JPS6223076B2 - - Google Patents

Info

Publication number
JPS6223076B2
JPS6223076B2 JP55073744A JP7374480A JPS6223076B2 JP S6223076 B2 JPS6223076 B2 JP S6223076B2 JP 55073744 A JP55073744 A JP 55073744A JP 7374480 A JP7374480 A JP 7374480A JP S6223076 B2 JPS6223076 B2 JP S6223076B2
Authority
JP
Japan
Prior art keywords
porous layer
group
ion exchange
anode
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073744A
Other languages
Japanese (ja)
Other versions
JPS56169782A (en
Inventor
Yoshio Oda
Takeshi Morimoto
Koji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7374480A priority Critical patent/JPS56169782A/en
Publication of JPS56169782A publication Critical patent/JPS56169782A/en
Priority to US06/381,746 priority patent/US4661218A/en
Publication of JPS6223076B2 publication Critical patent/JPS6223076B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、苛性アルカリの製造方法、特にイオ
ン交換膜を用いて低電圧で塩化アルカリ水溶液を
電解して苛性アルカリを得る方法に係るものであ
る。 塩化アルカリ水溶液を電解して苛性アルカリを
得る方法は、近年公害防止の見地から水銀法に代
り、隔膜法が主流になりつつある。 隔膜法は、隔膜としてアスベストを用いる方法
に代り、より高純度、高濃度の苛性アルカリを得
る目的でイオン交換膜法が注目されている。 他方、近年省エネルギーが世界的に進行しつつ
あり、この観点からこの種技術においては、電解
電圧を極力低くすることが望まれる。 電解電圧の低下手段としては、従来陽極や陰極
の材質、組成及び形状を考慮したり、或は用いる
イオン交換膜の組成やイオン交換基の種類を特定
化する等種々の手段が提案されている。 これらの方法は、何れもそれなりの効果はある
ものの、大多数のものは得られる苛性アルカリの
濃度がそれ程高くないところに上限を有し、これ
を超えると急激に電解電圧の上昇や電流効率の低
下を来たしたり、或は電解電圧低下現象の持続
性、耐久性等が劣る等必ずしも工業的に十分満足
し得るものばかりではなかつた。 最近、含弗素陽イオン交換膜の表面に、ガス及
び液透過性の陽極や陰極を密着せしめて塩化アル
カリ水溶液を電解し、苛性アルカリを得る方法が
提案されている。(特開昭54―112398号公報参
照) この方法は、従来この種技術においては避け難
いと考えられていた被電解液による電気抵抗や、
発生する水素や塩素ガスに基づく泡による電気抵
抗を極力減らせる為、従来より一層低電圧で電解
し得る手段として優れた方法である。 この方法における陽極や陰極は、イオン交換膜
表面に結合し、埋め込むように設けられ、そし
て、膜と電極との接触界面で電解により発生した
ガスは電極から容易に離脱し、且電解液が浸透し
得るようにガス及び液透過性にされている。 この様な多孔質の電極は、通常陽極や陰極とし
ての活性粒子と、これを結合する物質、更に好ま
しくは黒鉛その他の導電材料が均一に混合され、
薄層状に成形された多孔質体から成つている。 しかしながら、本発明者の検討によると、この
様な電極を直接イオン交換膜に結合せしめた電解
槽を用いる場合には、電解槽における例えば陽極
は、陰極室から逆拡散する水酸イオンと接触する
為、従来の耐塩素性の他に、耐アルカリ性も要求
され、必然的に特殊、高価な材質が要求される
他、電極とイオン交換膜とが直接結合されててい
る為、電極反応によつて発生したガスにより、イ
オン交換膜に部分的な膨れが生じる等膜性能が劣
化する等長期にわたり安定した操業が困難となる
虞れがあることが判明した。 本発明者は、かかる欠点を除去し、可及的に低
い槽電圧で苛性アルカリを得る手段を見出すこと
を目的として種々研究、検討した結果、陽イオン
交換膜の表面に電極活性を有しないガス及び液透
過性の多孔質層を形成し、これを介して陽極又は
陰極を配置せしめた電解槽を用いることにより、
前記目的を達成し得ることを見出し、既に特願昭
55―13012号として提案した。 そして、その後本発明者が更に検討を進めた
処、陽イオン交換膜の表面に設けられる電極活性
を有しないガス及び液透過性の多孔質層は、或る
特定の材質を用いることにより、イオン交換膜へ
の更に一層強固な付着力と、より好ましい多孔質
層を容易に再現性よく得ることが出来、しかも低
電圧で長期に安定して電解操業を実施し得ること
が見出された。 かくして本発明は、陽極及び陰極間を陽イオン
交換膜で区画した電解槽であつて、前記陽極又は
陰極の少なくとも一方が、陽イオン交換膜の表面
に形成されたガス及び液透過性の溶融金属酸化物
から造られた多孔質層を介して配置された電解槽
にて塩化アルカリ水溶液を電解して苛性アルカリ
を得る方法にある。 本発明に従うと、電極は、電極活性を有さない
ガス及び液透過性の多孔質層を介して配置される
ので、膜と直接接触することがなく、例えば陽極
の場合、大きい耐アルカリ性は要求されず、それ
だけ陽極材質の選択幅が大きくなる。又、電解時
に発生するガスは、膜と電極との接触界面で発生
することがないので、前記の如き膜へのトラブル
は発生しない。 他方、本発明を採用した場合、槽電圧は予想外
に低く、例えば上記多孔質層を介さず、メツシユ
等の空隙性の電極を膜に直接接触せしめた電解槽
で塩化アルカリを電解する方法に比べ、槽電圧は
かなり低下することが認められた。 本発明において、イオン交換膜面に形成される
ガス及び液透過性の多孔質層は、溶融金属酸化物
から造られた多孔質体が採用される。溶融金属酸
化物としては、好ましくは、金属酸化物をアーク
炉で溶融固化させたものが使用される。かかる溶
融金属酸化物としては、スズ、鉛などの周期律表
―A族、チタン、ジルコン、ハフニウムなどの
周期律表―B族、ニオブ、タンタルなどの周期
律表V―B族、鉄、コバルト、ニツケルなどの鉄
族、アルミニウム、クロム又はマンガンの酸化物
が好ましくは採用される。 また、膜面に形成される多孔質層は、平均細孔
径0.01〜2000μ、多孔率10〜99%を有するのが適
当であり、これらのうち平均細孔径0.1〜1000
μ、多孔率20〜95%、を採用するのが特に好まし
い。 多孔質層の厚さは、これを形成する材質や上記
物性により厳密には決定されるが、一般に0.1〜
300μ、好ましくは0.5〜100μを採用するのが適
当である。 厚さが前記範囲を逸脱する場合には、本発明の
所期の目的を十分達成し得なかつたり、多孔層を
通じてのガスの離脱や、電解液の移動が困難とな
る虞れがあるので好ましくない。 そして、前記溶融金属酸化物を用いて、実際多
孔質層を形成する手段としては、該金属酸化物は
粉末状で用いられ、前記物性を満足させる為、そ
の粒径は0.1〜50μを採用するのが好ましい。 そして、この様な粉末は、ポリテトラフルオロ
エチレン等の含弗素重合体の懸濁液で結合され
る。この際用いられる含弗素重合体の使用量は、
通常2〜50重量%、好ましくは5〜30重量%が適
当である。又、必要に応じ、両者の混合を容易且
均一にせしめる為、適当な界面活性剤を添加した
り、更には黒鉛等の導電性増量剤を加えることも
出来る。 多孔質層中における上記金属酸化物の含有量
は、通常0.05〜50mg/cm2、好ましくは0.1〜30
mg/cm2が適当である。 これら多孔質層のイオン交換膜面への形成は、
これを介して配置される電極が、電極活性粒子を
含む多孔質層である場合、実質上これと同様に行
なわれる。即ち、特開昭54―112398号公報に記載
された方法と同様に調製され、圧力と熱の作用に
より膜面に結合させ、好ましくは埋め込まれる。
しかし、多孔質層が自己支持性を有する場合に
は、必ずしも膜面に一体的に埋め込まれる必要は
なく、単なる接触であつてもよい場合がある。 本発明において、上記多孔質層を介して配置さ
れる電極としては、例えば多孔板、網又はエキス
パンデツドメタル等の空隙性を有する電極、又は
電極活性を有するガス及び液透過性の多孔質層か
ら成る電極を使用し得る。 空隙性を有する電極又はガス及び液透過性の多
孔質層から成る電極の何れの場合でも、陽極又は
陰極を形成する材質は、夫々塩素過電圧又は水素
過電圧の低いものが選ばれる。即ち、陽極として
は、例えば白金族金属やその合金、それらの導電
性酸化物が、陰極としては、例えば白金族金属や
その合金、鉄族金属等が用いられる。尚、白金属
金属としては、白金、ロジウム、ルテニウム、パ
ラジウム、イリジウムが、又鉄族金属としては
鉄、コバルト、ニツケル、ラネーニツケル、安定
化ラネーニツケルが夫々例示される。 空隙性を有する電極を用いる場合には、該電極
は、上記陽極又は陰極を形成する物質それ自体で
これを構成することが出来るが、しかし、白金族
金属やその合金及びこれらの酸化物を用いる際に
は、通常チタンやタンタル等の基体金属で構成さ
れた例えばエキスパンデツドメタルの表面にこれ
ら物質を被覆せしめて用いるのが好ましい。 一方、電極をガス及び液透過性の多孔質層から
形成する場合には、例えば特開昭54―112398号公
報に記載された陽極又は陰極多孔質層と同様に行
なわれる。即ち、上記陽極又は陰極形成物質の粉
末乃至粒状物を、必要に応じ黒鉛その他の導電性
物質と共に、ポリテトラフルオロエチレン等の含
弗素重合体から成る結合剤を用い、薄層状に成形
される。これら電極多孔質層は、陰、陽極共、前
記溶融金属酸化物から造られた多孔質層とほぼ同
様の平均細孔径、多孔率及び空気透過係数と厚さ
を有する。 本発明において、上記陽極又は陰極を、膜面に
形成された溶融金属酸化物から造られた多孔質層
を介して配置する場合、電極は好ましくは多孔質
層に接触して配置するのが槽電圧を低下させる為
に効果的である。特に、電極が上記電極活性を有
する多孔質層である場合には、前記金属酸化物で
造られた多孔層に接触させ、好ましくは加熱及
び/又は加圧により両者を一体的に結合するのが
槽電圧を低下させる為に効果的である。しかし、
これらの陽極又は陰極は、必ずしも多孔質層と接
触して配置する必要はなく、場合により、適宜な
間隔を配置することも出来る。 溶融金属酸化物から造られた多孔質層は、イオ
ン交換膜の陽極側若しくは陰極側の何れか一方若
しくは両方に設けることが出来る。 又、陽極又は陰極の何れか一方のみを本発明に
従つて溶融金属酸化物から造られた多孔質層を介
して配置せしめる場合には、その対極である陽極
又は陰極は、上記した空隙性を有する電極又はガ
ス及び液透過性の多孔体から成る電極が直接に陽
イオン交換膜の陽極側又は陰極側に配置される。
この場合、これらの電極は、イオン交換膜面に接
触して設けてもよいし、所定間隔をとつて設けて
もよい。しかし、ガス及び液透過性の多孔体から
成る電極を用いる場合には、好ましくは膜面と接
触させ、更にはこれと結合し、埋め込む方が好ま
しい。 本発明に用いられるイオン交換膜としては、例
えばカルボキシル基、スルホン酸基、ホスホン酸
基、フエノール性水酸基等の陽イオン交換基を含
有する重合体から成り、かかる重合体としては、
含弗素重合体を採用するのが特に好ましい。 イオン交換基含有の含弗素重合体としては、例
えばテトラフルオロエチレン、クロロトリフルオ
ロエチレン等のビニルモノマーとスルホン酸、カ
ルボン酸、燐酸基等のイオン交換基、或はイオン
交換基に転換し得る反応性基を有するパーフルオ
ロのビニルモノマーとの共重合体が好ましい。 又、トリフルオロエチレンの膜状重合体にスル
ホン酸基等のイオン交換基を導入したものや、ス
チレンジビニルベンゼンにスルホン酸基を導入し
たもの等も使用出来る。 そして、これらのうち、夫々以下の(イ),(ロ)の重
合単位を形成する重合体の使用が好ましい。(イ)(―
CF2−CXX′)−(ロ)
The present invention relates to a method for producing caustic alkali, and particularly to a method for obtaining caustic alkali by electrolyzing an aqueous alkali chloride solution at low voltage using an ion exchange membrane. In recent years, as a method for obtaining caustic alkali by electrolyzing an aqueous alkali chloride solution, the diaphragm method has become mainstream instead of the mercury method from the viewpoint of pollution prevention. As for the diaphragm method, instead of the method using asbestos as a diaphragm, the ion exchange membrane method is attracting attention for the purpose of obtaining higher purity and higher concentration caustic alkali. On the other hand, energy conservation has been progressing worldwide in recent years, and from this point of view, in this type of technology, it is desired to reduce the electrolysis voltage as much as possible. Various methods have been proposed to reduce the electrolytic voltage, such as considering the material, composition, and shape of the anode and cathode, or specifying the composition of the ion exchange membrane and the type of ion exchange group used. . Although all of these methods have certain effects, most of them have an upper limit where the concentration of caustic alkali obtained is not very high, and if this is exceeded, the electrolysis voltage will suddenly increase and the current efficiency will decrease. However, they are not always fully satisfactory industrially, such as causing a drop in electrolytic voltage, or being inferior in the sustainability and durability of the electrolytic voltage drop phenomenon. Recently, a method has been proposed in which a gas- and liquid-permeable anode or cathode is brought into close contact with the surface of a fluorine-containing cation exchange membrane to electrolyze an aqueous alkali chloride solution to obtain caustic alkali. (Refer to Japanese Unexamined Patent Publication No. 112398/1983) This method eliminates the electrical resistance caused by the electrolyte, which was previously thought to be unavoidable in this type of technology.
This is an excellent method for electrolysis at a lower voltage than conventional methods, as it can minimize the electrical resistance caused by bubbles generated from hydrogen and chlorine gas. In this method, the anode and cathode are bonded to and embedded in the surface of the ion exchange membrane, and the gas generated by electrolysis at the contact interface between the membrane and electrode easily leaves the electrode, and the electrolyte permeates. It is made permeable to gases and liquids so that it can be used. Such porous electrodes usually consist of a uniform mixture of active particles as an anode or a cathode, and a substance that binds them, preferably graphite or other conductive material.
It consists of a porous body formed into a thin layer. However, according to studies conducted by the present inventors, when using an electrolytic cell in which such an electrode is directly bonded to an ion exchange membrane, for example, the anode in the electrolytic cell comes into contact with hydroxide ions that diffuse back from the cathode chamber. Therefore, in addition to the conventional chlorine resistance, alkali resistance is also required, which necessarily requires special and expensive materials.In addition, since the electrode and ion exchange membrane are directly connected, the electrode reaction It has been found that the gas generated during this process may cause partial bulges in the ion exchange membrane, deteriorating membrane performance, and making stable operation difficult over a long period of time. As a result of various studies and examinations aimed at eliminating such drawbacks and finding a means to obtain caustic alkali with as low a cell voltage as possible, the present inventor discovered that a gas having no electrode activity on the surface of a cation exchange membrane. By using an electrolytic cell in which a liquid-permeable porous layer is formed and an anode or a cathode is arranged through the porous layer,
It was discovered that the above purpose could be achieved, and a patent application has already been filed.
It was proposed as No. 55-13012. Subsequently, the present inventor conducted further studies and found that a gas and liquid permeable porous layer with no electrode activity provided on the surface of the cation exchange membrane can be made of a certain material to absorb ions. It has been discovered that even stronger adhesion to the exchange membrane and a more preferable porous layer can be easily obtained with good reproducibility, and that electrolytic operation can be carried out stably over a long period of time at low voltage. Thus, the present invention provides an electrolytic cell in which an anode and a cathode are partitioned by a cation exchange membrane, wherein at least one of the anode and the cathode is made of a gas- and liquid-permeable molten metal formed on the surface of the cation exchange membrane. This method involves electrolyzing an aqueous alkali chloride solution in an electrolytic cell placed through a porous layer made of an oxide to obtain caustic alkali. According to the invention, the electrode is arranged through a gas- and liquid-permeable porous layer that does not have electrode activity, so that it does not come into direct contact with the membrane, and, for example, in the case of an anode, a high alkali resistance is required. This increases the range of choices for anode materials. Further, since the gas generated during electrolysis is not generated at the contact interface between the membrane and the electrode, the above-mentioned troubles to the membrane do not occur. On the other hand, when the present invention is adopted, the cell voltage is unexpectedly low. For example, it is difficult to electrolyze alkali chloride in an electrolytic cell in which a porous electrode such as a mesh is brought into direct contact with the membrane without using the porous layer. In comparison, it was observed that the cell voltage was considerably lower. In the present invention, a porous body made of molten metal oxide is used as the gas and liquid permeable porous layer formed on the ion exchange membrane surface. As the molten metal oxide, preferably used is a metal oxide melted and solidified in an arc furnace. Such molten metal oxides include Group A of the periodic table such as tin and lead, Group B of the periodic table such as titanium, zircon, and hafnium, Group V of the periodic table such as niobium, tantalum, iron, cobalt, etc. , nickel, aluminum, chromium or manganese oxides are preferably employed. In addition, it is appropriate for the porous layer formed on the membrane surface to have an average pore diameter of 0.01 to 2000μ and a porosity of 10 to 99%;
It is particularly preferable to employ μ and a porosity of 20 to 95%. The thickness of the porous layer is strictly determined by the material forming it and the above-mentioned physical properties, but it is generally 0.1~
It is appropriate to employ 300μ, preferably 0.5 to 100μ. If the thickness deviates from the above range, there is a risk that the intended purpose of the present invention may not be fully achieved, or that gas release and electrolyte movement through the porous layer may be difficult, so it is preferable. do not have. As a means of actually forming a porous layer using the molten metal oxide, the metal oxide is used in powder form, and in order to satisfy the above physical properties, the particle size is 0.1 to 50μ. is preferable. Such powders are then combined with a suspension of a fluorine-containing polymer such as polytetrafluoroethylene. The amount of fluorine-containing polymer used at this time is:
Usually 2 to 50% by weight, preferably 5 to 30% by weight is appropriate. Further, if necessary, in order to facilitate and uniformly mix the two, an appropriate surfactant or a conductive filler such as graphite may be added. The content of the metal oxide in the porous layer is usually 0.05 to 50 mg/cm 2 , preferably 0.1 to 30 mg/cm 2 .
mg/cm 2 is appropriate. The formation of these porous layers on the ion exchange membrane surface is
When the electrode disposed through this is a porous layer containing electrode active particles, the procedure is substantially the same. That is, it is prepared in the same manner as described in JP-A-54-112398, and is bonded to the membrane surface by the action of pressure and heat, preferably embedded.
However, if the porous layer has self-supporting properties, it does not necessarily need to be integrally embedded in the membrane surface, and may be merely in contact. In the present invention, the electrode disposed through the porous layer is, for example, a porous electrode such as a perforated plate, a net, or an expanded metal, or a gas- and liquid-permeable porous layer having electrode activity. An electrode consisting of can be used. In either case of an electrode having voids or an electrode consisting of a gas- and liquid-permeable porous layer, the material forming the anode or cathode is chosen to have a low chlorine overvoltage or hydrogen overvoltage, respectively. That is, as the anode, for example, a platinum group metal, an alloy thereof, or a conductive oxide thereof is used, and as the cathode, for example, a platinum group metal, an alloy thereof, an iron group metal, or the like is used. Examples of platinum metals include platinum, rhodium, ruthenium, palladium, and iridium, and examples of iron group metals include iron, cobalt, nickel, Raney nickel, and stabilized Raney nickel. When using a porous electrode, the electrode can be composed of the material itself that forms the anode or cathode, but platinum group metals, alloys thereof, and oxides thereof may be used. In this case, it is preferable to use these materials by coating the surface of, for example, expanded metal, which is usually made of a base metal such as titanium or tantalum. On the other hand, when the electrode is formed from a gas- and liquid-permeable porous layer, it can be formed in the same manner as the anode or cathode porous layer described in, for example, JP-A-54-112398. That is, the powder or granular material of the anode or cathode forming material is formed into a thin layer using a binder made of a fluorine-containing polymer such as polytetrafluoroethylene, along with graphite or other conductive material if necessary. These electrode porous layers, both cathode and anode, have substantially the same average pore diameter, porosity, air permeability coefficient, and thickness as the porous layer made from the molten metal oxide. In the present invention, when the anode or cathode is disposed through a porous layer made of molten metal oxide formed on the membrane surface, the electrode is preferably disposed in contact with the porous layer. Effective for lowering voltage. In particular, when the electrode is a porous layer having the above-mentioned electrode activity, it is preferable to bring the electrode into contact with the porous layer made of the metal oxide and to integrally bond the two, preferably by heating and/or pressurizing. Effective for lowering cell voltage. but,
These anodes or cathodes do not necessarily need to be placed in contact with the porous layer, and may be placed at appropriate intervals depending on the case. A porous layer made of molten metal oxide can be provided on either or both the anode side or the cathode side of the ion exchange membrane. In addition, when only either the anode or the cathode is disposed via a porous layer made of molten metal oxide according to the present invention, the opposite electrode, the anode or the cathode, has the above-mentioned porosity. An electrode made of a gas- and liquid-permeable porous material is placed directly on the anode side or the cathode side of the cation exchange membrane.
In this case, these electrodes may be provided in contact with the ion exchange membrane surface, or may be provided at predetermined intervals. However, when using an electrode made of a gas- and liquid-permeable porous material, it is preferable to bring it into contact with the membrane surface, and furthermore, to combine it and embed it. The ion exchange membrane used in the present invention is made of a polymer containing a cation exchange group such as a carboxyl group, a sulfonic acid group, a phosphonic acid group, or a phenolic hydroxyl group.
It is particularly preferable to employ a fluorine-containing polymer. Examples of fluorine-containing polymers containing ion-exchange groups include those that react with vinyl monomers such as tetrafluoroethylene and chlorotrifluoroethylene and ion-exchange groups such as sulfonic acid, carboxylic acid, and phosphoric acid groups, or that can be converted into ion-exchange groups. A copolymer with a perfluorinated vinyl monomer having a functional group is preferred. Also usable are trifluoroethylene membrane polymers into which ion exchange groups such as sulfonic acid groups have been introduced, and styrene divinylbenzene into which sulfonic acid groups have been introduced. Among these, it is preferable to use polymers that form the following polymerized units (a) and (b), respectively. (stomach)(-
CF 2 −CXX′)−(b)

【式】 ここでXはF,Cl,H又は−CF3であり、X′は
X又はCF3(CF2nであり、mは1〜5であり、
Yは次のものから選ばれる。 (―CF2−)―XA,−O(―CF2)―XA,
[Formula] Here, X is F, Cl, H or -CF 3 , X' is X or CF 3 (CF 2 ) n , m is 1 to 5,
Y is selected from the following: (-CF 2 -) - X A, -O (-CF 2 ) - X A,

【式】【formula】

x,y,zは共に1〜10であり、Z.Rfは−F又
はC110のパーフルオロアルキル基から選ばれた
基である。Aは−COOM,−SO3M又は−CN,−
COF,−SO2F,−COOR1,−CONR2R3等の加水分
解若しくは中和により、−COOM,−SO3Mに転換
し得る官能基を示す。R1はC1〜10のアルキル基、
Mはアルカリ金属又は第4級アンモニウム基であ
り、R2,R3、H又はC1〜10のアルキル基を示
す。 そして、本発明において、これら共重合体から
成る乾燥樹脂1g当りの膜内イオン交換基濃度が
0.5〜4.0ミリ当量である含弗素陽イオン交換膜を
用いる場合には、特に本発明の所期の目的を十分
達成し得る事が見出された。 そして、上記乾燥樹脂当りのイオン交換基濃度
が0.8〜2.0ミリ当量を採用する場合には、本発明
の目的を十分且安定して、特に性能の持続性、耐
久性を大になし得るので好ましい。 本発明に用いられる好ましい陽イオン交換膜
は、上記の様な弗素化オレフイン単量体と上記イ
オン交換基又は該基に転換し得る官能基を有する
重合能ある単量体との共重合体によつて得られる
非架橋性の共重合体から構成されるが、その分子
量は、好ましくは約10万〜200万、特に15万〜100
万が好ましい。弗素化オレフイン単量体と、イオ
ン交換基若しくは該基に転換し得る官能基を有す
る重合能ある単量体、更には第三の単量体との共
重合は、既知の任意の手段で行なわれる。即ち、
必要に応じ例えばハロゲン化炭化水素等の溶媒を
用い、触媒重合、熱重合、放射線重合等により重
合し得る。又、得られた共重合体からイオン交換
膜に製膜する手段も特に制限はなく、例えばプレ
ス成形、ロール成形、押出し成形、溶液流廷法、
デイスパージヨン成形、粉末成形等適宜公知の手
段を採用し得る。 かくして得られる膜は、その厚さが20〜500
μ、好ましくは50〜400μにせしめるのが好まし
い。 又、共重合体の製膜工程に相前後し、好ましく
は製膜後に共重合体がイオン交換基そのものでは
なく、該基に転換し得る官能基の場合には、それ
に応じた適宜な処理により、これらの官能基がイ
オン交換基に転換される。例えば−CN,−
COF,−COOR1,−SO2F,−CONR2R3(M,R1
R3は上記と同じ)の場合には、酸又はアルカリ
のアルコール溶液により、加水分解又は中和せし
めてイオン交換基に転換される。 更に、本発明に用いられる陽イオン交換膜は、
必要に応じ、製膜時に、ポリエチレン、ポリプロ
ピレン等のオレフインの重合体、好ましくはポリ
テトラフルオロエチレン、エチレンとテトラフル
オロエチレンとの共重合体等の含弗素重合体を混
合して成形する事も出来る。 又、金属の線や網、合成樹脂の網等の補強材に
よつて補強したり、寸法安定性を付与した陽イオ
ン交換膜を用いることも出来る。 本発明に用いられる陽イオン交換膜は、必ずし
も一種の重合体から形成する必要はなく、又一種
類のイオン交換基だけを有する必要もない。例え
ばイオン交換容量として、陰極側が陽極側に比し
てより小さい二種類の重合体の積層膜、陰極側が
カルボン酸基等の弱酸性交換基で、陽極側がスル
ホン酸基等の強酸性交換基を有するイオン交換膜
も用い得る。 これらイオン交換膜の表面に、好ましくは結合
して形成される前記多孔層は、イオン交換膜の有
するイオン交換基の分解を招かないように、適宜
のイオン交換基の形態、例えばカルボン酸基の場
合には、そのエステル型や酸型で、スルホン酸基
の場合には−SO2F型で、圧力及び熱の作用によ
り結合させる。 本発明における塩化アルカリ水溶液の電解を行
なうプロセス条件としては、既知の条件が採用さ
れる。例えば、陽極室には好ましくは2〜5Nの
塩化アルカリ水溶液を供給し、好ましくは80〜
120℃、電流密度10〜100A/dm2で電解される。
かかる場合、塩化アルカリ水溶液中のカルシウム
及びマグネシウム等の重合属イオンは、イオン交
換膜の劣化を招くので、可及的に低くせしめるの
が好ましい。又、陽極における酸素の発生を極力
防止する為に、塩酸等の酸を塩化アルカリ水溶液
中に添加するのが好ましい。 本発明における電解槽は、上記構成を有する限
り、単極型でも複極型でも差し支えない。又、電
解槽を構成する材質は、陽極室の場合には、例え
ばチタン等の様に塩化アルカリ水溶液や酸、塩素
に耐性のある材料が、陰極室の場合には、高濃度
の水酸化アルカリ及び水素に耐性のある鉄、ステ
ンレス又はニツケル等が夫々適当である。 又、本発明においてガス及び液透過性の多孔質
電極を用いる場合、その外側にはこれに給電する
為の集電体が配置される。集電体は、通常電極と
等しいか又は高い塩素又は水素過電圧を有する。
例えば陽極の場合には、貴金属、バルブメタル
等、陰極の場合には、鉄、ニツケル、ステンレス
等の網、多孔体、エキスパンデツドメタルから構
成される。これら集電体は、多孔質層に押し当て
る等により、接触される。 次に本発明を実施例により説明する。 実施例 1 粒径44μ以下の溶融酸化チタンの粉末73mgを水
50c.c.中に懸濁させ、これにポリテトラフロオロエ
チレン(PTFE)の懸濁液(デユポン社商品名テ
フロン30J)をPTFEが7.3mgになるように加え、
これに非イオン系界面活性剤(ローム&ハース社
商品名トライトンX―100)を一滴滴下後氷冷下
で撹拌後多孔性PTFE膜上に吸引過し多孔質層
を得た。該薄層は厚さ30μ,多孔率75%を有し、
溶融酸化チタンが5mg/cm2含まれていた。 次にこの薄層を、イオン交換容量が1.45meq/
g樹脂厚さ220μを有するテトラフロオロエチレ
ンとCF2=CFO(CF23COOCH3との共重合体か
らなるイオン交換膜の片面に、多孔性PTFE膜が
膜に対して外側になるように積層し、温度160
℃、圧力60Kg/cm2の条件で加圧し、多孔性の薄層
を上記イオン交換膜に付着させその後多孔性
PTFE膜を取り除き、酸化チタンがイオン膜の一
方の面に密着したイオン交換膜を得た。該イオン
交換膜を90℃、25重量%の苛性ソーダ水溶液中に
16時間浸漬して前記イオン交換膜を加水分解し
た。 その後イオン膜酸化チタンの側に、酸化ルテニ
ウムと酸化イリジウムの固溶体で被覆したチタン
製マイクロエクスパンデドメタルを陽極として、
イオン膜のもう一方の面にニツケル製マイクロエ
クスパンデドメタルを陰極として加圧接触させて
電解槽を組み立てた。 そして、電解槽の陽極室の食塩水溶液を4Nの
濃度に保ち、また陰極室に水を供給して陰極液中
の苛性ソーダ濃度と35重量%に保ちつつ90℃で電
解を行い以下の結果を得た。 電流密度(A/cm2) 槽電圧(V) 20 3.09 40 3.41 また20A/dm2の電流密度で電解を行つた場合
苛性ソーダ生成の電流効率は92%であつた。 実施例 2 実施例1において溶融酸化チタンの代りに溶融
酸化ジルコニウムを使用した以外は全く同様にし
てイオン膜に多孔層を付着させ全く同様な方法、
条件で電解を行い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.10 40 3.39 また20A/dm2の電流密度で電解を行つた場合
苛性ソーダ生成の電流効率は93%であつた。 実施例 3 実施例1においてイオン膜の陰極側の面にさら
に安定化ラネーニツケルを5mg/cm2の割合で付着
させた以外は実施例1と全く同様にして、全く同
様な方法条件で電解を行い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.00 40 3.32 また20A/dm2の電流密度で電解を行つた場合
苛性ソーダ生成の電流効率は92.5%であつた。 比較例 イオン膜に何も付着させずに実施例1と同様な
方法条件で電解を行い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.11 40 3.53 また20A/dm2の電流密度で電解を行つた場合
苛性ソーダ生成の電流効率は、93.5%であつた。 実施例 4 粒径25μ以下の溶融酸化スズの粉末1000mgと粒
径1μ以下のポリテトラフロオロエチレン100
mg、水1.0c.c.、イソプロピルアルコール1.0c.c.を混
合後、混練してペーストを得た。該ペーストをイ
オン交換容量が1.45meq/g乾燥樹脂厚さ220μ
を有するポリテトラフロオロエチレンとCF2
CFO(CF23COOCH3の共重合体から成る陽イオ
ン交換膜の一面にスクリーン印刷し溶融酸化スズ
が2mg/cm2含まれる多孔質層を得た。次にイオン
交換膜のもう一方の面に同様な方法を用いてルテ
ニウムブラツク1.0mg/cm2の割合で付着させ陰極
層を得た。その後150℃、20Kg/cm2の条件下でこ
れらの電極層をイオン交換膜に圧着してから、90
℃、25重量%の苛性ソーダ水溶液に16時間浸漬し
て前記イオン交換膜を加水分解した。 次に前記の多孔質層、陰極層に陽極及び集電体
として、それぞれ酸化ルテニウムと酸化イリジウ
ム(3:1)の混合物で被覆したチタンエクスパ
ンデドメタル、ニツケルエクスパンデドメタルを
加圧接触させ、陽極室に5N―NaCl水溶液を、陰
極室に水を供給し陽極液中の塩化ナトリウム濃度
を4Nに、陰極液中の苛性ソーダ濃度を35重量%
に保ちつつ電解を行い、以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.82 40 3.10 60 3.35 また電流密度40A/dm2で電解を行つた場合の
苛性ソーダ生成の電流効率は92%であつた。 実施例 5 実施例4において溶融酸化スズの代りに溶融酸
化鉄を1.5mg/cm2の割合で含む多孔質層をイオン
交換膜に密着させた以外は実施例4と全く同様に
して電解を行い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.80 40 3.08 60 3.31 また電流密度40A/dm2で電解を行つた場合の
苛性ソーダ生成の電流効率は93%であつた。 実施例 6 実施例4において、イオン交換膜の陰極側に溶
融五酸化ニオブを2.0mg/cm2の割合で含む多孔質
層をイオン交換膜に密着させ、陽極側には何も付
着させずに、実施例4と全く同様にして電解を行
い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.30 40 3.40 60 3.61 また電流密度40A/dm2で電解を行つた場合の
苛性ソーダ生成の電流効率は93%であつた。 実施例 7 実施例4において、イオン交換膜の陽極側に溶
融酸化クロムを2.5mg/cm2の割合で含む多孔質層
を陰極側に酸化チタンを1.5mg/cm2の割合で含む
多孔質層を密着させた以外は実施例4と全く同様
にして電解を行い以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.95 40 3.22 60 3.45
x, y, and z are all 1 to 10, and Z.Rf is a group selected from -F or a C 1 to 10 perfluoroalkyl group. A is −COOM, −SO 3 M or −CN, −
Indicates a functional group that can be converted to -COOM, -SO3M by hydrolysis or neutralization, such as COF, -SO2F , -COOR1 , -CONR2R3 . R 1 is a C 1-10 alkyl group,
M is an alkali metal or a quaternary ammonium group, and represents R 2 , R 3 , H or a C 1-10 alkyl group. In the present invention, the concentration of ion exchange groups in the membrane per gram of dry resin made of these copolymers is
It has been found that when a fluorine-containing cation exchange membrane having a fluorine content of 0.5 to 4.0 milliequivalents is used, the intended purpose of the present invention can be particularly fully achieved. When the concentration of ion exchange groups per dry resin is 0.8 to 2.0 milliequivalents, it is preferable because the object of the present invention can be achieved sufficiently and stably, and in particular, the sustainability and durability of performance can be greatly improved. . A preferred cation exchange membrane used in the present invention is a copolymer of the above-mentioned fluorinated olefin monomer and a polymerizable monomer having the above-mentioned ion exchange group or a functional group that can be converted into the group. The resulting non-crosslinkable copolymer preferably has a molecular weight of approximately 100,000 to 2,000,000, particularly 150,000 to 100,000.
10,000 is preferable. Copolymerization of the fluorinated olefin monomer and a polymerizable monomer having an ion exchange group or a functional group convertible to the group, and further a third monomer can be carried out by any known method. It can be done. That is,
Polymerization can be carried out by catalytic polymerization, thermal polymerization, radiation polymerization, etc., using a solvent such as a halogenated hydrocarbon, if necessary. Furthermore, there is no particular restriction on the means for forming an ion exchange membrane from the obtained copolymer, such as press molding, roll molding, extrusion molding, solution casting method,
Any known means such as dispersion molding or powder molding may be employed as appropriate. The membrane thus obtained has a thickness of 20 to 500 mm.
μ, preferably 50 to 400 μ. Furthermore, if the copolymer is not an ion-exchange group itself but a functional group that can be converted into an ion-exchange group before or after the copolymer film-forming step, preferably after the film-forming process, an appropriate treatment is performed accordingly. , these functional groups are converted into ion exchange groups. For example −CN, −
COF, −COOR 1 , −SO 2 F, −CONR 2 R 3 (M, R 1 ~
R 3 is the same as above), it is converted into an ion exchange group by hydrolysis or neutralization with an acid or alkaline alcohol solution. Furthermore, the cation exchange membrane used in the present invention is
If necessary, during film formation, an olefin polymer such as polyethylene or polypropylene, preferably a fluorine-containing polymer such as polytetrafluoroethylene or a copolymer of ethylene and tetrafluoroethylene, may be mixed and molded. . Further, it is also possible to use a cation exchange membrane reinforced with a reinforcing material such as a metal wire, net, or a synthetic resin net, or provided with dimensional stability. The cation exchange membrane used in the present invention does not necessarily need to be formed from one type of polymer, nor does it need to have only one type of ion exchange group. For example, in terms of ion exchange capacity, the cathode side is a laminated film of two types of polymers with smaller ion exchange capacity than the anode side, the cathode side is a weakly acidic exchange group such as a carboxylic acid group, and the anode side is a weakly acidic exchange group such as a sulfonic acid group. Ion exchange membranes with ion exchange membranes may also be used. The porous layer, which is preferably bonded to and formed on the surface of these ion exchange membranes, has an appropriate form of ion exchange group, for example, a carboxylic acid group, so as not to cause decomposition of the ion exchange groups of the ion exchange membrane. In the case of a sulfonic acid group, the bonding is carried out in its ester form or acid form, and in the case of a sulfonic acid group, in its -SO 2 F form, by the action of pressure and heat. Known conditions are employed as process conditions for electrolyzing an aqueous alkali chloride solution in the present invention. For example, an aqueous alkali chloride solution of 2 to 5N is preferably supplied to the anode chamber, and preferably 80 to
Electrolysis is carried out at 120°C and a current density of 10 to 100 A/ dm2 .
In such a case, polymerized metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, so it is preferable to keep the content as low as possible. Further, in order to prevent the generation of oxygen at the anode as much as possible, it is preferable to add an acid such as hydrochloric acid to the aqueous alkali chloride solution. The electrolytic cell in the present invention may be of either a monopolar type or a bipolar type as long as it has the above configuration. In addition, the material constituting the electrolytic cell is a material that is resistant to aqueous alkali chloride solutions, acids, and chlorine, such as titanium, for the anode chamber, and a highly concentrated alkali hydroxide material for the cathode chamber. Iron, stainless steel, nickel, etc., which are resistant to hydrogen, are suitable. Further, in the case of using a gas- and liquid-permeable porous electrode in the present invention, a current collector for supplying power to the porous electrode is arranged on the outside thereof. The current collector usually has a chlorine or hydrogen overpotential equal to or higher than the electrode.
For example, the anode is made of noble metal, valve metal, etc., and the cathode is made of mesh, porous material, expanded metal, etc. of iron, nickel, stainless steel, etc. These current collectors are brought into contact with the porous layer by pressing them against the porous layer or the like. Next, the present invention will be explained by examples. Example 1 73mg of molten titanium oxide powder with a particle size of 44μ or less was added to water.
A suspension of polytetrafluoroethylene (PTFE) (trade name: Teflon 30J, manufactured by Dupont) was added to this so that the amount of PTFE was 7.3 mg.
One drop of a nonionic surfactant (trade name: TRITON The thin layer has a thickness of 30μ and a porosity of 75%,
It contained 5 mg/cm 2 of molten titanium oxide. Next, this thin layer has an ion exchange capacity of 1.45meq/
g A porous PTFE membrane was placed on one side of an ion exchange membrane made of a copolymer of tetrafluoroethylene and CF 2 = CFO (CF 2 ) 3 COOCH 3 with a resin thickness of 220μ, so that the porous PTFE membrane was on the outside of the membrane. Laminated to temperature 160
℃ and a pressure of 60 kg/cm 2 to adhere a porous thin layer to the above ion exchange membrane.
The PTFE membrane was removed to obtain an ion exchange membrane in which titanium oxide adhered to one surface of the ion membrane. The ion exchange membrane was placed in a 25% by weight caustic soda aqueous solution at 90°C.
The ion exchange membrane was hydrolyzed by immersion for 16 hours. After that, a titanium micro-expanded metal coated with a solid solution of ruthenium oxide and iridium oxide was used as an anode on the side of the ionic titanium oxide film.
An electrolytic cell was assembled by contacting the other side of the ion membrane with a Nickel micro-expanded metal as a cathode under pressure. Then, electrolysis was carried out at 90°C while maintaining the saline solution in the anode chamber of the electrolytic cell at a concentration of 4N, and water was supplied to the cathode chamber to maintain the same concentration of caustic soda in the catholyte as 35% by weight.The following results were obtained. Ta. Current density (A/cm 2 ) Cell voltage (V) 20 3.09 40 3.41 When electrolysis was carried out at a current density of 20 A/dm 2 , the current efficiency for producing caustic soda was 92%. Example 2 A porous layer was attached to the ionic membrane in exactly the same manner as in Example 1 except that molten zirconium oxide was used instead of molten titanium oxide.
Electrolysis was performed under the following conditions and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.10 40 3.39 When electrolysis was carried out at a current density of 20 A/dm 2 , the current efficiency for producing caustic soda was 93%. Example 3 Electrolysis was carried out in exactly the same manner as in Example 1, except that stabilized Raney nickel was further attached to the cathode side surface of the ion membrane at a rate of 5 mg/cm 2 in Example 1, and under exactly the same method conditions. The following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.00 40 3.32 When electrolysis was carried out at a current density of 20 A/dm 2 , the current efficiency for producing caustic soda was 92.5%. Comparative Example Electrolysis was performed under the same method conditions as in Example 1 without attaching anything to the ion membrane, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.11 40 3.53 When electrolysis was carried out at a current density of 20 A/dm 2 , the current efficiency for producing caustic soda was 93.5%. Example 4 1000 mg of molten tin oxide powder with a particle size of 25μ or less and 100 mg of polytetrafluoroethylene with a particle size of 1μ or less
mg, water 1.0 cc, and isopropyl alcohol 1.0 cc were mixed and kneaded to obtain a paste. The paste has an ion exchange capacity of 1.45meq/g and a dry resin thickness of 220μ.
Polytetrafluoroethylene with CF 2 =
A porous layer containing 2 mg/cm 2 of molten tin oxide was obtained by screen printing on one side of a cation exchange membrane made of a CFO(CF 2 ) 3 COOCH 3 copolymer. Next, using the same method, ruthenium black was deposited on the other side of the ion exchange membrane at a rate of 1.0 mg/cm 2 to obtain a cathode layer. These electrode layers were then pressure-bonded to the ion exchange membrane under the conditions of 150℃ and 20Kg/ cm2 , and then
The ion exchange membrane was hydrolyzed by immersion in a 25% by weight aqueous solution of caustic soda at 16 hours. Next, titanium expanded metal and nickel expanded metal coated with a mixture of ruthenium oxide and iridium oxide (3:1) are brought into pressure contact with the porous layer and cathode layer as an anode and a current collector, respectively. , 5N-NaCl aqueous solution was supplied to the anode chamber and water was supplied to the cathode chamber to bring the sodium chloride concentration in the anolyte to 4N and the caustic soda concentration in the catholyte to 35% by weight.
Electrolysis was carried out while maintaining the temperature, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.82 40 3.10 60 3.35 In addition, the current efficiency for producing caustic soda when electrolysis was carried out at a current density of 40 A/dm 2 was 92%. Example 5 Electrolysis was carried out in exactly the same manner as in Example 4, except that a porous layer containing molten iron oxide at a rate of 1.5 mg/cm 2 was attached to the ion exchange membrane instead of molten tin oxide. The following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.80 40 3.08 60 3.31 Furthermore, the current efficiency for producing caustic soda when electrolysis was carried out at a current density of 40 A/dm 2 was 93%. Example 6 In Example 4, a porous layer containing molten niobium pentoxide at a ratio of 2.0 mg/cm 2 was attached to the cathode side of the ion exchange membrane, and nothing was attached to the anode side. Electrolysis was carried out in exactly the same manner as in Example 4, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 3.30 40 3.40 60 3.61 In addition, the current efficiency for producing caustic soda when electrolysis was carried out at a current density of 40 A/dm 2 was 93%. Example 7 In Example 4, a porous layer containing molten chromium oxide at a ratio of 2.5 mg/cm 2 was placed on the anode side of the ion exchange membrane, and a porous layer containing titanium oxide at a ratio of 1.5 mg/cm 2 on the cathode side. Electrolysis was carried out in exactly the same manner as in Example 4, except that the materials were brought into close contact with each other, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.95 40 3.22 60 3.45

Claims (1)

【特許請求の範囲】 1 陽極及び陰極間を陽イオン交換膜で区画した
電解槽であつて、前記陽極又は陰極の少なくとも
一方が、陽イオン交換膜の表面に形成されたガス
及び液透過性の溶融金属酸化物から造られた多孔
質層を介して配置された電解槽にて塩化アルカリ
水溶液を電解することを特徴とする苛性アルカリ
の製造方法。 2 溶融金属酸化物が同期律表―A族、同―
B族、鉄族、アルミニウム、クロム又はマンガン
の溶融酸化物である特許請求の範囲1の方法。 3 溶融金属酸化物から造られた多孔質層が、平
均細孔径0.01〜2000μ、多孔率10〜99%である特
許請求の範囲1の方法。
[Scope of Claims] 1. An electrolytic cell in which an anode and a cathode are partitioned by a cation exchange membrane, wherein at least one of the anode or the cathode has a gas- and liquid-permeable membrane formed on the surface of the cation exchange membrane. 1. A method for producing caustic alkali, which comprises electrolyzing an aqueous alkali chloride solution in an electrolytic cell placed through a porous layer made of molten metal oxide. 2 Molten metal oxides are in the synchronous table - Group A, the same -
The method of claim 1, wherein the molten oxide is of group B, iron group, aluminum, chromium or manganese. 3. The method of claim 1, wherein the porous layer made from molten metal oxide has an average pore diameter of 0.01 to 2000 microns and a porosity of 10 to 99%.
JP7374480A 1979-11-27 1980-06-03 Production of caustic alkali Granted JPS56169782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7374480A JPS56169782A (en) 1980-06-03 1980-06-03 Production of caustic alkali
US06/381,746 US4661218A (en) 1979-11-27 1982-05-24 Ion exchange membrane cell and electrolysis with use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7374480A JPS56169782A (en) 1980-06-03 1980-06-03 Production of caustic alkali

Publications (2)

Publication Number Publication Date
JPS56169782A JPS56169782A (en) 1981-12-26
JPS6223076B2 true JPS6223076B2 (en) 1987-05-21

Family

ID=13527048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7374480A Granted JPS56169782A (en) 1979-11-27 1980-06-03 Production of caustic alkali

Country Status (1)

Country Link
JP (1) JPS56169782A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832805A (en) * 1981-12-30 1989-05-23 General Electric Company Multi-layer structure for electrode membrane-assembly and electrolysis process using same
JPH0670276B2 (en) * 1983-05-02 1994-09-07 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Chlorine generation method and its electrolytic cell
WO2018182006A1 (en) * 2017-03-31 2018-10-04 旭化成株式会社 Diaphragm, electrolytic bath, and method for producing hydrogen

Also Published As

Publication number Publication date
JPS56169782A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
EP0029751B1 (en) Ion exchange membrane cell and electrolytic process using thereof
EP0026979B1 (en) Electrolytic cell and process for producing an alkali metal hydroxide and chlorine
JPH0116630B2 (en)
EP0052332B1 (en) Alkali metal chloride electrolyzing cell
JPS634918B2 (en)
EP0026969A2 (en) Method of bonding electrode to cation exchange membrane
EP0061080B1 (en) Ion exchange membrane electrolytic cell
JPS621652B2 (en)
JPS6223075B2 (en)
JPS6223076B2 (en)
JPS6317913B2 (en)
JPS6120634B2 (en)
JPS5940231B2 (en) Method for producing alkali hydroxide
JPS6221074B2 (en)
JPS623236B2 (en)
EP0020940B1 (en) Process for producing an alkali metal hydroxide by electrolysing an aqueous solution of an alkali metal chloride
JPS6123875B2 (en)
JPS6214036B2 (en)
JPS6053756B2 (en) Ion exchange membrane electrolyzer
KR840001889B1 (en) Electrolitic process for alkali hywoxicle
JPS6259190B2 (en)
JPH0151550B2 (en)
JPS6343474B2 (en)
JPS6125787B2 (en)
JPS6343473B2 (en)