、多くの場合、導電性多孔体に触媒を含有する混合物を塗布し、大気中、60〜80℃で溶媒を蒸発させて触媒層を形成した後、特別な処理をしないでそのまま触媒層をイオン伝導膜と接合させている(特開2003−109606号公報など)。   For example, in many cases, after applying a mixture containing a catalyst to a conductive porous body and evaporating the solvent at 60 to 80 ° C. in the atmosphere to form a catalyst layer, the catalyst layer is left as it is without any special treatment. It is bonded to an ion conductive membrane (Japanese Patent Laid-Open No. 2003-109606).

あるいは、触媒を含有する混合物から溶媒を145℃で蒸発させて触媒層を形成している例もある。但し、雰囲気に関する記述はない(Journal of The Electrochemical Society,147(1), 92-98 (2000) )。   Alternatively, there is an example in which the catalyst layer is formed by evaporating the solvent from the mixture containing the catalyst at 145 ° C. However, there is no description about the atmosphere (Journal of The Electrochemical Society, 147 (1), 92-98 (2000)).

また、後述の特許文献1及び2では、白金を担持させたカーボンブラック粉末と含フッ素イオン交換樹脂と分散剤とエタノールとの混合物をパーフルオロアルキル重合体からなるイオン交換膜に塗布した後、大気中、120℃にて1時間溶媒を蒸発させて触媒層を形成する例が示されている。   In Patent Documents 1 and 2 to be described later, after applying a mixture of carbon black powder carrying platinum, a fluorine-containing ion exchange resin, a dispersant and ethanol to an ion exchange membrane made of a perfluoroalkyl polymer, In this example, the solvent is evaporated at 120 ° C. for 1 hour to form a catalyst layer.

また、後述の特許文献3では、白金系触媒を担持させたカーボン粉末と、パーフルオロアルキル重合体からなるイオン交換樹脂と、エタノールと水の混合分散媒(質量比で1:1)との混合物を塗布し、80℃で分散媒を蒸発させて触媒層を形成し、その上に同様の方法でイオン交換樹脂膜を形成した後、この膜・触媒層接合体を、酸素を含まない窒素ガス雰囲気中で60〜240℃にて5秒以上、例えば120℃にて30分加熱処理を行う例が示されている。   In Patent Document 3 described later, a mixture of a carbon powder carrying a platinum-based catalyst, an ion exchange resin made of a perfluoroalkyl polymer, and a mixed dispersion medium (mass ratio of 1: 1) of ethanol and water. The catalyst layer is formed by evaporating the dispersion medium at 80 ° C., and an ion exchange resin film is formed thereon by the same method. Then, the membrane / catalyst layer assembly is combined with nitrogen gas not containing oxygen. An example is shown in which heat treatment is performed at 60 to 240 ° C. in an atmosphere for 5 seconds or longer, for example, at 120 ° C. for 30 minutes.

特開2003−45437号公報(第5及び6頁)JP 2003-45437 A (pages 5 and 6) 特開2003−45440号公報(第6頁)JP 2003-45440 A (page 6) 特開2003−17086号公報(第2,4及び5頁、図1)Japanese Patent Laid-Open No. 2003-17086 (pages 2, 4 and 5; FIG. 1)

本発明は、上記のような事情に鑑みてなされたものであって、その目的は、固体高分子電解質型燃料電池などに応用した場合に出力向上に効果のある触媒電極の製造方法、膜電極接合体の製造方法、及び電気化学デバイスの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to produce a catalyst electrode and a membrane electrode that are effective in improving output when applied to a solid polymer electrolyte fuel cell or the like. It is providing the manufacturing method of a conjugate | zygote, and the manufacturing method of an electrochemical device.

本発明者は、電気化学デバイスの各種製造プロセスの最適化を検討する中で、次のような発明に到達した。   The present inventor has reached the following invention while examining optimization of various manufacturing processes of electrochemical devices.

即ち、本発明は、触媒粒子とイオン伝導性樹脂と溶媒とを含む液層を導電性多孔体上に塗布する工程と、前記液層から触媒層を形成する工程と、2×10Pa以上、大気中の酸素分圧以下の酸素が存在する雰囲気中で100℃以上の温度で加熱処理する工程とを有する、触媒電極の製造方法に係わるものである。   That is, the present invention includes a step of applying a liquid layer containing catalyst particles, an ion conductive resin, and a solvent on a conductive porous body, a step of forming a catalyst layer from the liquid layer, 2 × 10 Pa or more, air And a heat treatment at a temperature of 100 ° C. or higher in an atmosphere in which oxygen having an oxygen partial pressure equal to or lower is present.

また、この触媒電極の製造方法によって、前記導電性多孔体上に前記液層を形成し、前記加熱処理を経て触媒電極を作製する工程と、一対の前記触媒電極間に触媒層と接触してイオン伝導膜を挟み、接合させて一体化する工程とを有する、膜電極接合体の製造方法に係わるものである。   Further, according to this method for producing a catalyst electrode, a step of forming the liquid layer on the conductive porous body, producing a catalyst electrode through the heat treatment, and contacting the catalyst layer between the pair of catalyst electrodes The present invention relates to a method for producing a membrane electrode assembly, which includes a step of sandwiching and joining an ion conductive membrane and integrating them.

更に、前記の製造方法によって得られた膜電極接合体を、燃料供給部と酸素供給部との間に挟む工程を有する、電気化学デバイスの製造方法に係わるものである。   Furthermore, the present invention relates to a method for manufacturing an electrochemical device, comprising a step of sandwiching the membrane electrode assembly obtained by the above manufacturing method between a fuel supply unit and an oxygen supply unit.

本発明者は、上記の方法によって触媒電極、膜電極接合体及び電気化学デバイスを作製し、これを用いて固体高分子電解質型燃料電池等の電気化学デバイスを構成すると、出力が増加することを見出した。   The inventor produced a catalyst electrode, a membrane electrode assembly, and an electrochemical device by the above-described method, and configured an electrochemical device such as a solid polymer electrolyte fuel cell using the catalyst electrode, the output increased. I found it.

触媒粒子とイオン伝導性樹脂と溶媒とを含む液層を形成し、前記液層を2×10Pa以上、大気中の酸素分圧以下の酸素が存在する特定の雰囲気中で前記触媒層を100℃以上と特定の温度で加熱処理する工程を行うと、燃料電池等の電気化学デバイスに用いたときに出力が向上することが判明した。   A liquid layer containing catalyst particles, an ion conductive resin, and a solvent is formed, and the catalyst layer is heated to 100 ° C. in a specific atmosphere in which oxygen is present at 2 × 10 Pa or more and oxygen partial pressure in the atmosphere or less. It has been found that when the heat treatment process at a specific temperature is performed as described above, the output is improved when used in an electrochemical device such as a fuel cell.

こうした特定の分圧の酸素存在下で加熱処理する効果として、触媒層に形成されるべき液層を導電性多孔体上に塗布すると、触媒物質がその多孔体中に滲み込むため、反応ガス/触媒/電解質の三相界面の形成に寄与せずにガス拡散の障害になっている、触媒表面などに付着している有機化合物やカーボンが単なる加熱処理では除去されないが、これは本発明による特定の酸素分圧下で100℃以上の加熱処理によって効果的かつ十分に酸化除去され、ガス拡散路や三相界面がより効果的に形成されることなどが考えられる。   As an effect of the heat treatment in the presence of oxygen having a specific partial pressure, when a liquid layer to be formed on the catalyst layer is applied on the conductive porous body, the catalyst substance penetrates into the porous body, Organic compounds and carbon adhering to the catalyst surface that do not contribute to the formation of the catalyst / electrolyte three-phase interface and hinder gas diffusion are not removed by simple heat treatment. It is conceivable that the gas diffusion path and the three-phase interface are more effectively formed by the effective and sufficient oxidation removal by the heat treatment at 100 ° C. or higher under the partial pressure of oxygen.

作用機構はともかく、本発明の重要な点は、特定の分圧の酸素存在下、100℃以上の温度で行う前記加熱処理には、出力を増加させる正の作用と、逆に出力を低下させる負の作用とが競合しているが、本発明によって、加熱処理を行う際の酸素圧力、加熱処理温度(更には加熱処理時間)に最適範囲が存在することがはじめて見出されたのである。   Regardless of the mechanism of action, the important point of the present invention is that the heat treatment performed at a temperature of 100 ° C. or higher in the presence of oxygen at a specific partial pressure has a positive effect of increasing the output and conversely reduces the output. Although competing with the negative action, the present invention has been found for the first time that there are optimum ranges for the oxygen pressure and the heat treatment temperature (and the heat treatment time) during the heat treatment.

本発明の触媒電極の製造方法において、後述の実施例において示すように、前記加熱処理を100〜140℃の温度にて行うのがよい。また、前記加熱処理を0.2〜6時間行うのがよい。   In the method for producing a catalyst electrode of the present invention, the heat treatment is preferably performed at a temperature of 100 to 140 ° C., as shown in Examples described later. The heat treatment is preferably performed for 0.2 to 6 hours.

また、前記溶媒を蒸発させて前記触媒層を形成する前記乾燥処理を、前記加熱処理の前に、100℃未満(望ましくは60〜80℃)で行うのがよく、これは大気圧の大気中と同じ酸素分圧を有する雰囲気中で行うのがよい。前記溶媒の蒸発による除去は、前記触媒層を構成する水素イオン伝導性樹脂の劣化などを引き起こさない60〜80℃で行うのがよい。温度が低いので、この処理を行う雰囲気に特に制限はなく、大気中で行うのが好都合である。   Further, the drying treatment for evaporating the solvent to form the catalyst layer may be performed at a temperature lower than 100 ° C. (preferably 60 to 80 ° C.) before the heat treatment, and this is performed in an atmospheric pressure atmosphere. In an atmosphere having the same oxygen partial pressure. Removal of the solvent by evaporation is preferably performed at 60 to 80 ° C., which does not cause deterioration of the hydrogen ion conductive resin constituting the catalyst layer. Since the temperature is low, there is no particular limitation on the atmosphere in which this treatment is performed, and it is convenient to perform in the air.

また、前記触媒電極は、膜電極接合体用の触媒電極として形成するのがよく、前記膜電極接合体の前記触媒電極間に水素イオン伝導膜を挟持させるのがよい。   The catalyst electrode is preferably formed as a catalyst electrode for a membrane electrode assembly, and a hydrogen ion conductive membrane is preferably sandwiched between the catalyst electrodes of the membrane electrode assembly.

また、本発明の電気化学デバイスの製造方法において、前記燃料供給部側の触媒電極と前記酸素供給部側の触媒電極とを外部負荷に接続するのがよく、これにて燃料電池を製造するのがよい。   In the method for manufacturing an electrochemical device according to the present invention, the catalyst electrode on the fuel supply unit side and the catalyst electrode on the oxygen supply unit side are preferably connected to an external load, thereby manufacturing a fuel cell. Is good.

次に、本発明の好ましい実施の形態について、図面参照下により詳しく説明する。   Next, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

実施の形態1
図1は、本発明の実施の形態1に基づく触媒層とMEAの作製工程を示す概略断面図である。
Embodiment 1
FIG. 1 is a schematic cross-sectional view showing a production process of a catalyst layer and an MEA based on Embodiment 1 of the present invention.

まず、図1(a)に示すように、カーボンブラックと撥水性樹脂、例えばフッ素系樹脂(ポリテトラフルオロエチレンPTFEやポリフルオロエチレンFEP)とを混錬した混合物を、カーボンシートやカーボンクロスなどの導電性で多孔質の導電性多孔体の表面に塗布し、これを樹脂が融ける温度、例えばFEPであれば380℃まで加熱し、撥水性拡散層2、6を有する導電性多孔体1と5を作製する。   First, as shown in FIG. 1 (a), a mixture obtained by kneading carbon black and a water-repellent resin such as a fluorine-based resin (polytetrafluoroethylene PTFE or polyfluoroethylene FEP) is used as a carbon sheet or carbon cloth. Conductive porous bodies 1 and 5 having water-repellent diffusion layers 2 and 6 are applied to the surface of a conductive porous porous body and heated to a temperature at which the resin melts, for example, FEP, to 380 ° C. Is made.

次に、図1(b)に示すように、触媒粒子と水素イオン伝導性樹脂と溶媒との混合物を作製し、撥水性の導電性多孔体1および5の上に塗布した後、100℃未満の温度、例えば60〜80℃に加温して溶媒を蒸発させ、酸素極触媒層3および燃料極触媒層7を形成する。   Next, as shown in FIG. 1 (b), a mixture of catalyst particles, a hydrogen ion conductive resin and a solvent is prepared and applied onto the water-repellent conductive porous bodies 1 and 5, and then less than 100 ° C. The temperature is raised to, for example, 60 to 80 ° C. to evaporate the solvent, thereby forming the oxygen electrode catalyst layer 3 and the fuel electrode catalyst layer 7.

ここで、酸素極側触媒として、例えば白金、燃料極側触媒として、例えば白金ルテニウム合金を用い、カーボン微粒子などに担持させて用いるのがよい。   Here, as the oxygen electrode side catalyst, for example, platinum, and as the fuel electrode side catalyst, for example, a platinum ruthenium alloy is preferably used by being supported on carbon fine particles.

また、前記水素イオン伝導性樹脂として、例えばパーフルオロアルキルスルホン酸樹脂を用いるのがよく、具体的には、デュポン社製のNafion(登録商標)や、旭硝子社製のフレミオン(登録商標)や、旭化成社製のアシプレックス(登録商標)などを挙げることができる。   Further, as the hydrogen ion conductive resin, for example, perfluoroalkyl sulfonic acid resin is preferably used, specifically, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass, Asahi Kasei Co., Ltd. Aciplex (registered trademark) and the like.

また、前記溶媒としてアルコール(例えば、エタノールや1−プロパノール)、またはアルコールと水との混合溶媒を用いるのがよい。   As the solvent, an alcohol (for example, ethanol or 1-propanol) or a mixed solvent of alcohol and water is preferably used.

次に、図1(c)に示すように、酸素極触媒層3および燃料極触媒層7を100〜140℃の温度にて、2×10Pa以上、大気中の酸素分圧以下の酸素が存在する雰囲気中で、0.2〜6時間加熱処理して、加熱処理した酸素極触媒層3aおよび燃料極触媒層7aを形成し、ガス拡散性触媒電極4(酸素極)および8(燃料極)をそれぞれ作製する。   Next, as shown in FIG. 1 (c), the oxygen electrode catalyst layer 3 and the fuel electrode catalyst layer 7 have oxygen of 2 × 10 Pa or more and oxygen partial pressure or less in the atmosphere at a temperature of 100 to 140 ° C. In the atmosphere, the heat treatment is performed for 0.2 to 6 hours to form the heat-treated oxygen electrode catalyst layer 3a and the fuel electrode catalyst layer 7a, and the gas diffusible catalyst electrodes 4 (oxygen electrode) and 8 (fuel electrode) Each is produced.

次に、図1(d)に示すように、水素イオン伝導膜9を酸素極4と燃料極8との間に挟持し、100〜150℃の温度にて加熱圧着(ホットプレス)して接合し、膜電極接合体(MEA)10を作製する。水素イオン伝導膜として、例えばパーフルオロアルキルスルホン酸樹脂膜を用いるのがよく、具体的には、デュポン社製のNafion(登録商標)膜や、旭硝子社製のフレミオン(登録商標)膜や、旭化成社製のアシプレックス(登録商標)膜などを挙げることができる。   Next, as shown in FIG. 1 (d), the hydrogen ion conductive film 9 is sandwiched between the oxygen electrode 4 and the fuel electrode 8 and bonded by thermocompression bonding (hot pressing) at a temperature of 100 to 150 ° C. Then, a membrane electrode assembly (MEA) 10 is produced. As the hydrogen ion conducting membrane, for example, a perfluoroalkyl sulfonic acid resin membrane is preferably used. Specifically, a Nafion (registered trademark) membrane manufactured by DuPont, a Flemion (registered trademark) membrane manufactured by Asahi Glass, Aciplex (registered trademark) membrane manufactured by the company can be mentioned.

触媒層3aおよび7aを形成する水素イオン伝導性樹脂と、水素イオン伝導膜9とを同じ材質にしておくと、MEAを形成したときに水素イオン伝導膜9から触媒層3aおよび7aへ連続して水素イオン伝導路を形成することができる。   If the hydrogen ion conductive resin forming the catalyst layers 3a and 7a and the hydrogen ion conductive film 9 are made of the same material, when the MEA is formed, the hydrogen ion conductive film 9 is continuously connected to the catalyst layers 3a and 7a. A hydrogen ion conduction path can be formed.

図2は、上記のMEA10を用いて作製したダイレクトメタノール型燃料電池(DMFC)20の構成を示す概略断面図である。   FIG. 2 is a schematic cross-sectional view showing a configuration of a direct methanol fuel cell (DMFC) 20 manufactured using the MEA 10 described above.

図2に示したDMFC20では、MEA10はセル上半部13及びセル下半部14の間に挟持され、DMFC20に組み込まれる。セル上半部13及びセル下半部14には、それぞれ、燃料供給管15及び酸素(空気)供給管16が設けられており、燃料供給管15からはメタノール水溶液が供給され、また酸素(空気)供給管16からは酸素もしくは空気が供給される。   In the DMFC 20 shown in FIG. 2, the MEA 10 is sandwiched between the upper cell half 13 and the cell lower half 14 and incorporated in the DMFC 20. The cell upper half 13 and the cell lower half 14 are respectively provided with a fuel supply pipe 15 and an oxygen (air) supply pipe 16. A methanol aqueous solution is supplied from the fuel supply pipe 15, and oxygen (air) ) Oxygen or air is supplied from the supply pipe 16.

メタノール水溶液と酸素(もしくは空気)は、それぞれ、通気孔(図示省略)を有する燃料供給部11及び酸素供給部12を通過して燃料極8及び酸素極4に供給される。燃料供給部11は燃料極8とセル上半部13とを電気的に接続し、酸素供給部12は酸素極4とセル下半部14とを電気的に接続する役割もする。また、セル上半部13には燃料の漏洩を防ぐためにOリング(図示せず)が配置されていてよい。   The methanol aqueous solution and oxygen (or air) are supplied to the fuel electrode 8 and the oxygen electrode 4 through the fuel supply unit 11 and the oxygen supply unit 12 having vent holes (not shown), respectively. The fuel supply unit 11 electrically connects the fuel electrode 8 and the cell upper half 13, and the oxygen supply unit 12 also functions to electrically connect the oxygen electrode 4 and the cell lower half 14. Further, an O-ring (not shown) may be disposed in the cell upper half 13 to prevent fuel leakage.

発電は、メタノール水溶液と酸素(もしくは空気)を供給しながら、セル上半部13及びセル下半部14に接続されている外部回路17を閉じることで行うことができる。このとき、燃料極8の表面上では下記(式4)
2CH3OH+2H2O → 12H++2CO2+12e- (式4)
の反応によりメタノールが酸化され、燃料極8に電子を与える。生じた水素イオンHは水素イオン伝導膜9を介して酸素極4へ移動する。
Power generation can be performed by closing the external circuit 17 connected to the cell upper half 13 and the cell lower half 14 while supplying an aqueous methanol solution and oxygen (or air). At this time, on the surface of the fuel electrode 8, the following (formula 4)
2CH 3 OH + 2H 2 O → 12H + + 2CO 2 + 12e (Formula 4)
As a result of the reaction, methanol is oxidized and electrons are given to the fuel electrode 8. The generated hydrogen ions H + move to the oxygen electrode 4 through the hydrogen ion conductive film 9.

酸素極4へ移動した水素イオンは、酸素極4に供給される酸素と下記(式5)
3O2+12H++12e- → 6H2O (式5)
のように反応し、水を生成する。このとき、酸素は、酸素極4から電子を取り込み、還元される。
The hydrogen ions moved to the oxygen electrode 4 are oxygen and the following (formula 5) supplied to the oxygen electrode 4.
3O 2 + 12H + + 12e → 6H 2 O (Formula 5)
To produce water. At this time, oxygen takes in electrons from the oxygen electrode 4 and is reduced.

このようにして、燃料極8ではメタノールが酸化され、酸素極4では酸素が還元され、燃料電池全体では下記(式6)
2CH3OH+3O2 → 2CO2+6H2O (式6)
のメタノールの燃焼反応が進行する。このとき、電流が酸素極4から燃料極8へ流れ、燃料電池20から電気エネルギーを取り出すことができる。
In this way, methanol is oxidized at the fuel electrode 8 and oxygen is reduced at the oxygen electrode 4.
2CH 3 OH + 3O 2 → 2CO 2 + 6H 2 O (Formula 6)
The methanol combustion reaction proceeds. At this time, an electric current flows from the oxygen electrode 4 to the fuel electrode 8, and electric energy can be extracted from the fuel cell 20.

また、メタノールの代わりに水素を供給するようにすれば、水素酸素燃料電池として用いることができる。   Moreover, if hydrogen is supplied instead of methanol, it can be used as a hydrogen-oxygen fuel cell.

実施の形態1に説明した方法によって触媒電極およびMEAを作製し、これを用いてダイレクトメタノール型燃料電池(DMFC)を構成し、DMFCの出力特性を調べた結果について説明する。実験は、前記加熱処理を行う際の酸素圧力、加熱処理温度及び加熱処理時間を種々に変えて行い、これらについて最適条件を見出した例について説明する。   A description will be given of a result obtained by fabricating a catalyst electrode and an MEA by the method described in the first embodiment, forming a direct methanol fuel cell (DMFC) using the catalyst electrode, and examining output characteristics of the DMFC. The experiment is performed by changing the oxygen pressure, the heat treatment temperature, and the heat treatment time when performing the heat treatment, and an example in which optimum conditions are found for these will be described.

<比較例1>
まず、図6(a)に示したように、カーボンブラックと、撥水性樹脂としてポリフルオロエチレン樹脂(FEP)を混錬した混合物をカーボンペーパー上に塗布し、これを樹脂が融ける温度である380℃まで加熱し、撥水性拡散層2、6を有する導電性多孔体1と5を作製した。次に、図6(b)に示したように、白金を担持したカーボン微粒子(田中貴金属製)とNafion(登録商標)溶液(アルドリッチ社製)とを、水と1−プロパノールとの混合溶媒に均一に分散させた混合物を導電性多孔体1の上に塗布した後、大気中、80℃にて5分間加温して溶媒を蒸発させ、酸素極触媒層3を形成し、ガス拡散性触媒電極54(酸素極)を作製した。同様にして、白金を担持したカーボン微粒子の代わりに白金ルテニウム合金を担持したカーボン微粒子(田中貴金属社製)を用いて、導電性多孔体5の上に燃料極触媒層7を形成し、ガス拡散性触媒電極58(燃料極)を作製した。
<Comparative Example 1>
First, as shown in FIG. 6A, a mixture obtained by kneading carbon black and polyfluoroethylene resin (FEP) as a water-repellent resin is applied onto carbon paper, and this is a temperature at which the resin melts 380. The conductive porous bodies 1 and 5 having the water-repellent diffusion layers 2 and 6 were produced by heating to ° C. Next, as shown in FIG. 6 (b), carbon fine particles carrying platinum (made by Tanaka Kikinzoku) and Nafion (registered trademark) solution (made by Aldrich) are mixed in a mixed solvent of water and 1-propanol. After the uniformly dispersed mixture is applied on the conductive porous body 1, the solvent is evaporated by heating in the atmosphere at 80 ° C. for 5 minutes to form the oxygen electrode catalyst layer 3, and the gas diffusing catalyst. An electrode 54 (oxygen electrode) was produced. Similarly, a fuel electrode catalyst layer 7 is formed on the conductive porous body 5 by using carbon fine particles (made by Tanaka Kikinzoku Co., Ltd.) carrying platinum ruthenium alloy instead of carbon fine particles carrying platinum, and gas diffusion is performed. The catalytic electrode 58 (fuel electrode) was produced.

次に、図6(c)に示したように、水素イオン伝導膜としてNafion(登録商標)115膜を酸素極54と燃料極58との間に挟持し、150℃で加熱圧着(ホットプレス)して接合させ、一体化したMEA60を作製した。   Next, as shown in FIG. 6C, a Nafion (registered trademark) 115 membrane is sandwiched between the oxygen electrode 54 and the fuel electrode 58 as a hydrogen ion conductive membrane, and thermocompression bonding (hot press) at 150 ° C. And joined to produce an integrated MEA 60.

このMEA60を図2に示したDMFC20と同様のDMFCに組み込み、燃料極58には3質量%のメタノール溶液を、酸素極54には空気をそれぞれ流し、DMFCの出力を測定した。この場合の最大出力を100(基準)とする。   The MEA 60 was incorporated in a DMFC similar to the DMFC 20 shown in FIG. 2, a 3 mass% methanol solution was passed through the fuel electrode 58, and air was passed through the oxygen electrode 54, and the output of the DMFC was measured. In this case, the maximum output is 100 (reference).

<実施例1〜6、比較例2、3>
まず、比較例と同様にして、図1(a)に示したように、撥水性を有する導電性多孔体1と5を作製し、図1(b)に示したように、導電性多孔体1の上に酸素極触媒層3を形成し、導電性多孔体5の上に燃料極触媒層7を形成した。
<Examples 1 to 6, Comparative Examples 2 and 3>
First, as in the comparative example, as shown in FIG. 1A, conductive porous bodies 1 and 5 having water repellency were prepared, and as shown in FIG. An oxygen electrode catalyst layer 3 was formed on 1, and a fuel electrode catalyst layer 7 was formed on the conductive porous body 5.

次に、比較例1とは異なり、図1(c)に示したように、大気中(酸素の分圧 2×104Pa)、温度120℃にて、加熱処理時間を0.1〜8時間の間で種々に変えて、触媒層の加熱処理を行った。 Next, unlike Comparative Example 1, as shown in FIG. 1C, the heat treatment time was 0.1 to 8 at a temperature of 120 ° C. in the atmosphere (partial pressure of oxygen 2 × 10 4 Pa). The catalyst layer was heat-treated in various ways during the time.

次に、比較例1と同様にして、図1(d)に示したように、水素イオン伝導膜としてNafion(登録商標)115膜を酸素極4と燃料極8との間に挟持し、加熱圧着(ホットプレス)して接合させ、一体化したMEA10を作製した。   Next, similarly to Comparative Example 1, as shown in FIG. 1D, a Nafion (registered trademark) 115 film as a hydrogen ion conductive film is sandwiched between the oxygen electrode 4 and the fuel electrode 8 and heated. Bonded (hot press) and bonded to produce an integrated MEA 10.

比較例と同様に、このMEA10を図2に示したDMFC20に組み込み、燃料極8には3質量%のメタノール溶液を、酸素極4には空気をそれぞれ流し、DMFC20の出力を測定した。この場合の最大出力を求め、比較例1における最大出力を100(基準)とする相対値で表した。その結果を、比較例1の結果と共に、表1および図3に示す。   Similarly to the comparative example, this MEA 10 was incorporated in the DMFC 20 shown in FIG. 2, a 3 mass% methanol solution was passed through the fuel electrode 8, and air was passed through the oxygen electrode 4, and the output of the DMFC 20 was measured. The maximum output in this case was determined and expressed as a relative value with the maximum output in Comparative Example 1 being 100 (reference). The results are shown in Table 1 and FIG. 3 together with the results of Comparative Example 1.

Figure 2005235556
Figure 2005235556

図3および表1によれば、DMFCの最大出力は、加熱処理時間が0.1時間の比較例2では、加熱処理を行わない比較例1と変わりがないが、加熱処理時間が0.2時間の実施例1から急激に増加し始めることがわかる。また、加熱処理時間が1時間をこえると、DMFCの最大出力は減少に転じ、加熱処理時間が6時間をこえると、立ち上がりほどではないが、減少が急激になり、加熱処理時間が8時間の比較例3では、加熱処理を行わない比較例1と変わりがない。   According to FIG. 3 and Table 1, the maximum output of DMFC is the same as that of Comparative Example 1 in which the heat treatment time is 0.1 hours in Comparative Example 2 in which the heat treatment time is 0.1 hour. It can be seen that the time starts to increase rapidly from Example 1. In addition, when the heat treatment time exceeds 1 hour, the maximum output of DMFC starts to decrease, and when the heat treatment time exceeds 6 hours, the decrease is abrupt, but the heat treatment time is 8 hours. In Comparative Example 3, there is no difference from Comparative Example 1 in which no heat treatment is performed.

以上から、触媒層の加熱処理を行う時間は、0.2〜6時間が好ましいことがわかる。更に限定するなら、加熱処理時間は、0.5〜4時間がより好ましく、1〜2時間が最も好ましい。   From the above, it can be seen that the heat treatment time of the catalyst layer is preferably 0.2 to 6 hours. If further limited, the heat treatment time is more preferably 0.5 to 4 hours, and most preferably 1 to 2 hours.

既述したように、乾燥処理して溶媒を蒸発させて触媒層を形成した後に、酸素の存在する雰囲気中で触媒層を100℃以上の温度で加熱処理すると、なぜ燃料電池の出力向上に有効であるのかということの明確な理由は、解明されていない。しかし、加熱処理には、燃料電池の出力を増加させる正の作用と、逆に燃料電池の出力を低下させる負の作用とが競合しており、その結果、加熱処理時間に最適範囲が存在することは、図3から明らかである。   As mentioned above, after drying and evaporating the solvent to form a catalyst layer, heating the catalyst layer at a temperature of 100 ° C or higher in an atmosphere containing oxygen is effective for improving the output of the fuel cell. The obvious reason for this is not clear. However, in the heat treatment, a positive action for increasing the output of the fuel cell competes with a negative action for reducing the output of the fuel cell, and as a result, there is an optimum range for the heat treatment time. This is clear from FIG.

正の作用としては、反応ガス/触媒/電解質の三相界面の形成に寄与せず、ガス拡散の障害になっている、触媒表面などに付着している有機化合物やカーボンが酸化によって除去され、ガス拡散路や三相界面がより効果的に形成されることなどが考えられる。負の作用としては、酸化の過剰な進展によって有効な三相界面が減少したり、ガス拡散路の表面が酸化されて撥水性が低下し、電池反応で生成した水を除去する効率が低下したりすることが考えられる。   As a positive effect, organic compounds and carbon adhering to the catalyst surface, etc., which do not contribute to the formation of the reaction gas / catalyst / electrolyte three-phase interface and hinder gas diffusion, are removed by oxidation, It is conceivable that the gas diffusion path and the three-phase interface are formed more effectively. Negative effects include a decrease in the effective three-phase interface due to excessive progress of oxidation, or a decrease in water repellency due to oxidation of the surface of the gas diffusion path, resulting in a reduction in the efficiency of removing water generated in the battery reaction. Can be considered.

<実施例7〜10、比較例4、5>
本実施例でも、触媒層の加熱処理を行う以外は比較例1と同様の工程を行い、触媒層およびMEA10を作製した。触媒層の加熱処理は、大気中(酸素の分圧 2×104Pa)、加熱処理時間1時間にて、加熱処理温度を80〜150℃の間で種々に変えて行った。
<Examples 7 to 10, Comparative Examples 4 and 5>
Also in this example, the same process as in Comparative Example 1 was performed except that the catalyst layer was heat-treated, and a catalyst layer and MEA 10 were produced. The heat treatment of the catalyst layer was carried out in the atmosphere (partial pressure of oxygen 2 × 10 4 Pa) in a heat treatment time of 1 hour and variously changing the heat treatment temperature between 80 to 150 ° C.

次に、比較例1と同様に、上記のMEA10をDMFC20に組み込み、DMFC20の出力を測定した。この場合の最大出力を求め、比較例1における最大出力を100(基準)とする相対値で表した。その結果を、表2および図4に示す。   Next, as in Comparative Example 1, the above MEA 10 was incorporated in the DMFC 20 and the output of the DMFC 20 was measured. The maximum output in this case was determined and expressed as a relative value with the maximum output in Comparative Example 1 being 100 (reference). The results are shown in Table 2 and FIG.

Figure 2005235556
図4および表2によれば、DMFCの最大出力は、加熱処理温度が80℃の比較例4では、加熱処理を行わない比較例1と差はないが、加熱処理温度が80℃の実施例7から急激に増加し始めることがわかる。また、加熱処理温度が100℃をこえると、DMFCの最大出力は減少に転じ、加熱処理温度が140℃付近で減少は最も急激であり、加熱処理温度が150℃の比較例5では、加熱処理を行わない比較例1と変わりがない。
る。
Figure 2005235556
According to FIG. 4 and Table 2, the maximum output of DMFC is not different from Comparative Example 1 in which the heat treatment temperature is 80 ° C., but in Comparative Example 4 in which the heat treatment temperature is 80 ° C. It turns out that it starts to increase rapidly from 7. When the heat treatment temperature exceeds 100 ° C., the maximum output of DMFC starts to decrease, the decrease is the most rapid when the heat treatment temperature is around 140 ° C., and in Comparative Example 5 where the heat treatment temperature is 150 ° C., the heat treatment temperature No difference from Comparative Example 1 in which
The

以上から、触媒層の加熱処理を行う温度は、100〜140℃が好ましいことがわかる。更に限定するなら、加熱処理時間は、105〜135℃がより好ましく、120〜130℃が最も好ましい。   From the above, it can be seen that the temperature at which the catalyst layer is heat-treated is preferably 100 to 140 ° C. If further limited, the heat treatment time is more preferably 105 to 135 ° C, and most preferably 120 to 130 ° C.

前述したと同様に、明確な理由は解明されていないが、加熱処理には、燃料電池の出力を増加させる正の作用と、逆に燃料電池の出力を低下させる負の作用とが競合しており、その結果、加熱処理温度にも最適範囲が存在することは、図4および表2から明らかである。   As described above, the clear reason has not been elucidated, but the heat treatment competes with the positive effect of increasing the output of the fuel cell and the negative effect of reducing the output of the fuel cell. As a result, it is clear from FIG. 4 and Table 2 that there is an optimum range for the heat treatment temperature.

<実施例11〜14、比較例6>および<実施例15〜18、比較例7>
本実施例でも、触媒層の加熱処理を行う以外は比較例1と同様の工程を行い、触媒層およびMEA10を作製した。触媒層の加熱処理は、加熱処理温度120℃、加熱処理時間1時間にて、加熱処理を行う雰囲気中の酸素分圧を2〜2×104Paの間で種々に変えて行った。
<Examples 11-14, Comparative Example 6> and <Examples 15-18, Comparative Example 7>
Also in this example, the same process as in Comparative Example 1 was performed except that the catalyst layer was heat-treated, and a catalyst layer and MEA 10 were produced. The heat treatment of the catalyst layer was performed at a heat treatment temperature of 120 ° C. and a heat treatment time of 1 hour by changing the oxygen partial pressure in the atmosphere in which the heat treatment was performed between 2 to 2 × 10 4 Pa.

但し、実施例11〜14と比較例6は、酸素分圧につれて全圧も変化させた場合であり、実施例15〜18と比較例7は、共存する窒素の量を変えて、全圧を大気圧に保った場合である。   However, Examples 11 to 14 and Comparative Example 6 are cases where the total pressure was also changed with the oxygen partial pressure, and Examples 15 to 18 and Comparative Example 7 were to change the total amount of nitrogen by changing the amount of coexisting nitrogen. This is when it is kept at atmospheric pressure.

次に、比較例1と同様に、上記のMEA8をDMFC20に組み込み、DMFC20の出力を測定した。この場合の最大出力を求め、比較例1における最大出力を100(基準)とする相対値で表した。その結果を、表3、表4と図5に示す。   Next, as in Comparative Example 1, the above MEA 8 was incorporated in the DMFC 20 and the output of the DMFC 20 was measured. The maximum output in this case was determined and expressed as a relative value with the maximum output in Comparative Example 1 being 100 (reference). The results are shown in Table 3, Table 4, and FIG.

Figure 2005235556
Figure 2005235556

Figure 2005235556
Figure 2005235556

表3と表4とを比べると、DMFCの最大出力は、加熱処理を行う雰囲気中の酸素分圧に依存するが、全圧には依存しないことがわかる。そこで、図5には、表3と表4とをまとめて図示した。   Comparing Table 3 and Table 4, it can be seen that the maximum output of DMFC depends on the oxygen partial pressure in the atmosphere in which the heat treatment is performed, but does not depend on the total pressure. Therefore, FIG. 5 shows Table 3 and Table 4 together.

図5および表3と表4によれば、DMFCの最大出力は、加熱処理を行う雰囲気中の酸素分圧が2Paの比較例6または7では、加熱処理を行わない比較例1と差はないが、酸素分圧が2×10Paの実施例11および15から急激に増加し始めることがわかる。また、酸素分圧が2×104 Paをこえると、DMFCの最大出力は減少に転じる。従って、大気圧の大気中の酸素分圧以上の酸素を雰囲気中に導入することは、装置や操作上の負担が増加するばかりで出力は向上しない。 According to FIG. 5 and Tables 3 and 4, the maximum output of DMFC is not different in Comparative Example 6 or 7 in which the oxygen partial pressure in the atmosphere in which the heat treatment is performed is 2 Pa, compared with Comparative Example 1 in which the heat treatment is not performed. However, it can be seen that the oxygen partial pressure starts to increase rapidly from Examples 11 and 15 where the oxygen partial pressure is 2 × 10 Pa. When the oxygen partial pressure exceeds 2 × 10 4 Pa, the maximum output of DMFC starts to decrease. Therefore, introducing oxygen in the atmosphere at or above the atmospheric partial pressure of atmospheric pressure increases the burden on the apparatus and operation and does not improve the output.

以上から、触媒層の加熱処理を行う際の雰囲気中の酸素分圧は、2×10Pa以上、大気圧の大気中の酸素分圧以下であるのが好ましいことがわかる。更に限定するなら、加熱処理時の酸素分圧は、1×102 Pa以上、大気圧の大気中の酸素分圧以下であるのがより好ましく、2×102 Pa以上、大気圧の大気中の酸素分圧以下であるのが更に好ましい。 From the above, it can be seen that the oxygen partial pressure in the atmosphere during the heat treatment of the catalyst layer is preferably 2 × 10 Pa or more and not more than the oxygen partial pressure in the atmospheric pressure atmosphere. If further limited, the oxygen partial pressure during the heat treatment is more preferably 1 × 10 2 Pa or more and less than or equal to the oxygen partial pressure in the atmospheric pressure atmosphere, and 2 × 10 2 Pa or more in the atmospheric pressure atmosphere. More preferably, the oxygen partial pressure is less than or equal to.

前述したと同様に、明確な理由は解明されていないが、加熱処理には、燃料電池の出力を増加させる正の作用と、逆に燃料電池の出力を低下させる負の作用とが競合しており、その結果、加熱処理温度にも最適範囲が存在することは、図4および表2から明らかである。   As described above, the clear reason has not been elucidated, but the heat treatment competes with the positive effect of increasing the output of the fuel cell and the negative effect of reducing the output of the fuel cell. As a result, it is clear from FIG. 4 and Table 2 that there is an optimum range for the heat treatment temperature.

実施例1〜18は、ダイレクトメタノール型燃料電池(DMFC)を例として説明したが、水素酸素燃料電池でも同様の効果が観察された。   In Examples 1 to 18, the direct methanol fuel cell (DMFC) was described as an example, but the same effect was observed in the hydrogen-oxygen fuel cell.

以上、本発明を実施の形態および実施例に基づいて説明したが、本発明はこれらの例に何ら限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。例えば、上述した乾燥処理(溶媒の蒸発処理)を省略して、上述した酸素下での加熱処理を行っても、上述と同様の効果が得られる。   Although the present invention has been described based on the embodiments and examples, it is needless to say that the present invention is not limited to these examples and can be appropriately changed without departing from the gist of the invention. . For example, even if the above-described drying process (solvent evaporation process) is omitted and the above-described heat treatment is performed under oxygen, the same effect as described above can be obtained.

本発明は、水素イオン伝導体が対向電極間に挟持され、電気化学反応部を構成する、燃料電池やセンサーなどの電気化学デバイスに適用でき、これらの電気化学デバイスの性能を向上させるのに好適に用いられる。   The present invention can be applied to an electrochemical device such as a fuel cell or a sensor in which a hydrogen ion conductor is sandwiched between counter electrodes and constitutes an electrochemical reaction part, and is suitable for improving the performance of these electrochemical devices. Used for.

本発明の実施の形態1に基づく、触媒層とMEAの作製工程を示す概略断面図である。It is a schematic sectional drawing which shows the production process of a catalyst layer and MEA based on Embodiment 1 of this invention. 同、DMFCの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of DMFC. 本発明の実施例1〜6と比較例1〜3による、DMFCの最大出力と触媒層の加熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the maximum output of DMFC, and the heat processing time of a catalyst layer by Examples 1-6 of this invention, and Comparative Examples 1-3. 本発明の実施例7〜10と比較例4、5による、DMFCの最大出力と触媒層の加熱処理温度との関係を示すグラフである。It is a graph which shows the relationship between the maximum output of DMFC, and the heat processing temperature of a catalyst layer by Examples 7-10 and Comparative Examples 4 and 5 of this invention. 本発明の実施例11〜16と比較例6、7による、DMFCの最大出力と触媒層の加熱処理の際の酸素分圧との関係を示すグラフである。It is a graph which shows the relationship between the maximum output of DMFC and the oxygen partial pressure in the case of the heat processing of a catalyst layer by Examples 11-16 and Comparative Examples 6 and 7 of this invention. 従来のMEAの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional MEA.

符号の説明Explanation of symbols

3…酸素極触媒層、3a…加熱処理した酸素極触媒層、4…酸素極、
5…燃料極触媒層、7a…加熱処理した燃料極触媒層、8…燃料極、
9…水素イオン伝導膜、10…膜電極接合体(MEA)、11…燃料供給部、
12…酸素供給部、13…セル上半部、14…セル下半部、15…燃料供給管、
16…酸素(空気)供給管、17…外部回路(出力回路)、20…燃料電池
3 ... oxygen electrode catalyst layer, 3a ... heat-treated oxygen electrode catalyst layer, 4 ... oxygen electrode,
5 ... Fuel electrode catalyst layer, 7a ... Heat-treated fuel electrode catalyst layer, 8 ... Fuel electrode,
DESCRIPTION OF SYMBOLS 9 ... Hydrogen ion conductive film, 10 ... Membrane electrode assembly (MEA), 11 ... Fuel supply part,
12 ... Oxygen supply part, 13 ... Cell upper half part, 14 ... Cell lower half part, 15 ... Fuel supply pipe,
16 ... Oxygen (air) supply pipe, 17 ... External circuit (output circuit), 20 ... Fuel cell

Claims (12)

触媒粒子とイオン伝導性樹脂と溶媒とを含む液層を導電性多孔体上に塗布する工程と、前記液層から触媒層を形成する工程と、2×10Pa以上、大気中の酸素分圧以下の酸素が存在する雰囲気中で100℃以上の温度で加熱処理する工程とを有する、触媒電極の製造方法。   A step of applying a liquid layer containing catalyst particles, an ion conductive resin, and a solvent on the conductive porous body, a step of forming a catalyst layer from the liquid layer, 2 × 10 Pa or more, and oxygen partial pressure in the atmosphere or less And a step of heat-treating at a temperature of 100 ° C. or higher in an atmosphere in which oxygen is present. 前記加熱処理を100〜140℃の温度で行う、請求項1に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 1, wherein the heat treatment is performed at a temperature of 100 to 140 ° C. 前記加熱処理を0.2〜6時間行う、請求項1に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 1, wherein the heat treatment is performed for 0.2 to 6 hours. 前記加熱処理の前に、前記液層を100℃未満の温度で乾燥処理して前記溶媒を蒸発させて前記触媒層を形成する、請求項1に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 1, wherein the catalyst layer is formed by drying the liquid layer at a temperature lower than 100 ° C. and evaporating the solvent before the heat treatment. 前記乾燥処理を60〜80℃で行う、請求項4に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 4, wherein the drying treatment is performed at 60 to 80 ° C. 大気圧の大気中と同じ酸素分圧を有する雰囲気中で前記乾燥処理を行う、請求項4に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 4, wherein the drying treatment is performed in an atmosphere having the same oxygen partial pressure as that in atmospheric air. 膜電極接合体用の触媒電極を製造する、請求項1に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 1, wherein a catalyst electrode for a membrane electrode assembly is produced. 前記膜電極接合体が、前記触媒電極間に水素イオン伝導膜を挟持したものである、請求項7に記載した触媒電極の製造方法。   The method for producing a catalyst electrode according to claim 7, wherein the membrane electrode assembly is obtained by sandwiching a hydrogen ion conductive membrane between the catalyst electrodes. 請求項1〜8のいずれか1項に記載した製造方法によって、導電性多孔体上に前記液層を形成し、前記加熱処理を経て前記触媒電極を作製する工程と、一対の前記触媒電極間に前記触媒層と接触してイオン伝導膜を挟み、接合させて一体化する工程とを有する、膜電極接合体の製造方法。   A step of forming the liquid layer on a conductive porous body by the manufacturing method according to any one of claims 1 to 8 and producing the catalyst electrode through the heat treatment, and a pair of the catalyst electrodes And a step of bringing the ion conductive membrane into contact with the catalyst layer and joining them together for integration. 請求項9に記載した製造方法によって得られた膜電極接合体を、燃料供給部と酸素供給部との間に挟む工程を有する、電気化学デバイスの製造方法。   A method for producing an electrochemical device, comprising a step of sandwiching a membrane electrode assembly obtained by the production method according to claim 9 between a fuel supply unit and an oxygen supply unit. 前記燃料供給部側の前記触媒電極と前記酸素供給部側の前記触媒電極とを外部負荷に接続する、請求項10に記載した電気化学デバイスの製造方法。   The method for producing an electrochemical device according to claim 10, wherein the catalyst electrode on the fuel supply unit side and the catalyst electrode on the oxygen supply unit side are connected to an external load. 燃料電池を製造する、請求項11に記載した電気化学デバイスの製造方法。   The method for producing an electrochemical device according to claim 11, wherein a fuel cell is produced.
JP2004042810A 2004-02-19 2004-02-19 Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell Expired - Fee Related JP4407308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042810A JP4407308B2 (en) 2004-02-19 2004-02-19 Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042810A JP4407308B2 (en) 2004-02-19 2004-02-19 Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell

Publications (2)

Publication Number Publication Date
JP2005235556A true JP2005235556A (en) 2005-09-02
JP4407308B2 JP4407308B2 (en) 2010-02-03

Family

ID=35018286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042810A Expired - Fee Related JP4407308B2 (en) 2004-02-19 2004-02-19 Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell

Country Status (1)

Country Link
JP (1) JP4407308B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614100B1 (en) 2005-01-14 2006-08-22 한국과학기술연구원 Method for preparing the membrane-electrode assembly for fuel cell using membrane on electrode method before the dry-out of nafion ionomer solution and membrane-electrode assembly for fuel cell prepared by the method
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
DE102015118206A1 (en) 2014-11-07 2016-05-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for a membrane electrode assembly and membrane electrode assembly
KR20190081380A (en) * 2017-12-29 2019-07-09 현대자동차주식회사 Method of manufacturing membrane electrode assembly for fuel cell
JP7387948B1 (en) 2022-07-11 2023-11-28 株式会社キャタラー fuel cell electrode catalyst
WO2024014136A1 (en) * 2022-07-11 2024-01-18 株式会社キャタラー Fuel cell electrode catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655236B (en) * 2011-10-26 2015-03-04 中国烟草总公司郑州烟草研究院 Application of Pd/gamma-AlOOH modified glassy carbon electrode in carrying out electro-catalytic oxidation on methanol under alkaline conditions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614100B1 (en) 2005-01-14 2006-08-22 한국과학기술연구원 Method for preparing the membrane-electrode assembly for fuel cell using membrane on electrode method before the dry-out of nafion ionomer solution and membrane-electrode assembly for fuel cell prepared by the method
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
DE102015118206A1 (en) 2014-11-07 2016-05-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for a membrane electrode assembly and membrane electrode assembly
US10547058B2 (en) 2014-11-07 2020-01-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing membrane electrode assembly, and membrane electrode assembly
DE102015118206B4 (en) 2014-11-07 2023-09-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for a membrane electrode assembly and membrane electrode assembly
KR20190081380A (en) * 2017-12-29 2019-07-09 현대자동차주식회사 Method of manufacturing membrane electrode assembly for fuel cell
KR102552145B1 (en) * 2017-12-29 2023-07-05 현대자동차주식회사 Method of manufacturing membrane electrode assembly for fuel cell
JP7387948B1 (en) 2022-07-11 2023-11-28 株式会社キャタラー fuel cell electrode catalyst
WO2024014136A1 (en) * 2022-07-11 2024-01-18 株式会社キャタラー Fuel cell electrode catalyst

Also Published As

Publication number Publication date
JP4407308B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP3706855B2 (en) FUEL CELL UNIT, ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME
JP4407308B2 (en) Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell
JP4228643B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP2009076451A (en) Membrane-electrode assembly for fuel cell and fuel cell using same
KR101515905B1 (en) Membrane electrode assembly and fuel cell
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
JP2005174835A (en) Electrode
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP2007299712A (en) Fuel cell
JP2009043688A (en) Fuel cell
JP5262156B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2009004384A (en) Manufacturing method of membrane electrode assembly of polymer electrolyte fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP3599044B2 (en) Fuel cell catalyst electrode, fuel cell using the same, and methods of manufacturing the same
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP2004342480A (en) Direct methanol fuel cell
JP2008270019A (en) Fuel cell and jointed body for fuel cell
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
KR101125651B1 (en) A membrane/electrode assembly for fuel cell and a fuel cell comprising the same
JP2003323896A (en) Solid electrolyte fuel cell
JP2004273387A (en) Manufacturing method for gas diffusing layer of membrane-electrode junction body, membrane-electrode junction body, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees