JPH02213488A - Method for electrolyzing alkali chloride - Google Patents

Method for electrolyzing alkali chloride

Info

Publication number
JPH02213488A
JPH02213488A JP3284189A JP3284189A JPH02213488A JP H02213488 A JPH02213488 A JP H02213488A JP 3284189 A JP3284189 A JP 3284189A JP 3284189 A JP3284189 A JP 3284189A JP H02213488 A JPH02213488 A JP H02213488A
Authority
JP
Japan
Prior art keywords
membrane
alkali chloride
electrolysis
fluorine
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3284189A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
公二 鈴木
Kazuhiko Saito
一彦 斉藤
Yoshihiko Saito
義彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3284189A priority Critical patent/JPH02213488A/en
Publication of JPH02213488A publication Critical patent/JPH02213488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To electrolyze an alkali chloride aq. soln. without causing increase of electrolytic energy during electrolysis by utilizing a fluorine-contg. cation exchange membrane and electrolyzing the alkali chloride aq. soln. in which the concn. of organic substance is held at prescribed value or below. CONSTITUTION:Alkali hydroxide is produced by utilizing a fluorine-contg. ion exchange membrane wherein all parts of the membrane or the face opposed to at least a cathode is made of a polymer of perfluorocarboxylic acid and electrolyzing an alkali chloride aq. soln. In this case, the concn. of organic substance such as alcohols and glucoses contained in the alkali chloride aq. soln. is held at <=100ppm especially <=30ppm and electrolysis is performed. Thereby current efficiency is stably maintained for a long period and also rising of voltage of a cell can be prevented. It is considered that the effect resulting from lowering of the concn. of organic substance in the alkali chloride aq. soln. depends on such the phenomena that the velocity of infiltration of organic substance into the membrane is made low and the membrane is unexpanded until the degree affecting current density and electrolytic voltage even when electrolysis is performed for a long period.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は含フッ素陽イオン交換膜をもちいて塩化アルカ
リを電解する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for electrolyzing alkali chloride using a fluorine-containing cation exchange membrane.

[従来の技術] 塩化ナトリウムを電解して苛性ソーダと塩素を製造する
方法として、フッ素樹脂陽イオン交換膜を隔膜とするイ
オン交換膜法は、従来の水銀法、アスベスト隔膜法に比
して、公害防止及び省エネルギーの観点から有利であり
、また塩化ナトリウム含量の極めて低い高品質苛性ソー
タを製造できることから、近年注目されている。か\る
イオン交換膜法において使用されるフッ素樹脂陽イオン
交換膜としては、スルホン酸型膜に比して、カルボン酸
型膜が高濃度苛性ソーダを高い電流効率で製造可能なた
めに有利であるとされている。また、カルボン酸型フッ
素樹脂膜とスルホン酸型フッ素樹脂膜とを比較。
[Prior art] As a method for producing caustic soda and chlorine by electrolyzing sodium chloride, the ion exchange membrane method, which uses a fluororesin cation exchange membrane as a diaphragm, is less polluting than the conventional mercury method and asbestos diaphragm method. It has attracted attention in recent years because it is advantageous from the viewpoint of prevention and energy saving, and also because it allows the production of high-quality caustic sorters with extremely low sodium chloride content. As the fluororesin cation exchange membrane used in the ion exchange membrane method, a carboxylic acid type membrane is more advantageous than a sulfonic acid type membrane because it can produce highly concentrated caustic soda with high current efficiency. It is said that We also compared carboxylic acid type fluororesin membranes and sulfonic acid type fluororesin membranes.

これらの陽イオン交換膜を用いて長期間にわたり高い電
流効率及び低い電解電圧を維持せしむる為には、供給塩
水中のカルシウム及びマグネシウムをキレート樹脂を用
いて除去し、低い濃度に保つことが重要であることは公
知である。(特開昭51−86100.同54−754
97)しかしながら、本発明者によると、上記のような
カルシウム及びマグネシウム濃度の小さい塩水を使用し
、陽イオン交換膜を使用して電解する場合も長期間にわ
たって電解した場合なお電流効率の低下や電解電圧の上
昇が起ることが判明した。これは特に塩水中に酸を添加
して陽極液のpHを低下させて、陽極にて発生する塩素
中の酸素の量を低下させる場合に起ることが見い出され
た。
In order to maintain high current efficiency and low electrolysis voltage for a long period of time using these cation exchange membranes, it is necessary to remove calcium and magnesium from the supplied brine using a chelate resin and maintain it at a low concentration. It is known that it is important. (Unexamined Japanese Patent Publication No. 51-86100. No. 54-754
97) However, according to the present inventor, even when electrolysis is performed using a cation exchange membrane using salt water with low calcium and magnesium concentrations as described above, current efficiency still decreases and electrolysis occurs over a long period of time. It was found that an increase in voltage occurred. This has been found to occur particularly when acid is added to the brine to lower the pH of the anolyte, thereby reducing the amount of oxygen in the chlorine generated at the anode.

[発明の解決しようとする問題点] 本発明者は、上記塩水の電解中に生ずる電流効率の低下
や電解電圧の上昇の原因を探査研究し、これらを招くこ
とのない、即ち、電解中に電解エネルギーの増大を招く
ことのない塩水の電解方法を提供することを目的とする
[Problems to be Solved by the Invention] The present inventor has investigated and researched the causes of the decrease in current efficiency and increase in electrolysis voltage that occur during the electrolysis of the above-mentioned salt water. It is an object of the present invention to provide a method for electrolyzing salt water that does not cause an increase in electrolytic energy.

上記のような問題は、塩水だけでなく、同様に塩化カリ
ウムを電解して水酸化カリウムを製造する場合にも起る
ことが判明したので、これら問題点を招かない塩化アル
カリの一般の電解方法を提供することを目的とする。
It has been found that the above-mentioned problems occur not only in salt water but also in the production of potassium hydroxide by electrolyzing potassium chloride, so a general electrolysis method for alkali chloride that does not cause these problems has been proposed. The purpose is to provide

[問題点を解決するための手段] 本発明者の研究によると、上記電解中に生じる電流効率
の低下及び電解電圧の上昇は、塩化アルカリ水溶液中に
含有される有機物に基因することが判明した。特に塩化
アルカリ水溶液に塩酸などを添加した場合には、塩酸に
含まれるアルコール、グリコールなどの有機物がその原
因となり、電流効率の低下及び電解電圧の上昇など著し
い悪影響をもたらすことが判明した。
[Means for Solving the Problems] According to the research of the present inventor, it was found that the decrease in current efficiency and increase in electrolysis voltage that occur during electrolysis are caused by organic substances contained in the aqueous alkali chloride solution. . In particular, it has been found that when hydrochloric acid is added to an aqueous alkali chloride solution, organic substances such as alcohol and glycol contained in the hydrochloric acid cause this, resulting in significant adverse effects such as a decrease in current efficiency and an increase in electrolytic voltage.

そし。て、本発明の試験によると、塩化アルカリ水溶液
中の有機物濃度は、いずれの源より混入する場合も11
00pp以下に保持することが必要なことが判明した。
stop. According to the test of the present invention, the concentration of organic matter in the aqueous alkali chloride solution is 11% regardless of the source.
It has been found that it is necessary to maintain it at 00 pp or less.

塩化アルカリ水溶液中の有機物濃度が1oOppi+を
越した場合、どのようなメカニズムで電流効率の低下及
び電解電圧の上昇を生起するかは必ずしも明らかではな
く、またこれにより本発明の範囲を制限するものではな
いがほぼ次のように推測される。塩化アルカリ水溶液中
に含有される有機物がHa・イオンとともに膜に侵入し
て、膜が1liv潤する為に電流効率が低下し、同時に
膜の陽極側表面にブリスターが発生し、ブリスターによ
る電流の遮へいが起る為電解電圧が上昇するものと考え
る。
When the concentration of organic matter in the aqueous alkali chloride solution exceeds 1oOppi+, it is not necessarily clear what mechanism causes a decrease in current efficiency and an increase in electrolytic voltage, and this should not limit the scope of the present invention. No, but it can be assumed as follows. The organic matter contained in the aqueous alkali chloride solution enters the membrane together with Ha and ions, and the membrane is wetted by 1 liv, reducing the current efficiency.At the same time, blisters are generated on the anode side surface of the membrane, and the blisters block the current. It is assumed that the electrolytic voltage increases because of this phenomenon.

以下、本発明について詳述すると、本発明でいう含フッ
素陽イオン交換膜とは、膜の全部又は少なくとも陰極に
対向する面がパーフルオロカルボン酸ポリブーからなる
膜を意味する。陰極側にパーフルオロカルボン酸基を有
する膜は、高濃度苛性ソーダを高電流効率で取得でき特
に本発明で有機物濃度の影響を大きく受ける。低抵抗、
高電流効率で水酸化アルカリを取得し、かつ実用上大き
な膜強度を賦与する為に、陰極側ポリマーよりイオン交
換容量の太きいパーフルオロカルボン酸重合体、または
含水率のより高いパーフルオロスルホン酸重合体、更に
は含フッ素重合体からなる多孔体を陽極側にもちいた謂
ゆる非対称構造を採ることかでき、また布、耐蝕性フッ
素樹脂からなるミクロフィブリル又は不織布等で補強す
ることもできる。
Hereinafter, the present invention will be described in detail. The fluorine-containing cation exchange membrane as used in the present invention means a membrane in which the entire membrane or at least the surface facing the cathode is made of perfluorocarboxylic acid polybutylene. A membrane having perfluorocarboxylic acid groups on the cathode side can obtain highly concentrated caustic soda with high current efficiency, and is particularly affected by the organic substance concentration in the present invention. low resistance,
In order to obtain alkali hydroxide with high current efficiency and provide a practically large film strength, a perfluorocarboxylic acid polymer with a larger ion exchange capacity than the cathode polymer or a perfluorosulfonic acid with a higher water content is used. A so-called asymmetric structure can be adopted in which a porous body made of a polymer, or even a fluorine-containing polymer, is used on the anode side, and it can also be reinforced with cloth, microfibrils made of a corrosion-resistant fluororesin, nonwoven fabric, or the like.

本発明において、カルボン酸型パーフルオロカーボン重
合体及びスルホン酸型パーフルオロカーボン重合体とし
ては、従来より公知のものなど特に限定されることなく
種々採用され得る。好適な実施態様においては、以下の
(イ)。
In the present invention, various carboxylic acid type perfluorocarbon polymers and sulfonic acid type perfluorocarbon polymers may be used without particular limitation, including conventionally known ones. In a preferred embodiment, the following (a).

(0)の構造からなる重合体の使用が好ましい。It is preferable to use a polymer having the structure (0).

(()ncFi−CFX→−、(0) +cF2−cx
+ここで、XはF又は−CF3、好ましくはFであり、
Yは次のものから選ばれる。
(()ncFi-CFX→-, (0) +cF2-cx
+wherein X is F or -CF3, preferably F;
Y is selected from the following:

−+(:F、h A、  −0÷F2←A、  −Go
−CF2−CF礼A。
-+(:F, h A, -0÷F2←A, -Go
-CF2-CF Thank you A.

−CFz−0+CF2七八。-CFz-0+CF278.

−0((:F2−CF−0+−y  +CF2す一9書 Rf X + ’j + Zは、ともにO〜lOであり、2及
びRfは−F又は炭素数1〜10のパーフルオロアルキ
ル基から選ばれる。またAは一5O,M、−COOM又
は加水分解によりこれらの基に転化しつる一303F。
-0((:F2-CF-0+-y +CF2S-19 Rf A is selected from -5O, M, -COOM, or -303F which can be converted into these groups by hydrolysis.

−CN、−COF又は−GOORであり、Mは水素又は
アルカリ金属、Rは炭素数1〜10のアルキル基を示す
-CN, -COF or -GOOR, M represents hydrogen or an alkali metal, and R represents an alkyl group having 1 to 10 carbon atoms.

本発明に使用する膜は、その全体の厚さ60〜350ミ
クロン、好ましくは100〜300ミクロンのものが採
用される。更に、本発明の膜は、その表面な粗面化した
りあるいは金属酸化物粒子からなる電極活性を有しない
多孔質薄層など表面にガスの付着を防止するガス解放層
を膜表面に形成することなども可能である。
The membrane used in the present invention has a total thickness of 60 to 350 microns, preferably 100 to 300 microns. Furthermore, the membrane of the present invention may have a roughened surface or a gas release layer formed on the membrane surface to prevent gas from adhering to the membrane surface, such as a porous thin layer made of metal oxide particles and having no electrode activity. etc. are also possible.

本発明においては、各層を製膜する場合には、従来より
公知乃至周知の種々の方法にて行なわれ得る0例えば、
イオン交換基含有パーフルオロカーボン重合体の水性デ
ィスバージョンや有機溶液、有機ディスバージョンなど
を使用して混合を湿式で行なったり、か\る有機溶液や
有機ディスバージョンなどからキャスト法などで製膜す
ることなども可能である。勿論、トライブレンド方式の
採用や加熱溶融成形により製膜することもできる。加熱
溶融成形による各層の製膜の際に、原料重合体はその有
するイオン交換基の分解を招かないような適宜のイオン
交換基の形態、例えばカルボン酸基のときは酸又はエス
テル型で行なうのが好ましく、またスルホン酸基のとき
は一3O,F型で行なうのが好ましい、さらには、原料
重合体を予め加熱溶融成形してベレット化し、それを押
出成形やプレス成形などにより製膜することもできる。
In the present invention, each layer can be formed by various conventionally known methods. For example,
Wet mixing using an aqueous dispersion, an organic solution, an organic disversion, etc. of a perfluorocarbon polymer containing an ion exchange group, or forming a film using a casting method etc. from such an organic solution or an organic disversion. etc. are also possible. Of course, the film can also be formed by employing a tri-blend method or by heating and melting molding. When forming each layer by heating and melt molding, the raw material polymer should be in the form of an appropriate ion exchange group that does not cause decomposition of the ion exchange group it has, for example, in the case of a carboxylic acid group, it should be in the acid or ester type. is preferable, and in the case of a sulfonic acid group, it is preferable to use the -3O,F type.Furthermore, the raw material polymer may be heated and melt-molded in advance to form a pellet, and then formed into a film by extrusion molding, press molding, etc. You can also do it.

本発明に使用する複層型膜は、通常は、カルボン酸膜主
体層、スルホン酸膜表面層、カルボン酸膜表面層、及び
必要に応じ共存膜層やカルボン酸膜中間層を、夫々別々
に所定のフィルム状に製膜し、これら各層を積層一体化
することによって製造され得る。各層を積層一体化する
方法としては、平板プレス、ロールプレス等が挙げられ
る。積層プレス温度は60〜280℃、圧力は平板プレ
スで0.1〜100kg/cm” 、ロールプレスで0
.1 =−100kg/cm”にて行なわれる。
The multilayer membrane used in the present invention usually has a main carboxylic acid membrane layer, a sulfonic acid membrane surface layer, a carboxylic acid membrane surface layer, and, if necessary, a coexisting membrane layer or a carboxylic acid membrane intermediate layer, each separately. It can be manufactured by forming into a predetermined film shape and laminating and integrating these layers. Examples of methods for laminating and integrating each layer include flat plate pressing, roll pressing, and the like. The lamination press temperature is 60-280℃, the pressure is 0.1-100kg/cm" for flat plate press, 0 for roll press.
.. 1 = -100 kg/cm".

本発明ではいずれの形式の電極も使用される。例えば、
多孔板、網又はエキスパンデッドメタルなどの空隙性電
極が使用される。
Either type of electrode may be used in the present invention. for example,
Porous electrodes such as perforated plates, mesh or expanded metal are used.

陽極としては、通常白金族金属、その導電性酸化物又は
その導電性還元酸化物等が使用され、一方陰極としては
白金族金属、その導電性酸化物又は鉄族金属等が使用さ
れる。
As the anode, platinum group metals, conductive oxides thereof, or conductive reduced oxides thereof, etc. are usually used, while as the cathodes, platinum group metals, conductive oxides thereof, iron group metals, etc. are used.

電極を配置する場合、電極は含フッ素陽イオン交換膜に
接触して配置しても、また適宜の間隔をおいて配置して
もよい。電極はむしろイオン交換膜面に強固に押圧する
よりも、電極はイオン交換膜面に例えば0〜2.0kg
/c@2にて好ましくは緩かに押接される。
When disposing the electrodes, the electrodes may be disposed in contact with the fluorine-containing cation exchange membrane, or may be disposed at appropriate intervals. Rather than firmly pressing the electrode against the ion exchange membrane surface, the electrode should be pressed onto the ion exchange membrane surface with a weight of, for example, 0 to 2.0 kg.
/c@2, preferably gently pressed.

本発明に使用される電解層は、単極型でも複極型でもよ
い、また電解槽を構成する材料は、例えば塩化アルカリ
水溶液の電解の場合には陽極室の場合には、塩化アルカ
リ水溶液及び塩素に耐性があるもの、例えば弁金属、チ
タンが使用され、陰極室の場合には水酸化アルカリ及び
水素に耐性かある鉄、ステンレス又はニッケルなど使用
される。
The electrolytic layer used in the present invention may be of a monopolar type or a bipolar type, and the material constituting the electrolytic cell may be, for example, in the case of electrolysis of an aqueous alkali chloride solution, or in the case of an anode chamber, an aqueous alkali chloride solution or a bipolar cell. Materials that are resistant to chlorine, such as valve metal, titanium, are used, and in the case of the cathode chamber, iron, stainless steel, or nickel that are resistant to alkali hydroxide and hydrogen are used.

本発明において塩化アルカリ水溶液の電解を行なうプロ
セス条件としては、既知の条件が採用できる。例えば陽
極室には好ましくは2.5〜5.0規定(N)の塩化ア
ルカリ水溶液を供給し、陰極室には水又は稀釈水酸化ア
ルカリを供給し、好ましくは80〜120℃、電流密度
10〜100 A / da”で電解される。かかる場
合、塩化アルカリ水溶液中のカルシウム及びマグネシウ
ムなどの重金属イオンは、イオン交換膜の劣化を招くの
で、いずれも好ましくは1 ppm+以下、特には0.
5ppm以下で可及的に小さくせしめるのが好ましい、
また、陽極における酸素の発生を極力防止するために塩
酸などの酸を塩化アルカリ水溶液に添加することができ
る。
In the present invention, known conditions can be employed as process conditions for electrolyzing an aqueous alkali chloride solution. For example, an aqueous alkali chloride solution of 2.5 to 5.0 normal (N) is preferably supplied to the anode chamber, and water or diluted alkali hydroxide is supplied to the cathode chamber, preferably at a temperature of 80 to 120°C and a current density of 10. ~100 A/da''. In such a case, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, so they are preferably 1 ppm+ or less, especially 0.
It is preferable to make it as small as possible to 5 ppm or less,
Furthermore, an acid such as hydrochloric acid can be added to the aqueous alkali chloride solution in order to prevent the generation of oxygen at the anode as much as possible.

そして本発明ては、供給塩化アルカリ水溶液中の有機物
濃度を1100pp以下好ましくは50pp■以下、特
には30pp膳以下に保持することにより電流効率が長
期間安定に、かつ摺電圧の上昇を防ぐことができる。
In the present invention, the current efficiency can be stabilized for a long period of time and an increase in sliding voltage can be prevented by maintaining the organic matter concentration in the supplied aqueous alkali chloride solution to 1100 pp or less, preferably 50 pp or less, and especially 30 pp or less. can.

本発明で塩化アルカリ水溶液中に含まれる有機物濃度を
低下せしめる手段としては、既知の方法も含めた種々の
方法が採用できるが、有機物は、通常塩化アルカリ水溶
液に添加される酸に含まれるので、該酸中の有機物を例
えば、蒸溜法、吸着法、電気透析法、拡散透析法によっ
て除去するのが好ましい、なかでも、蒸溜法が好ましい
、除去される有機物の種類としてメタノール、エタノー
ルなどのアルコール類、プロピレングリコール、エチレ
ングリコールなどのグリコール類などが代表的例として
挙げられる。
In the present invention, various methods including known methods can be adopted as means for reducing the concentration of organic matter contained in the aqueous alkali chloride solution. It is preferable to remove the organic substances in the acid by, for example, a distillation method, an adsorption method, an electrodialysis method, or a diffusion dialysis method. Among these, the distillation method is particularly preferable. The types of organic substances to be removed include alcohols such as methanol and ethanol. Typical examples include glycols such as , propylene glycol, and ethylene glycol.

[作用] 本発明において、供給塩水中の有機物濃度を低下させる
ことによる維持効果は必ずしも明確ではないが、有機物
の膜に侵入する速度が低く、長期電解しても電流効率及
び電解電圧に影響する程度まで、膜が膨潤していないこ
とによるものと考えられる。
[Function] In the present invention, the maintenance effect of reducing the concentration of organic matter in the supplied brine is not necessarily clear, but the rate at which organic matter penetrates into the film is low, and even long-term electrolysis will affect current efficiency and electrolysis voltage. This is thought to be due to the fact that the membrane was not swollen to some extent.

[実施例] 実施例1 テトラフルオロエチレンとCFz−CFO(CFz)s
(OOCH:+を重合せしめ、イオン交換容量1.44
taec4/g及び1.25+*eq / gである共
1重合体を得た。前者の共重合体をA、後者の共重合体
をBとする。共重合体Aを押出成型し、厚さ200゜の
フィルムを得た。該フィルムをA−1とする。
[Example] Example 1 Tetrafluoroethylene and CFz-CFO(CFz)s
(OOCH: + is polymerized, ion exchange capacity 1.44
A comonopolymer with taec4/g and 1.25+*eq/g was obtained. The former copolymer is referred to as A, and the latter copolymer is referred to as B. Copolymer A was extrusion molded to obtain a film with a thickness of 200°. This film is designated as A-1.

共重合体Bを押出成型し、厚さ20.のフィルムを得た
。該フィルムを8−1とする。フィルムA−1とフィル
ムB−1を熱ロールプレスにより積層し、複合膜を得た
Copolymer B was extruded to a thickness of 20. obtained the film. This film is designated as 8-1. Film A-1 and film B-1 were laminated by hot roll pressing to obtain a composite film.

一方、粒径1ルの酸化ジルコニウム粉末1゜部、メチル
セルロース(2%水溶液の粘度1500センチボイズ)
0.4部、水19部、シクロヘキサノール2部およびシ
クロへキサノン1部を含む混合物を混練してペーストを
得た。該ペーストをメッシ数200、厚さ75JLのテ
トロン製スクリーン、その下に厚さ30ILのスクリー
ンマスクを施した印刷板及びポリウレタンスキージを用
いて、前記積層して作成したイオン交換膜のAポリマー
200fiL側の面にスクリーン印刷した。
On the other hand, 1 part of zirconium oxide powder with a particle size of 1 l, methylcellulose (viscosity of 2% aqueous solution 1500 centivoise)
A paste was obtained by kneading a mixture containing 0.4 parts of water, 19 parts of water, 2 parts of cyclohexanol, and 1 part of cyclohexanone. The A polymer 200fiL side of the ion exchange membrane was created by laminating the paste using a Tetron screen with a mesh number of 200 and a thickness of 75JL, a printing plate with a screen mask of 30IL thick underneath, and a polyurethane squeegee. screen printed on the surface.

膜面に得られた付着層を空気中で乾燥した。The adhesive layer obtained on the membrane surface was dried in air.

一方、かくして得られた多孔質層を有する膜の他方の面
に同様にして、平均粒径0.3 IL■のβ−炭化ケイ
素粒子を付着させた。しかる後、温度140 ”C5圧
力30kg/am”の条件で各膜面の粒子層をイオン交
換膜面に圧着することにより。
On the other hand, β-silicon carbide particles having an average particle size of 0.3 IL■ were similarly deposited on the other surface of the membrane having the porous layer thus obtained. Thereafter, the particle layer on each membrane surface was pressed onto the ion exchange membrane surface under conditions of a temperature of 140 cm and a C5 pressure of 30 kg/am.

膜の陽極側面及び陰極側面には、酸化ジルコニウム粒子
及び炭化ケイ素粒子が、それぞれ膜面1 cm”当りそ
れぞれ1.0mg 、 1.OB付着したイオン交換膜
を作成した。
An ion exchange membrane was prepared in which 1.0 mg of zirconium oxide particles and 1.0 mg of silicon carbide particles were adhered to the anode and cathode sides of the membrane, respectively, per 1 cm of the membrane surface.

該膜を25%苛性ソーダ水溶液で70℃、16時間加水
分解を行ないNa型のイオン交換膜とした。
The membrane was hydrolyzed with a 25% caustic soda aqueous solution at 70° C. for 16 hours to obtain a Na-type ion exchange membrane.

かくして得られた膜のA−1層の側に、チタンのパンチ
トメタル(短径21層、直径5■m)に酸化ルテニウム
と、酸化イリジウムと酸化チタンの固溶体を被覆した低
い塩素過電圧を有する陽極を、またB−1層側にはSO
3304製パンチトメタル(短径2114、直径5m■
)にルテニウム入りラネーニッケル(ルテニウム5%、
ニッケル50%、アルミニウム45%)を電着して、低
い水素過電圧を有するようにした陰極を陽極と0.5m
g離して配置し、陽極室に塩化ナトリウム水溶液を、陰
極室に水を供給しつつ、陽極室の塩化ナトリウム濃度を
200g / lに、また陰極室の苛性ソーダ濃度を3
5重量%に保ちつつ、90℃、30A / dm”の条
件で電解を行った。有効膜面積は0.25層m”であっ
た、5日間電解を行ない、初期電流効率が96±0.3
%であることを確認した後、供給塩水をメタノールを含
み、かっCa及びMg濃度が夫々xoppb以下である
塩水に切り替えて電解を行なった。
The A-1 layer side of the membrane thus obtained was coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide on punched titanium metal (21 layers in short axis, 5 μm in diameter), which had a low chlorine overvoltage. anode, and SO on the B-1 layer side.
3304 punched metal (minor diameter 2114, diameter 5m)
) with ruthenium in Raney nickel (ruthenium 5%,
A cathode electrodeposited with nickel (50% nickel, aluminum 45%) to have a low hydrogen overvoltage is separated by 0.5 m from the anode.
While supplying an aqueous sodium chloride solution to the anode chamber and water to the cathode chamber, the sodium chloride concentration in the anode chamber was adjusted to 200 g/l, and the caustic soda concentration in the cathode chamber was adjusted to 3 g/l.
Electrolysis was carried out at 90°C and 30 A/dm'' while maintaining the concentration at 5% by weight.The effective membrane area was 0.25 layer m''. After 5 days of electrolysis, the initial current efficiency was 96±0. 3
%, the supplied brine was switched to brine containing methanol and having a Ca and Mg concentration of xopppb or less, respectively, and electrolysis was performed.

塩水中のメタノール濃度をコントロールする為、メタノ
ールを塩水に溶解させて所望の濃度に調整した。その際
、陽極室へ供給する塩化ナトリウム水溶液中のメタノー
ルの濃度を0.30゜50.100,200,300 
pp朧の6つの異なったレベルに保った。この結果、各
条件ての電解性能は以下の第1表の通りとなった。
To control the methanol concentration in the salt water, methanol was dissolved in the salt water and adjusted to the desired concentration. At that time, the concentration of methanol in the sodium chloride aqueous solution supplied to the anode chamber was adjusted to 0.30°50.100,200,300.
PP was kept at six different levels of haziness. As a result, the electrolytic performance under each condition was as shown in Table 1 below.

第1表 第1表よりメタノール濃度をxoopp層以下に保つと
電流効率が低下せず、かつ摺電圧が上昇しないことか判
った。
From Table 1, it was found that if the methanol concentration was kept below the xoopp layer, the current efficiency would not decrease and the sliding voltage would not increase.

実施例2゜ 実施例1と同様なイオン交換膜と同一条件で電解を行な
い、陽極室へ供給する塩化ナトリウム水溶液中にプロピ
レングリコールを添加し電解を行なった。
Example 2 Electrolysis was carried out using the same ion exchange membrane as in Example 1 under the same conditions, and propylene glycol was added to the aqueous sodium chloride solution supplied to the anode chamber.

陽極室へ供給する塩化ナトリウム水溶液中のプロピレン
グリコールの濃度を0.50,100゜300ppmの
4つの異なったレベルに保った。
The concentration of propylene glycol in the aqueous sodium chloride solution fed to the anode chamber was maintained at four different levels: 0.50, 100 and 300 ppm.

この結果、各条件での電解性能は以下の第2表の通りと
なった。
As a result, the electrolytic performance under each condition was as shown in Table 2 below.

第2表 第2表よりプロピレングリコール濃度を1100pp以
下に保つと電流効率が低下せず、かつ摺電圧が上昇しな
いことが判った。
From Table 2, it was found that when the propylene glycol concentration was kept at 1100 pp or less, the current efficiency did not decrease and the sliding voltage did not increase.

実施例3゜ テトラフルオロエチレンと、 CFz−CFOCFzCF(CF:+)O(CF2)i
(:00CH+の触媒重合により、イオン交換容量0.
90■eq/gである共重合体Aを得た。テトラフルオ
ロエチレンと(:F2−CFOCF、CF(CF3)O
CF2CF2SO□Fの触媒重合により、イオン交換容
量0.91meq / gである共重合体Bを得た0、
ポリマーAとポリマーBを夫々押出成型し、Aポリマー
からなる50ルのフィルムとBポリマーからなる200
ルのフィルムを得た。
Example 3゜Tetrafluoroethylene and CFz-CFOCFzCF(CF:+)O(CF2)i
(By catalytic polymerization of :00CH+, the ion exchange capacity is 0.
Copolymer A having a weight of 90 eq/g was obtained. Tetrafluoroethylene and (:F2-CFOCF, CF(CF3)O
Copolymer B with an ion exchange capacity of 0.91 meq/g was obtained by catalytic polymerization of CF2CF2SO□F0,
Polymer A and Polymer B were each extruded to form a film of 50 ml consisting of Polymer A and 200 ml consisting of Polymer B.
I got a film of Le.

両フィルムをエンボスロールを用いて積層し1両表面に
微細な凹凸のある複合膜を得た。
Both films were laminated using an embossing roll to obtain a composite film with fine irregularities on both surfaces.

該膜をジメチルスルホキシド−KOH混合水溶液、90
°C20分間加水分解を行ないイオン交換膜とした。実
施例1と同様な方法で積層膜のAポリマー側を陰極に対
向せしめて塩化ナトリウムの電解を行なった。有効膜面
積は0−25d■2であった。
The membrane was treated with dimethyl sulfoxide-KOH mixed aqueous solution, 90%
Hydrolysis was carried out at °C for 20 minutes to obtain an ion exchange membrane. Sodium chloride was electrolyzed in the same manner as in Example 1, with the A polymer side of the laminated film facing the cathode. The effective membrane area was 0-25 d2.

5日間電解を行ない、初期電流効率が95.7±0.3
%であることを確認した後、供給塩水をメタノールを含
み、かつCa及びMg濃度が夫々10ppb以下である
塩水に切り替えて電解を行なった。
After 5 days of electrolysis, the initial current efficiency was 95.7±0.3.
%, the supplied brine was switched to brine containing methanol and having Ca and Mg concentrations of 10 ppb or less, respectively, and electrolysis was performed.

塩水中のメタノール濃度をコントロールする為、メタノ
ールを塩水に溶解させて所望の濃度に調整した。その際
、陽極室へ供給する塩化ナトリウム水溶液中のメタノー
ルの濃度をO,SO。
To control the methanol concentration in the salt water, methanol was dissolved in the salt water and adjusted to the desired concentration. At that time, the concentration of methanol in the sodium chloride aqueous solution supplied to the anode chamber was adjusted to O, SO.

100 、zoopp■の4つの異なったレベルに保っ
た。
100, zoopp■ were held at four different levels.

この結果、各条件ての電解性能は以下の第3表の通りと
なった。
As a result, the electrolytic performance under each condition was as shown in Table 3 below.

第3表 第3表よりメタノール濃度を100pp■以下に保つと
電流効率が低下せず、かつ摺電圧か上昇しないことが判
った。
From Table 3, it was found that if the methanol concentration was kept at 100 pp or less, the current efficiency did not decrease and the sliding voltage did not increase.

Claims (8)

【特許請求の範囲】[Claims] (1)含フッ素陽イオン交換膜を用いて、塩化アルカリ
を電解して水酸化アルカリを製造するにあたり、供給塩
化アルカリ水溶液中の有機物濃度を100ppm以下に
保持することを特徴とする塩化アルカリの電解方法。
(1) Electrolysis of alkali chloride using a fluorine-containing cation exchange membrane to produce alkali hydroxide by electrolyzing alkali chloride, which is characterized by maintaining the concentration of organic matter in the supplied aqueous alkali chloride solution to 100 ppm or less. Method.
(2)有機物がアルコール類である特許請求の範囲(1
)の電解方法。
(2) Claims in which the organic substance is alcohol (1)
) electrolysis method.
(3)含フッ素陽イオン交換膜が、イオン交換基として
カルボン酸基を有するパーフルオロカーボン重合体から
なる特許請求の範囲(1)の電解方法。
(3) The electrolysis method according to claim (1), wherein the fluorine-containing cation exchange membrane is made of a perfluorocarbon polymer having a carboxylic acid group as an ion exchange group.
(4)含フッ素陽イオン交換膜が、陽極に面する側のイ
オン交換容量が陰極に面する側のイオン交換容量よりも
大きなパーフルオロカーボン重合体からなる非対称膜で
ある特許請求の範囲(1)の電解方法。
(4) Claim (1) wherein the fluorine-containing cation exchange membrane is an asymmetric membrane made of a perfluorocarbon polymer in which the ion exchange capacity on the side facing the anode is larger than the ion exchange capacity on the side facing the cathode. electrolysis method.
(5)含フッ素陽イオン交換膜が、陰極に面する側はカ
ルボン酸基を有するパーフルオロカーボン重合体から成
り、陽極に面する側は、スルホン酸基を有するパーフル
オロカーボン重合体からなる非対称膜である特許請求の
範囲(1)の電解方法。
(5) The fluorine-containing cation exchange membrane is made of a perfluorocarbon polymer having a carboxylic acid group on the side facing the cathode, and an asymmetric membrane consisting of a perfluorocarbon polymer having a sulfonic acid group on the side facing the anode. An electrolysis method according to claim (1).
(6)含フッ素陽イオン交換膜が、その表面が粗面化さ
れたものであるか、その表面に金属の酸化物または炭化
物粒子からなる電極活性を有しない多孔質層を形成せし
めたものである特許請求の範囲(1)、(3)、(4)
又は(5)の電解方法。
(6) The fluorine-containing cation exchange membrane has a roughened surface, or has a porous layer made of metal oxide or carbide particles with no electrode activity formed on its surface. Certain claims (1), (3), (4)
Or the electrolysis method of (5).
(7)供給塩化アルカリ水溶液の濃度が、13〜20重
量%である特許請求の範囲(1)、(3)、(4)、(
5)又は(6)の電解方法。
(7) Claims (1), (3), (4), (
5) or (6) electrolysis method.
(8)水酸化アルカリの濃度が、30重量%である特許
請求の範囲(1)、(3)、(4)、(S)、(6)又
は(7)の電解方法。
(8) The electrolysis method according to claim (1), (3), (4), (S), (6) or (7), wherein the concentration of alkali hydroxide is 30% by weight.
JP3284189A 1989-02-14 1989-02-14 Method for electrolyzing alkali chloride Pending JPH02213488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3284189A JPH02213488A (en) 1989-02-14 1989-02-14 Method for electrolyzing alkali chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3284189A JPH02213488A (en) 1989-02-14 1989-02-14 Method for electrolyzing alkali chloride

Publications (1)

Publication Number Publication Date
JPH02213488A true JPH02213488A (en) 1990-08-24

Family

ID=12370044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3284189A Pending JPH02213488A (en) 1989-02-14 1989-02-14 Method for electrolyzing alkali chloride

Country Status (1)

Country Link
JP (1) JPH02213488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651990A4 (en) * 2010-12-17 2015-08-12 3M Innovative Properties Co Fluorine-containing polymer comprising a sulfinate-containing molecule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651990A4 (en) * 2010-12-17 2015-08-12 3M Innovative Properties Co Fluorine-containing polymer comprising a sulfinate-containing molecule
US10093761B2 (en) 2010-12-17 2018-10-09 3M Innovative Properties Company Fluorine-containing polymer comprising a sulfinate-containing molecule

Similar Documents

Publication Publication Date Title
US4909912A (en) Ion exchange membrane cell and electrolytic process using thereof
US4586992A (en) Process for producing potassium hydroxide
EP0165466B1 (en) Cation exchange fluoropolymer membrane
US4604323A (en) Multilayer cation exchange membrane
US5716504A (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
CA1263339A (en) Electrolytic cell for the electrolysis of an alkali metal chloride
JP2504135B2 (en) Cation exchange membrane for electrolysis
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JPH02213488A (en) Method for electrolyzing alkali chloride
JPS60243292A (en) Manufacture of caustic soda of high concentration
JP3112039B2 (en) How to restart the electrolytic cell
JPH0219848B2 (en)
EP0189056B1 (en) Method for restoring the current efficiency
JPH01263288A (en) Method for electrolyzing alkali chloride
JPS61235587A (en) Electrolyzing method
JPH0570983A (en) Method for electrolyzing aqueous alkali chloride solution
EP0020940B1 (en) Process for producing an alkali metal hydroxide by electrolysing an aqueous solution of an alkali metal chloride
JPS6223076B2 (en)
JP2658037B2 (en) Method for producing high-purity potassium hydroxide
JPS6267185A (en) Brine electrolysis method
JPS6214036B2 (en)
JPS631391B2 (en)
JPS636029A (en) Cation exchange membrane for use in electrolysis