JPS6256184B2 - - Google Patents

Info

Publication number
JPS6256184B2
JPS6256184B2 JP57196836A JP19683682A JPS6256184B2 JP S6256184 B2 JPS6256184 B2 JP S6256184B2 JP 57196836 A JP57196836 A JP 57196836A JP 19683682 A JP19683682 A JP 19683682A JP S6256184 B2 JPS6256184 B2 JP S6256184B2
Authority
JP
Japan
Prior art keywords
cation exchange
exchange membrane
group
membrane
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57196836A
Other languages
Japanese (ja)
Other versions
JPS5989328A (en
Inventor
Michiji Ookai
Tooru Kyota
Kosuke Takeshige
Hideo Shuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57196836A priority Critical patent/JPS5989328A/en
Priority to US06/550,338 priority patent/US4537910A/en
Publication of JPS5989328A publication Critical patent/JPS5989328A/en
Publication of JPS6256184B2 publication Critical patent/JPS6256184B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は、塩化アルカリ氎溶液の電解に適した
粗面化陜むオン亀換膜を補造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a roughened cation exchange membrane suitable for electrolysis of aqueous alkali chloride solutions.

陜むオン亀換膜により陜極宀ず陰極宀に分割さ
れた電解槜で塩化アルカリ氎溶液を電解しお、氎
酞化アルカリを補造する方法むオン亀換膜法
においお、近幎、省゚ネルギヌ化が盛んに詊みら
れおおり、特に電解電圧を極力䜎くするこずによ
り、電解電力を䜎枛しようずする方法が泚目され
おいる。その方法ずしおは、埓来、陜極や陰極の
材質、組成及び圢状を考慮したり、あるいは甚い
る陜むオン亀換膜の組成やむオン亀換基の皮類を
特定化する等、皮々の手段が提案されおいるが、
いずれもそれなりの効果はあるものの、必ずしも
工業的に充分満足し埗るものではなか぀た。
A method of producing alkali hydroxide by electrolyzing an aqueous alkali chloride solution in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method)
In recent years, many attempts have been made to save energy, and in particular, methods of reducing electrolysis power by lowering the electrolysis voltage as much as possible are attracting attention. Various methods have been proposed in the past, such as considering the material, composition, and shape of the anode and cathode, or specifying the composition of the cation exchange membrane and the type of ion exchange group used. ,
Although all of them have certain effects, they are not necessarily fully satisfactory industrially.

䞀方、近幎、陜極ず陰極をできる限り近づけ、
䞡極間に存圚する電解液や気泡の抵抗による電解
電圧郚分を極力小さくしようずいう方法が䞻流ず
な぀おきおいる。その理想的な圢態ずしお、陜む
オン亀換膜ず陜・陰極を䞀䜓化し極間抵抗を最小
にしようずするSPE電解法ず称する方法が提案さ
れおいるが、珟圚未だ倚くの解決すべき問題を有
しおおり工業化は難しい。
On the other hand, in recent years, the anode and cathode have been moved as close as possible,
The mainstream method is to minimize the electrolytic voltage portion due to the resistance of the electrolytic solution and bubbles existing between the two electrodes. As an ideal method, a method called SPE electrolysis has been proposed, which attempts to minimize the resistance between the electrodes by integrating the cation exchange membrane and the anode and cathode, but there are still many problems that still need to be solved. industrialization is difficult.

そこで、膜ず電極を䞀䜓化するのではなく、電
極ず膜をできる限り近づけ、あるいは密接させお
電解するために膜衚面を凊理するこずが提案され
おいる。䟋えば、膜衚面を粗面化する方法特開
昭55−110786特開昭56−116891特開昭57−
70285、衚面に金属酞化物からなる倚孔局を圢成
させる方法特開昭56−108888等である。
Therefore, instead of integrating the membrane and electrode, it has been proposed to bring the electrode and membrane as close as possible or to treat the membrane surface in order to bring them into close contact for electrolysis. For example, methods for roughening the membrane surface (JP-A-55-110786, JP-A-56-116891, JP-A-57-
70285), a method of forming a porous layer made of metal oxide on the surface (Japanese Patent Application Laid-Open No. 108888/1983), etc.

䞊蚘いずれの方法による衚面凊理膜でも電極ず
膜を近づけた際、通垞生じる電解発生気泡による
倧巟な電圧の䞊昇を防ぐこずができる。
Surface-treated membranes prepared by any of the above methods can prevent a large voltage increase due to electrolytically generated bubbles that normally occur when the electrode and membrane are brought close to each other.

しかしながら、本発明者らの怜蚎によるず、ブ
ラスト法を甚いた粗面化凊理膜は、ブラストの際
粒子を高速で膜に衝突させお凹凞を圢成するため
膜に損傷を䞎えるこずが倚く、電極効率の䜎䞋を
きたし、ただ完成された方法ではない。又、アル
ミニりム、亜鉛、スズ、ニツケル等の粒子物を加
熱、圧着した埌、かかる粒状物を陀去するこずで
粗面化した堎合も、電流効率を高く継持しようず
するず電圧の䜎枛倀がわずかになり、ただ満足の
いく方法ずはなり埗ない。
However, according to studies conducted by the present inventors, the roughened film using the blasting method often damages the film because particles collide with the film at high speed during blasting, forming unevenness. This method results in a decrease in efficiency and is not yet a perfected method. Furthermore, even if the surface is roughened by removing particles such as aluminum, zinc, tin, or nickel after being heated and compressed, the voltage reduction value will be small if you try to maintain high current efficiency. However, this is still not a satisfactory method.

又、プラスチツクフむルムの衚面加工法ずしお
䞀般的な゚ンボス加工は、望たしい凹凞が圢成で
きず電極ず膜を近づけた際生じる電圧の䞊昇を完
党に防ぐこずが難しい堎合が倚い。このように、
䟋えば、英囜特蚱851021にみられるように叀くか
ら知られおいるフむルム衚面の芪氎化方法である
粗面化を陜むオン亀換膜に単玔に応甚するのは難
しい。
Furthermore, embossing, which is a common surface processing method for plastic film, cannot form desired irregularities, and it is often difficult to completely prevent the voltage increase that occurs when the electrode and the film are brought close to each other. in this way,
For example, it is difficult to simply apply surface roughening, which is a long-known method of making a film surface hydrophilic, as seen in British Patent No. 851021, to cation exchange membranes.

䞀方、金属酞化物からなる倚孔局を衚面に圢成
する堎合は、付着倚孔局の経時的な剥離ずいう問
題が垞に残぀おいる。
On the other hand, when a porous layer made of metal oxide is formed on the surface, there always remains the problem that the attached porous layer peels off over time.

本発明者らは、これらの䞍利益を有さず、しか
も電解電圧を極力䜎䞋した膜を補造する方法に぀
いお研究を続けたずころ、特定の粉末粒子を遞択
しお基材陜むオン亀換膜衚面に粒子局を加熱、圧
着した埌、かかる粒子局を陀去するこずで電極ず
膜を近づけおも電圧の䞊昇をきたすこずなく、し
かも高い電流効率を維持できる経枈的に倧型化可
胜な方法を芋い出した。かかる方法により、再珟
性良く陜むオン亀換膜の衚面凊理を行うこずがで
きるようにな぀たが、曎に改良研究を続ける䞭
で、もう䞀段電圧を䜎枛できる方法を芋い出し本
発明を完成したのである。
The present inventors continued their research on a method of manufacturing a membrane that does not have these disadvantages and has the electrolytic voltage as low as possible, and found that specific powder particles were selected and applied to the surface of the base cation exchange membrane. After heating and pressing the particle layer, we have discovered a method that can be economically scaled up without causing a voltage increase even when the electrode and membrane are brought close together and maintaining high current efficiency by removing the particle layer. . By this method, it became possible to perform surface treatment on cation exchange membranes with good reproducibility, but while continuing research for further improvements, they discovered a method that could reduce the voltage even further and completed the present invention.

即ち、本発明は塩化アルカリ氎溶液電解に甚い
る基材陜むオン亀換膜の衚面にシリカ粉末を加
熱、圧着した埌、該シリカ粉末を苛性アルカリ氎
溶液で溶出するこずにより埗た粗面化陜むオン亀
換膜を〜10重量苛性アルカリ氎溶液䞭で沞隰
凊理するこずを特城ずする粗面化陜むオン亀換膜
を補造する方法であり、電極ず膜を近づけた時の
電圧の倧巟な䞊昇を防ぐのみでなく、電解電圧を
効果的に䜎枛し、しかも高品質の苛性アルカリを
補造する衚面凊理陜むオン亀換膜を提䟛するもの
である。
That is, the present invention provides a roughened cation exchange membrane obtained by heating and pressing silica powder onto the surface of a base cation exchange membrane used in aqueous alkali chloride solution electrolysis, and then eluting the silica powder with an aqueous caustic alkali solution. This is a method for producing a roughened cation exchange membrane characterized by boiling the membrane in a 1 to 10% by weight aqueous caustic solution, which only prevents a large increase in voltage when the electrode and membrane are brought close together. Instead, the present invention provides a surface-treated cation exchange membrane that effectively reduces electrolysis voltage and produces high-quality caustic alkali.

本発明に甚いる基材陜むオン亀換膜には、通
垞、耐熱性、耐薬品性、機械的匷床等に優れたパ
ヌフルオロカヌボン重合䜓が甚いられる。
For the base cation exchange membrane used in the present invention, a perfluorocarbon polymer having excellent heat resistance, chemical resistance, mechanical strength, etc. is usually used.

パヌフルオロカヌボン重合䜓は、陜むオン亀換
基及び又は陜むオン亀換基になり埗る基を有す
るものであり、これら基ずしおは、スルホン酞基
−SO3M䜆しは氎玠原子あるいは金属原子、
スルホン酞基の前駆䜓であるずころの−SO2F−
SO2Cl、カルボン酞基−COOM䜆しは氎玠原
子あるいは金属原子、カルボン酞基の前駆䜓で
あるずころの−COF−COORは炭玠数〜
のアルキル基及び−CNを挙げるこずができ
る。曎に該重合䜓ずしおは、䟋えば、䞋蚘䞀般匏
で瀺す重合䜓が挙げられる。
The perfluorocarbon polymer has a cation exchange group and/or a group that can become a cation exchange group, and these groups include a sulfonic acid group (-SO 3 M, where M is a hydrogen atom or a metal atom),
−SO 2 F, − which is a precursor of sulfonic acid group
SO 2 Cl, carboxylic acid group (-COOM, where M is a hydrogen atom or metal atom), -COF, -COOR (R has 1 to 1 carbon atoms), which is a precursor of a carboxylic acid group
5) and -CN. Furthermore, examples of the polymer include polymers represented by the following general formula.

〔䜆し、R′−CF3−CF2−−CF3 又は〜 又は 又は 〜 −SO3Mは氎玠原子あるいは金属原
子、−SO2F−SO2Cl −COOMは氎玠原子あるいは金属原子、 −COOR1R1〜のアルキル基、 −CN−COF〕 又、䞊蚘二成分系に第䞉成分あるいは第四成分
を加えお重合した重合䜓も䜿甚できる。
[However, R' = -CF 3 , -CF 2 -O-CF 3 n = 0 or 1 to 5 m = 0 or 1 o = 0 or 1 p = 1 to 6 X = -SO 3 M (M is hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl -COOM (M is a hydrogen atom or metal atom), -COOR 1 (R 1 = alkyl group of 1 to 5), -CN, -COF], A polymer obtained by adding a third or fourth component to the above two-component system can also be used.

具䜓的には、䟋えば以䞋のものを瀺すこずがで
きる。
Specifically, the following can be shown, for example.

矀 矀 これら重合においおむオン亀換容量が
0.5meq也燥暹脂〜1.5meq也燥暹脂にな
るように調節するのが奜たしい。
(Group A) (Group B) In these polymerizations, the ion exchange capacity
It is preferable to adjust the amount to 0.5 meq/g dry resin to 1.5 meq/g dry resin.

本発明では、膜状に成圢したこれら重合䜓を単
独で甚いるこずができるのはもちろんであるが、
スルホン酞基もしくは該基に倉換できる基ずカル
ボン酞基もしくは該基に倉換できる基ずが混圚す
る圢、奜たしくはスルホン酞基もしくは該基に倉
換できる基を有する重合䜓ず、カルボン酞基もし
くは該基に倉換できる基を有する重合䜓が片偎づ
぀に局状ずな぀た圢のものも甚いるこずができ
る。
In the present invention, these polymers molded into a membrane can of course be used alone, but
A polymer having a mixture of a sulfonic acid group or a group that can be converted into this group and a carboxylic acid group or a group that can be converted into this group, preferably a polymer having a sulfonic acid group or a group that can be converted into this group, and a carboxylic acid group or a group that can be converted into this group. It is also possible to use a polymer having a layer on each side of the polymer having a group that can be converted into a group.

このような膜状物は、スルホン酞基もしくは該
基に倉換できる基を有する重合䜓䟋えば(A)矀の
重合䜓ず、カルボン酞基もしくは該基に倉換で
きる基をも぀重合䜓䟋えば(B)矀の重合䜓ずを
各々膜状に成圢したのち、䞡者をはり合せるこず
によ぀お埗るこずができるし又、スルホン酞基も
しくは該基に倉換できる基のみをも぀重合䜓の膜
状物の片偎のみを化孊凊理し、これら基をカルボ
ン酞基もしくは該基に倉換するこずができる基に
倉えるこずによ぀おも埗るこずができる。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into this group (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to this group (for example, (B) group polymer) can be obtained by forming each into a film shape and then gluing them together, or a film of a polymer having only a sulfonic acid group or a group that can be converted into such a group. It can also be obtained by chemically treating only one side of the compound and converting these groups into carboxylic acid groups or groups that can be converted into carboxylic acid groups.

曎に又、カルボン酞基もしくは該基に倉換でき
る基のみをも぀重合䜓の膜状物の片偎のみを化孊
凊理し、これら基をスルホン酞基もしくは該基に
倉換するこずのできる基に倉えるこずによ぀おも
埗るこずができる。又、甚いる膜の厚さは、50ÎŒ
〜500Όが䞀般的に甚いられ、膜の比電導床、電
流効率を考慮しお適圓な厚みを遞択する。
Furthermore, by chemically treating only one side of the polymer film having only carboxylic acid groups or groups that can be converted into such groups, these groups can be converted into sulfonic acid groups or groups that can be converted into such groups. You can get it even if you twist it. Also, the thickness of the membrane used is 50Ό
~500Ό is generally used, and an appropriate thickness is selected by considering the specific conductivity and current efficiency of the film.

陜むオン亀換膜の粗面化に際しおは、粉末粒子
の皮類、粉末の担䜓である玙を遞択するこずが最
も重芁である。粉末粒子ずしおは、平均粒埄0.01
〜20Ό、奜たしくは0.1〜10Όのシリカを甚い
る。該シリカ粉末は、䞀旊担䜓䞊に粒子局ずしお
圢成される。シリカ粉末を盎接基材陜むオン亀換
膜䞊に塗垃等の手段で圢成するず陜むオン亀換膜
にシワが発生したり、粒子局がヒビ割れたりしお
望たしい粗面化が埗られない。担䜓ずしおは、
玙あるいはアヌト玙商品名を甚いるのが奜た
しい。その他の玙では均䞀なシリカ粒子局が埗ら
れにくいし、粒子局を也燥しお取扱うず粒子の脱
萜が生じたり、粒子局がヒビ割れるなど奜たしく
ない。
When roughening the surface of a cation exchange membrane, it is most important to select the type of powder particles and the paper that is the carrier for the powder. As a powder particle, the average particle size is 0.01
~20Ό, preferably 0.1-10Ό silica is used. The silica powder is once formed as a particle layer on the carrier. If silica powder is directly formed on the base cation exchange membrane by means such as coating, the cation exchange membrane will wrinkle or the particle layer will crack, making it impossible to obtain the desired surface roughening. As a carrier,
It is preferable to use paper or art paper (trade name). With other papers, it is difficult to obtain a uniform silica particle layer, and if the particle layer is dried and handled, the particles may fall off or the particle layer may crack, which is undesirable.

又、シリカ以倖の粉末、䟋えば、アルミニり
ム、亜鉛、ニツケル、スズ等の粉末粒子を甚いた
堎合は、玙あるいはアヌト玙を甚いおも粒子局
を也燥しお取扱うず粒子の脱萜が生じたり、粒子
局がヒビ割れるなど粗面化材料ずしおふさわしく
ない。
In addition, when using powder particles other than silica, such as aluminum, zinc, nickel, tin, etc., even if paper or art paper is used, if the particle layer is dried and handled, the particles may fall off or the particles may fall off. It is not suitable as a surface roughening material because the layer cracks.

以䞊のように、シリカず玙あるいはシリカず
アヌト玙の組合せの堎合、最適な粗面化甚粒子局
を圢成できる。
As described above, in the case of a combination of silica and paper or silica and art paper, an optimal surface roughening particle layer can be formed.

担䜓䞊に圢成する粒子局の厚さは、Ό〜250
Όが奜たしい。Ό以䞋の堎合、陜むオン亀換膜
の衚面を均䞀に粗面化するこずは難しく、又、
250Ό以䞊ではシリカ粒子局にヒビ割れが生じ奜
たしくない。この範囲であれば凹凞の深さは異な
぀おも十分な衚面凊理効果を瀺す。
The thickness of the particle layer formed on the carrier is 5Ό to 250Ό
Ό is preferred. If it is less than 5Ό, it is difficult to uniformly roughen the surface of the cation exchange membrane, and
If it is more than 250Ό, cracks will occur in the silica particle layer, which is not preferable. Within this range, a sufficient surface treatment effect can be obtained even if the depth of the unevenness varies.

担䜓䞊に圢成した粒子局は、氎を含んだ状態で
あれば加熱、圧着の際、氎蒞気を発生し粒子局を
壊す恐れがあるので、あらかじめ也燥するこずが
必芁である。
If the particle layer formed on the carrier contains water, it may generate water vapor and break the particle layer during heating and pressure bonding, so it is necessary to dry it beforehand.

玙あるいはアヌト玙䞊に圢成したシリカ粉末
粒子局は基材陜むオン亀換膜に加熱、圧着し、か
かる粒子局を基材陜むオン亀換膜衚面䞊に圢成さ
せる。圧着方法ずしおは、プレスあるいはロヌル
法いずれでも良く、基材陜むオン亀換膜の膜圢態
に応じお適宜遞択する。圧着条件は、陜むオン亀
換基の圢態によ぀お適宜遞択されるが、枩床100
〜200℃、圧力〜100Kgcm2が奜たしい。
The silica powder particle layer formed on paper or art paper is heated and pressed onto the base cation exchange membrane to form such a particle layer on the surface of the base cation exchange membrane. The pressure bonding method may be either a press method or a roll method, which is appropriately selected depending on the membrane form of the base cation exchange membrane. The compression conditions are appropriately selected depending on the form of the cation exchange group, but the temperature is 100%.
~200° C. and a pressure of 5 to 100 Kg/cm 2 are preferred.

陜むオン亀換膜衚面䞊に圢成したシリカ粒子局
は、濃床〜30重量苛性アルカリ氎溶液䞭、枩
床20〜90℃の条件で溶解陀去する。
The silica particle layer formed on the surface of the cation exchange membrane is dissolved and removed in a caustic aqueous solution with a concentration of 1 to 30% by weight at a temperature of 20 to 90°C.

䞊蚘方法で粗面化した陜むオン亀換膜を次の工
皋で、曎に凊理するこずにより、電圧の絶察倀を
も䜎枛した高性胜の衚面凊理むオン亀換膜が埗ら
れる。
By further treating the cation exchange membrane whose surface has been roughened by the above method in the next step, a high-performance surface-treated ion exchange membrane with a reduced absolute value of voltage can be obtained.

かかる工皋ずは、粗面化陜むオン亀換膜を濃床
〜10重量の垌薄苛性アルカリ氎溶液䞭、垞圧
䞋で沞隰凊理するこずである。凊理時間は0.5〜
10時間が望たしい。垌薄苛性アルカリ氎溶液の代
りに、氎䞭で沞隰凊理するず粗面化陜むオン亀換
膜が膚最しすぎお含氎率が高くなり、特に電解開
始盎埌の電流効率が䜎くなり、陜極を損傷する恐
れがあるし、又、なかなか電流効率が回埩しな
い。
This step involves boiling the roughened cation exchange membrane under normal pressure in a dilute caustic aqueous solution having a concentration of 1 to 10% by weight. Processing time is 0.5 ~
10 hours is recommended. If boiling in water instead of a dilute caustic aqueous solution causes the roughened cation exchange membrane to swell too much, resulting in a high water content, the current efficiency, especially immediately after the start of electrolysis, may decrease and damage the anode. , Also, the current efficiency does not recover easily.

垌薄苛性アルカリ氎溶液の濃床が10を越える
ず、凊理効果がなく電圧䜎枛効果が期埅できなく
なる。又、凊理枩床を䟋えば垞圧䞋で80〜90℃ず
䜎䞋した堎合も、電圧䜎枛効果が埗られず奜たし
くない。曎に、該沞隰凊理した膜を取り出し空気
䞭で枩床10〜50℃の枩和な条件䞋に也燥するこず
が奜たしい。かかる也燥工皋を行うず電解開始盎
埌から高い電流効率が埗られる。
If the concentration of the dilute caustic aqueous solution exceeds 10%, there will be no treatment effect and no voltage reduction effect can be expected. Further, if the treatment temperature is lowered to, for example, 80 to 90° C. under normal pressure, the voltage reduction effect cannot be obtained, which is not preferable. Furthermore, it is preferable to take out the boiled membrane and dry it in air under mild conditions at a temperature of 10 to 50°C. If such a drying step is performed, high current efficiency can be obtained immediately after the start of electrolysis.

以䞊の凊理により、陜むオン亀換膜の衚面に斜
される粗面化ずは、膜面からの深さ、又は高さが
平均0.1〜20Όであり、膜面cm2あたり平均103〜
1015個の埮现な凹凞からなり、その断面圢状は、
䞍芏則な円圢状である。
The roughening applied to the surface of the cation exchange membrane through the above treatment means that the depth or height from the membrane surface is on average 0.1 to 20 Ό, and the average roughening is 10 3 to 10 3 per cm 2 of the membrane surface.
It consists of 10 to 15 minute irregularities, and its cross-sectional shape is
It has an irregular circular shape.

これら衚面の凹凞は、衚面圢状枬定噚ラフネ
ス・メヌタヌでおよそ枬定できるが、効果の皋
床を正確に刀断するためには電子顕埮鏡の衚面及
び断面写真から深さ又は高さず密床を求める方法
を採甚した方が良い。
These surface irregularities can be approximately measured using a surface profile measuring device (roughness meter), but in order to accurately judge the extent of the effect, there is a method to determine the depth or height and density from surface and cross-sectional photographs taken using an electron microscope. It is better to adopt it.

本発明の粗面化は、膜の片面だけに斜しおも良
いし、又、䞡面に斜すこずもできる。䞡面に斜す
堎合は、䞡面同時にシリカ粉末局を加熱、圧着し
た方が奜たしい。片面だけを粗面化する堎合は、
粗面化面が陰極偎に向くように配眮しお甚いる。
The surface roughening of the present invention may be applied to only one side of the membrane, or may be applied to both sides. When applying to both sides, it is preferable to heat and press the silica powder layer on both sides at the same time. When roughening only one side,
It is used by arranging it so that the roughened surface faces the cathode side.

以䞊のようにしお埗られる衚面凊理陜むオン亀
換膜は、塩化アルカリ氎溶液の電解プロセスにお
いお陜極宀ず陰極宀ずを分割する隔膜ずしお甚い
られる。この堎合、甚いる陰極ずしおは䜿甚環境
に耐え、反応に察しお充分な觊媒䜜甚を有するも
ので、か぀、生成ガスの抜けを劚げるこずのない
構造のものであればよく、通垞甚いられる陰極で
あればよい。䟋えば、鉄、軟鋌、ニツケル、ステ
ンレススチヌル等の材質で、金網、゚キスパンデ
ツドメタル、栌子状、瞊棧型、パンチドメタル等
の倚孔性のものが挙げられるが、䜕らこれに限定
されるものではない。
The surface-treated cation exchange membrane obtained as described above is used as a diaphragm for dividing an anode chamber and a cathode chamber in an electrolysis process of an aqueous alkali chloride solution. In this case, the cathode used may be one that can withstand the operating environment, has sufficient catalytic action for the reaction, and has a structure that does not hinder the escape of the produced gas, and may be any commonly used cathode. Bye. Examples include, but are not limited to, materials such as iron, mild steel, nickel, and stainless steel, and porous materials such as wire mesh, expanded metal, lattice, vertical rail, and punched metal. isn't it.

又、陜極に぀いおも、䜿甚環境に耐え、目的ず
する反応に察しお充分な觊媒䜜甚を有する通垞の
陜極が䜿甚され、䟋えば、黒鉛又はチタン、タン
タル、タングステン、ゞルコニりム、ニオブ等の
バルブ金属の衚面に癜金、パラゞりム、ルテニり
ム、むリゞりム等の癜金族金属、癜金族金属の酞
化物又は癜金族金属の酞化物ずバルブ金属の酞化
物を混合しお被芆した倚孔性陜極が䜿甚される。
電解に際しこれら電極は、膜面に接觊しおおもよ
いし、又、離れおいおもよい。
As for the anode, a normal anode that can withstand the usage environment and has sufficient catalytic activity for the desired reaction is used. A porous anode coated with a platinum group metal such as platinum, palladium, ruthenium, or iridium, an oxide of a platinum group metal, or a mixture of an oxide of a platinum group metal and an oxide of a valve metal is used.
During electrolysis, these electrodes may be in contact with the membrane surface or may be apart.

以䞋、具䜓䟋によ぀お本発明の方法を説明す
る。尚、本発明はこれら具䜓䟋によ぀お䜕ら限定
されるものではない。
The method of the present invention will be explained below using specific examples. Note that the present invention is in no way limited to these specific examples.

実斜䟋  CF2CF2ず ずを−トリクロロ−トリフ
ルオロ゚タン䞭、パヌフルオロプロピオニルペル
オキシドを開始剀ずしお共重合し重合䜓を埗た
スルホン酞基ずしおの亀換容量は0.91meq
也燥暹脂。これをポリマヌずする。
Example 1 CF 2 = CF 2 and were copolymerized in 1,1,2-trichloro-1,2,2-trifluoroethane using perfluoropropionyl peroxide as an initiator to obtain a polymer (exchange capacity as sulfonic acid group was 0.91meq/g).
dry resin). This is called Polymer A.

同様にしおCF2CF2ず ずの共重合䜓を埗たカルボン酞基ずしおの亀換
容量は1.1meq。これをポリマヌずする。
Similarly, CF 2 = CF 2 (exchange capacity as carboxylic acid group was 1.1 meq/g). This will be referred to as B polymer.

次にポリマヌを100Όの厚さで、ポリマヌ
を75Όの厚さで各々フむルムに成型したのち、こ
れらフむルムを枚重ね合せ熱圧着し枚のフむ
ルムずし、基材陜むオン亀換膜ずする。
Next, polymer A is formed into a film with a thickness of 100 ÎŒm and polymer B is formed with a thickness of 75 ÎŒm, and then these two films are stacked and thermocompressed to form a single film, which is used as a base cation exchange membrane. .

平均粒埄玄Όのシリカ埮粉末を氎で緎り15重
量のペヌスト状にした埌、アヌト玙䞊に塗垃
し、厚さ玄50Όのシリカ粒子局を埗た。該シリカ
粒子局を担持したアヌト玙を基材陜むオン亀換膜
の䞡面に圓お、160℃20Kgcm2の条件で加熱、
圧着した。その埌、重量苛性゜ヌダ氎溶液
䞭、枩床80℃の条件で陜むオン亀換膜の衚面に圧
着されたシリカ粉末を溶解陀去するず同時に加氎
分解を行な぀た。
Fine silica powder with an average particle size of about 5 Όm was kneaded with water to form a paste of 15% by weight, and then applied onto art paper to obtain a silica particle layer with a thickness of about 50 Όm. The art paper carrying the silica particle layer was applied to both sides of the base cation exchange membrane and heated at 160°C and 20Kg/cm 2 .
It was crimped. Thereafter, in a 5% by weight aqueous sodium hydroxide solution at a temperature of 80° C., the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed, and at the same time hydrolysis was carried out.

次にかかる陜むオン亀換膜を重量苛性゜ヌ
ダ氎溶液䞭で時間沞隰凊理した埌、氎掗し、空
気䞭、25℃の条件䞋で日間也燥した。
Next, the cation exchange membrane was boiled in a 2% by weight aqueous sodium hydroxide solution for 3 hours, washed with water, and dried in air at 25°C for 2 days.

埗られた粗面化陜むオン亀換膜を重量苛性
゜ヌダ氎溶液に䞀倜浞挬しお、該陜むオン亀換膜
のポリマヌ偎を陰極に向けお電解槜に組蟌み、
陜極ずしおルテニりム酞化物を被芆したチタン゚
キスパンドメタル、陰極ずしお鉄補の゚キスパン
ドメタルを甚い、陜・陰極間距離をmmずし、陰
極宀の苛性゜ヌダ氎溶液の抜き出しレベルを陜極
宀のレベルに察しお20cm高くし、膜を陜極に接觊
させた状態で電解した。
The obtained roughened cation exchange membrane was immersed in a 2% by weight aqueous sodium hydroxide solution overnight, and the cation exchange membrane was assembled into an electrolytic cell with the B polymer side facing the cathode.
Using expanded titanium metal coated with ruthenium oxide as the anode and expanded metal made of iron as the cathode, the distance between the anode and cathode was set to 1 mm, and the extraction level of the caustic soda aqueous solution in the cathode chamber was made 20 cm higher than the level in the anode chamber. Electrolysis was performed with the membrane in contact with the anode.

陜極宀に飜和食塩氎、陰極宀に氎を䟛絊しお陰
極宀の苛性゜ヌダ濃床を33重量に保ち、枩床90
℃、電流密床40Am2で電解したずころ、電圧
は3.25V、電流効率は96.5であ぀た。
Saturated salt solution is supplied to the anode chamber and water is supplied to the cathode chamber to maintain the caustic soda concentration in the cathode chamber at 33% by weight, and the temperature is 90%.
When electrolyzed at a temperature of 40 A/dm 2 at a current density of 40 A/dm 2 , the voltage was 3.25 V and the current efficiency was 96.5%.

比范䟋  平均粒埄Όの亜鉛粉末を重量になるよう
に氎に懞濁し、過法により玙䞊に亜鉛粉末粒
子局を圢成させ、実斜䟋で甚いた基材陜むオン
亀換膜の䞡面に加熱、圧着させた。
Comparative Example 1 Zinc powder with an average particle size of 7 ÎŒm was suspended in water to a concentration of 2% by weight, and a layer of zinc powder particles was formed on paper by the filtration method. was heated and crimped.

次に80℃、20重量の苛性゜ヌダ氎溶液䞭で亜
鉛粉末を溶解陀去し、90℃、10重量の苛性゜ヌ
ダ氎溶液䞭、24時間凊理しお加氎分解した。
Next, the zinc powder was dissolved and removed in a 20% by weight aqueous sodium hydroxide solution at 80°C, and was hydrolyzed by treatment in a 10% by weight aqueous sodium hydroxide solution at 90°C for 24 hours.

実斜䟋ず党く同様な条件で電解を行い、電流
密床40Am2で電圧3.30V、電流効率94.0の
結果を埗た。
Electrolysis was carried out under exactly the same conditions as in Example 1, and a current density of 40 A/dm 2 , a voltage of 3.30 V, and a current efficiency of 94.0% were obtained.

比范䟋  実斜䟋で粗面化陜むオン亀換膜を重量苛
性゜ヌダ氎溶液の代りに氎䞭で時間沞隰凊理し
た以倖は党く同様な方法で凊理し、実斜䟋ず同
じ条件で電解を行い、電流密床40Am2で電圧
3.24V、電流効率93.0の結果を埗た。
Comparative Example 2 The roughened cation exchange membrane was treated in exactly the same manner as in Example 1, except that it was boiled in water for 3 hours instead of the 2% by weight aqueous caustic soda solution, and electrolysis was carried out under the same conditions as in Example 1. , voltage at current density 40A/ dm2
We obtained results of 3.24V and current efficiency of 93.0.

比范䟋  実斜䟋で粗面化陜むオン亀換膜を重量苛
性゜ヌダ氎溶液の代りに20重量苛性゜ヌダ氎溶
液䞭で時間沞隰凊理した以倖は党く同様の方法
で凊理し、実斜䟋ず同じ条件で電解を行い、電
流密床40Am2で電圧3.34V、電流効率96.5の
結果を埗た。
Comparative Example 3 The roughened cation exchange membrane was treated in exactly the same manner as in Example 1, except that the roughened cation exchange membrane was boiled for 3 hours in a 20% by weight aqueous sodium hydroxide solution instead of a 2% by weight aqueous sodium hydroxide solution. Electrolysis was performed under the following conditions, and results were obtained at a current density of 40 A/dm 2 , a voltage of 3.34 V, and a current efficiency of 96.5.

実斜䟋  平均粒埄Ό以䞋のシリカ埮粉末を0.3重量
になるように氎に懞濁し、過法により玙䞊に
厚さ玄70Όのシリカ粒子局を圢成した。該シリカ
粒子局を担持した玙を、実斜䟋ず同じ基材陜
むオン亀換膜の䞡面に圓お、160℃、100Kgcm2の
条件で加熱、圧着した。その埌、重量苛性゜
ヌダ氎溶液䞭、枩床80℃の条件で陜むオン亀換膜
の衚面に圧着されたシリカ粉末を溶解陀去した。
Example 2 0.3% by weight of silica fine powder with an average particle size of 3Ό or less
A layer of silica particles with a thickness of approximately 70 Όm was formed on paper by a filtration method. The paper carrying the silica particle layer was applied to both sides of the same base cation exchange membrane as in Example 1, and heated and pressed at 160° C. and 100 kg/cm 2 . Thereafter, the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed in a 5% by weight aqueous sodium hydroxide solution at a temperature of 80°C.

次にかかる陜むオン亀換膜を重量苛性゜ヌ
ダ氎溶液䞭で時間沞隰凊理した埌、空気䞭、25
℃の条件䞋で日間也燥した。埗られた粗面化陜
むオン亀換膜を重量苛性゜ヌダ氎溶液に䞀倜
浞挬した埌、実斜䟋ず同じ条件で電解を行い、
電流密床40Am2で電圧は3.21V、電流効率
96.0の結果を埗た。
Next, the cation exchange membrane was boiled in a 5% by weight aqueous solution of caustic soda for 3 hours, and then boiled in air at 25% by weight.
It was dried for 2 days at ℃. The obtained roughened cation exchange membrane was immersed in a 2% by weight aqueous sodium hydroxide solution overnight, and then electrolyzed under the same conditions as in Example 1.
Current density 40A/ dm2 , voltage 3.21V, current efficiency
I got a result of 96.0.

実斜䟋  米囜デナポン瀟より垂販されおいるナフむオ
ン117陜むオン亀換膜の片面を化孊凊理しお䜜補
した厚さ玄40Όのカルボン酞局を有するSO3H
COOH2局構造の陜むオン亀換膜を埗た。該膜を
甚い実斜䟋ず党く同様な方法で粗面化凊理し、
実斜䟋ず同じ条件で電解を行い、電流密床
40Am2で電圧3.28V、電流効率97.0を埗た。
Example 3 A SO 3 H/SO 3 H/C cation exchange membrane having a carboxylic acid layer with a thickness of approximately 40Ό was prepared by chemically treating one side of a Nafion 117 cation exchange membrane commercially available from DuPont, USA.
A cation exchange membrane with a COOH two-layer structure was obtained. The film was subjected to surface roughening treatment in exactly the same manner as in Example 2,
Electrolysis was carried out under the same conditions as in Example 2, and the current density was
At 40 A/dm 2 , a voltage of 3.28 V and a current efficiency of 97.0 were obtained.

実斜䟋  沞隰凊理埌の也燥工皋を陀いた以倖は実斜䟋
ず党く同様な方法で粗面化凊理し、実斜䟋ず同
じ条件で電解した。初期は電圧、電流効率ずもに
䜎く、性胜回埩に玄週間を芁した。日間の電
解性胜は、電圧3.24V、電流効率96であり、
ケ月間の長期にわたりこの性胜が維持された。
Example 4 Example 1 except that the drying step after boiling treatment was removed
The surface was roughened in exactly the same manner as in Example 1, and electrolyzed under the same conditions as in Example 1. Initially, both voltage and current efficiency were low, and it took about a week for performance to recover. The electrolysis performance for 7 days was 3.24V voltage, 96% current efficiency, and 6
This performance was maintained over a long period of several months.

比范䟋  実斜䟋においお陜むオン亀換膜の䞡面を党く
䜕も凊理せず、実斜䟋ず党く同様に電解を行い
電流密床40Am2で電圧は3.65V、電流効率
96.0の結果を埗た。
Comparative Example 4 In Example 1, both sides of the cation exchange membrane were not treated in any way, and electrolysis was carried out in exactly the same manner as in Example 1, with a current density of 40 A/dm 2 , a voltage of 3.65 V, and a current efficiency of 3.65 V.
I got a result of 96.0.

Claims (1)

【特蚱請求の範囲】  シリカ粉末ず氎ずを混合し、懞濁あるいはペ
ヌスト状の混合物ずなし、該混合物をアヌト玙あ
るいは玙䞊に担持せしめ也燥するこずで圢成し
たシリカ粉末局を陜むオン亀換基及び又は陜む
オン亀換基になりうる基を有するパヌフルオロカ
ヌボン重合䜓膜の衚面に加熱・圧着し、かかる膜
衚面に圢成されたシリカ粉末を苛性アルカリ氎溶
液で溶出するこずにより埗た粗面化陜むオン亀換
膜を〜10重量苛性アルカリ氎溶液䞭で沞隰凊
理するこずを特城ずする粗面化陜むオン亀換膜を
補造する方法。  沞隰凊理埌、氎掗し也燥する特蚱請求の範囲
項蚘茉の方法。
[Claims] 1. A silica powder layer formed by mixing silica powder and water to form a suspension or paste mixture, supporting the mixture on art paper or paper, and drying the silica powder layer is coated with a cation exchange group. and/or a roughened surface obtained by heating and press-bonding the surface of a perfluorocarbon polymer membrane having a group that can become a cation exchange group, and eluting the silica powder formed on the membrane surface with a caustic aqueous solution. A method for producing a roughened cation exchange membrane, which comprises boiling the ion exchange membrane in a 1 to 10% by weight aqueous caustic solution. 2. The method according to claim 1, which comprises washing with water and drying after the boiling treatment.
JP57196836A 1982-11-10 1982-11-11 Manufacture of cation exchange membrane having roughened surface Granted JPS5989328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57196836A JPS5989328A (en) 1982-11-11 1982-11-11 Manufacture of cation exchange membrane having roughened surface
US06/550,338 US4537910A (en) 1982-11-10 1983-11-09 Method of producing cation-exchange membrane having roughed surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196836A JPS5989328A (en) 1982-11-11 1982-11-11 Manufacture of cation exchange membrane having roughened surface

Publications (2)

Publication Number Publication Date
JPS5989328A JPS5989328A (en) 1984-05-23
JPS6256184B2 true JPS6256184B2 (en) 1987-11-24

Family

ID=16364467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196836A Granted JPS5989328A (en) 1982-11-10 1982-11-11 Manufacture of cation exchange membrane having roughened surface

Country Status (1)

Country Link
JP (1) JPS5989328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192283U (en) * 1987-12-09 1989-06-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192283U (en) * 1987-12-09 1989-06-16

Also Published As

Publication number Publication date
JPS5989328A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
JPS6016518B2 (en) Ion exchange membrane electrolyzer
US4604323A (en) Multilayer cation exchange membrane
US4686120A (en) Multilayer cation exchange membrane
JPS6256184B2 (en)
JPS621652B2 (en)
JPS6316420B2 (en)
JPS6256183B2 (en)
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface
US4389494A (en) Process for producing a membrane for electrolysis by forming removable thin layer upon electrode
US4537910A (en) Method of producing cation-exchange membrane having roughed surface
JP3112039B2 (en) How to restart the electrolytic cell
JP3855121B2 (en) Method for producing electrode assembly for polymer electrolyte water electrolysis
JPS631391B2 (en)
JPS6258622B2 (en)
JPH0143026B2 (en)
JPS6154116B2 (en)
JPS6125791B2 (en)
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS58181878A (en) Electrolysis of alkali metal chloride
JPH02213488A (en) Method for electrolyzing alkali chloride
JPS6136074B2 (en)
JPS63310985A (en) Production of alkali hydroxide
JPS62124130A (en) Restoration of performance of fluorine-containing ion exchange membrane for alkali chloride electrolysis
JPH0570983A (en) Method for electrolyzing aqueous alkali chloride solution
JPH0377880B2 (en)