JPS6125787B2 - - Google Patents

Info

Publication number
JPS6125787B2
JPS6125787B2 JP55137785A JP13778580A JPS6125787B2 JP S6125787 B2 JPS6125787 B2 JP S6125787B2 JP 55137785 A JP55137785 A JP 55137785A JP 13778580 A JP13778580 A JP 13778580A JP S6125787 B2 JPS6125787 B2 JP S6125787B2
Authority
JP
Japan
Prior art keywords
exchange membrane
electrode
porous layer
ion exchange
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137785A
Other languages
Japanese (ja)
Other versions
JPS5763683A (en
Inventor
Yoshio Oda
Takeshi Morimoto
Koji Suzuki
Tosha Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP55137785A priority Critical patent/JPS5763683A/en
Publication of JPS5763683A publication Critical patent/JPS5763683A/en
Publication of JPS6125787B2 publication Critical patent/JPS6125787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、氎玠の補造方法に関し、曎に詳しく
蚀えば陜むオン亀換膜を甚いた特定電極配眮の電
解槜で氎電解を行なうこずからなる、䜎電圧で効
率よく氎玠を補造し埗る新芏な方法に関する。 氎玠は、最近の゚ネルギヌ事情を反映し石油に
代る新しい゚ネルギヌ源ずしお倚方面から泚目さ
れおいる。そしお、氎玠の工業的補造方法ずしお
は倧別しお氎電解法ずコヌクスや石油のガス化法
が挙げられる。前者の方法は、原料ずしお入手し
易い氎が甚いられる反面、倚数の電解蚭備が必芁
なこず、電流の過䞍足に察する適応性が䞍充分で
あるこず、電解液の炭酞化による劣化や床面積、
蚭備費などに倚くの問題が残されおいる。他方、
埌者の方法は䞀般に操䜜が煩雑であるず共に蚭備
もかなり倧型なものが芁求され、蚭備費がかなり
かかるなどの問題がある。 曎に最近、氎電解法の改良ずしお陜むオン亀換
基ずしおスルホン酞基を有する含フツ玠陜むオン
亀換膜を䜿甚し、該むオン亀換膜の䞀方の面には
癜金黒を觊媒ずしお甚いた陰極を、他方の面には
癜金ずルテニりムの還元酞化物の合金を觊媒ずし
お甚いた陜極を倫々密着させ、氎を電解しお効率
よく氎玠を埗る方法が提案されおいる特開昭52
―78788号公報などを参照。この方法では、ガス
及び液透過性の倚孔質の陜極や陰極が䜿甚されお
おり、埓来この皮技術においおは避け難いず考え
られおいた被電解液による電気抵抗や、発生する
氎玠や酞玠ガスに基く泡による電気抵抗が枛少す
るため、埓来法より䜎電圧で電解し埗る手段ず考
えられおいる。 この方法における陜極や陰極は、むオン亀換膜
面の衚面に密着結合し、埋蟌たれるように蚭けら
れ、そしお膜ず電極ずの接觊界面で電解により発
生したガスが電極から容易に離脱し、䞔぀電解液
が浞透しうるようにガス及び液透過性にされおい
る。しかしながら、電極ずむオン亀換膜ずが盎接
接合されおいる堎合にはそこで電極反応に䌎な぀
おガスが発生するため、陜むオン亀換膜に膚れな
どの珟象が生起し、膜性胜が劣化するので長期に
わた぀お安定的には実斜できないこずが刀明し
た。 本発明者は、前蚘の劂き䞍利益を有さなく、䞀
方では可及的に槜電圧の小さい電解方法に぀いお
研究を続けたずころ、陜むオン亀換膜の衚面に電
極ずしお䜜甚しないガス及び液透過性の倚孔質局
を圢成し、これを介しお陜極又は陰極を配眮せし
めた電解槜にお氎を電解した堎合には予想倖に䜎
電圧で氎玠が埗られるずずもに、前蚘䞍利益も実
質的に解消しうるこずが芋出された。 かかる本発明によれば、電極は䞊蚘電極ずしお
䜜甚しないガス及び液透過性の倚孔質局を介し、
奜たしくは該倚孔質局に接觊せしめお配眮される
が、電極ず陜むオン亀換膜ずは盎接に接觊するこ
ずはない。埓぀お、本発明での電解は特定倚孔質
局によ぀おむオン亀換膜ず区画された電極䞊で生
起するので生成ガスはむオン亀換膜ず盎に接觊す
るこずがなく、ガス発生による膜ぞのトラブルを
招くこずはない。たた、かかる劂くしお構成され
た電解槜の堎合、槜電圧は予想倖に䜎く。䟋えば
䞊蚘特定倚孔質局を介さないで空隙性の電極を膜
に盎に接觊せしめお配眮した電解槜に比べお槜電
圧がより䞀局䜎䞋するものである。 本発明においお、むオン亀換膜面に圢成される
ガス及び液透過性の電極ずしお䜜甚しない倚孔質
局ずしおは、導電性のもの又は非導電性のものが
いずれも採甚可胜であり、その材質も有機質であ
぀おも無機質であ぀おも良い。そしお導電性の倚
孔質局が採甚される堎合には、かかる倚孔質局を
介しお配眮される電極よりも過電圧が倧きくなる
ように圢成される。導電性のものを採甚する倚く
の堎合、特定倚孔質局はその材質自䜓が電極より
も倧きい過電圧のものから圢成される。しかし、
堎合によ぀おは電極ず同じ材質を䜿甚しおも、そ
の圢状を遞ぶこずにより電極よりも過電圧の倧き
い倚孔質局が圢成でき、電極ずしお機胜しない倚
孔質局が圢成できる。たた、特定倚孔質局は奜た
しくは芪氎性物質から圢成される。 かかる特定の倚孔質局を構成する材料は、甚い
るむオン亀換膜の皮類及び電解液の皮類によ぀お
異なるが、ホスホン酞基、スルホン酞基及びカル
ボキシル基を陜むオン亀換基ずしお含有する含フ
ツ玠陜むオン亀換膜を䜿甚し、アルカリ性の電解
液を䜿甚しお電解を行う堎合には、呚期埋衚―
族、―族、―族、鉄族金属、クロム又
はマンガンなどの単䜓もしくは合金、酞化物、氎
酞化物、窒化物又は炭化物から遞ばれる。 たた、スルホン酞基、ホスホン酞基を陜むオン
亀換基ずしお含有する含フツ玠陜むオン亀換膜を
䜿甚し、䞭性ないし、酞性の電解液を䜿甚しお電
解を行う堎合には、呚期埋衚―族、―
族、―族、鉄族金属などの単䜓もしくは合
金、酞化物、窒化物、炭化物などから遞ばれる。 特定倚孔質局を圢成するにあたり、䞊蚘材料
は、奜たしくは粒埄0.01〜300Ό、特には0.1〜
100Όの粉末の圢態で䜿甚される。この際、必芁
ならばポリテトラフルオロ゚チレン、ポリクロロ
トリフルオロ゚チレンなどのフルオロカヌボン重
合䜓などの結合剀、曎に、カルボキシメチルセル
ロヌス、メチルセルロヌス、ヒドロキシ゚チルセ
ルロヌスなどのセルロヌス類、ポリ゚チレングリ
コヌル、ポリビニルアルコヌル、ポリビニルピロ
リドン、ポリアクリル酞゜ヌダ、ポリメチルピニ
ル゚ヌテル、カれむン、ポリアクリルアミドなど
の氎可溶性物質などの増粘剀が䜿甚される。これ
ら結合剀は又は増粘剀は、䞊蚘粉末に察しお、奜
たしくは〜50重量、特には0.5〜30重量䜿
甚される。たた、この際必芁ならば、曎に長鎖炭
化氎玠、フツ玠化炭化氎玠などの適宜の界面掻性
剀、曎に黒鉛その他の導電性増量剀を加えるこず
により、倚孔局の圢成を容易にするこずができ
る。いずれにせよ、圢成された倚孔質局における
倚孔質局を圢成する粒子の含有量は0.05〜30mg
cm2、特には0.1〜1.5mgcm2にするのが奜たしい。 䞊蚘材料からの特定倚孔質局の圢成は、特開昭
54―112398号公報蚘茉の劂き方法ず同様の方法、
或いは、䞊蚘粉末、必芁に応じお䜿甚される結合
剀、増粘剀等を適宜の媒䜓䞭で十分に混合した
埌、過法により、フむルタヌ䞊に倚孔質局のケ
ヌキを埗、該ケヌキを膜面に付着させるか、又は
䞊蚘混合物をペヌスト状にし、これをスクリヌン
印刷などによりむオン亀換膜面に盎接蚭けられ
る。 むオン亀換膜面に圢成された倚孔質局は、次い
で、奜たしくはプレス成型機を甚い、奜たしくは
80〜220℃、〜150Kgcm2にお膜面に加熱圧着さ
せ、奜たしくは、䞀郚膜面に埋め蟌むようにされ
る。かくしお、膜面に圢成される倚孔質局は、奜
たしくは倚孔率10〜99、特には25〜95を有す
るようにし、たた厚みは奜たしくは0.01〜200
Ό、特には0.1〜100Όずするのが適切である。た
た、平均现孔埄は奜たしくは0.01〜200Όが採甚
される。 本発明においお、特定倚孔質局を介しお配眮さ
れる電極ずしおは、いずれの圢匏の電極も䜿甚で
き、䟋えば、倚孔板、網又ぱキスパンデツドメ
タルなどの空隙性の電極が䜿甚される。空隙性電
極は、適宜の空隙床のものが䜿甚でき、たた耇数
の板状のものを積局しお䜿甚するこずもできる
が、空隙床の違う耇数枚の電極を䜿甚するずき
は、空隙床の小さいものを膜偎に配眮するのが奜
たしい。 かくしお、陜極ずしおは、通垞癜金族金属、そ
の導電性酞化物又はその導電性還元酞化物、鉄族
金属等が䜿甚され、䞀方陰極ずしおは癜金族金
属、その導電性酞化物又は鉄族金属等が䜿甚され
る。なお、癜金族金属ずしおは癜金、ロゞりム、
ルテニりム、パラゞりム、むリゞりムが䟋瀺さ
れ、たた鉄族金属ずしおは、鉄、コバルト、ニツ
ケル、ラネヌニツケル、安定化ラネヌニツケル、
ステンレス、アルカリ゚ツチングステンレス特
公昭54―19229号公報、ラネヌニツケルメツキ陰
極特開昭54―112785号公報、ロダンニツケル
メツキ陰極特開昭53―115676号公報等が䟋瀺
される。 空隙性の電極を䜿甚する堎合は、該電極は、䞊
蚘陜極又は陰極を圢成する物質それ自䜓からこれ
を圢成するこずができる。しかし、癜金族金属又
はその導電性酞化物等を䜿甚するずきには、通垞
チタンやタンタルなどの匁金属の゚キスパンデツ
トメタルの衚面にこれらの物質を被芆せしめお圢
成するのが奜たしい。 本発明においお、䞊蚘陜極又は陰極を、膜面に
圢成された電極掻性を有しない倚孔質局を介しお
配眮する堎合、電極は奜たしくは倚孔質局に接觊
しお配眮するのが槜電圧を䜎䞋させるために効果
的である。しかし、これら陜極又は陰極は必ずし
も倚孔質局ず接觊しお配眮する必芁はなく、堎合
により適宜の間隔をおいお配眮しおもよい。 たた、陜極又は陰極のいずれか䞀方のみを本発
明に埓぀お電極掻性を有しない倚孔質局を介しお
配眮せしめる堎合には、その察極である陜極又は
陰極は、䞊蚘した空隙性の電極その他既知の電極
が、盎接に陜むオン亀換膜の陜極偎又は陰極偎に
配眮されおも良い。かかる堎合これらの電極は、
むオン亀換膜面に接觊しお蚭けおもよいし、間隔
をあけお蚭けおもよい。 本発明に甚いられるむオン亀換膜ずしおは、䟋
えばカルボキシル基、スルホン酞基、ホスホン酞
基、プノヌル性氎酞基などの陜むオン亀換基を
含有する重合䜓からなり、かかる重合䜓ずしお
は、含フツ玠重合䜓を採甚するのが特に奜たし
い。かかる含フツ玠重合䜓ずしおは、䟋えばテト
ラフルオロ゚チレン、クロロトリフルオロ゚チレ
ンなどのビニルモノマヌず、スルホン酞、カルボ
ン酞、リン酞基などのむオン亀換膜含有フルオロ
ビニルモノマヌずの共重合䜓が䜿甚される。 そしお、これらのうち倫々以䞋の(ã‚€)(ロ)の重合
単䜍を圢成し埗る単量䜓を甚いる堎合には、比范
的高い電流効率で氎玠を埗るこずができるので特
に奜たしい。
The present invention relates to a method for producing hydrogen, and more specifically, to a novel method for efficiently producing hydrogen at low voltage, which involves performing water electrolysis in an electrolytic cell with a specific electrode arrangement using a cation exchange membrane. . Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil. Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses readily available water as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and suffers from deterioration due to carbonation of the electrolyte and floor space.
Many issues remain, including equipment costs. On the other hand,
The latter method is generally complicated to operate, requires fairly large equipment, and has problems such as considerable equipment costs. Furthermore, recently, as an improvement to the water electrolysis method, a fluorine-containing cation exchange membrane having a sulfonic acid group as a cation exchange group has been used, and one side of the ion exchange membrane has a cathode using platinum black as a catalyst, and the other side has a cathode using platinum black as a catalyst. A method has been proposed in which an anode using an alloy of reduced oxides of platinum and ruthenium as a catalyst is closely attached to each surface, and water is electrolyzed to efficiently obtain hydrogen (Japanese Unexamined Patent Application Publication No. 1983-1983).
(See Publication No. 78788, etc.) This method uses porous anodes and cathodes that are permeable to gases and liquids, and is susceptible to electrical resistance caused by the electrolyte and generated hydrogen and oxygen gas, which were previously thought to be unavoidable in this type of technology. Because the electrical resistance due to the underlying bubbles is reduced, it is considered a method that can perform electrolysis at a lower voltage than conventional methods. In this method, the anode and cathode are closely bonded to and embedded in the surface of the ion exchange membrane, and the gas generated by electrolysis at the contact interface between the membrane and the electrode easily leaves the electrode. It is made gas and liquid permeable so that the electrolyte can penetrate. However, if the electrode and ion exchange membrane are directly bonded, gas is generated as a result of the electrode reaction, causing phenomena such as swelling in the cation exchange membrane and deteriorating the membrane performance. It was found that this method could not be implemented stably over a period of time. The present inventor continued research into an electrolysis method that does not have the above-mentioned disadvantages and has a cell voltage as low as possible, and found that the surface of the cation exchange membrane has gas and liquid permeability that does not act as an electrode. When water is electrolyzed in an electrolytic cell in which a porous layer is formed and an anode or a cathode is arranged through the porous layer, hydrogen can be obtained at an unexpectedly low voltage, and the above-mentioned disadvantages are also substantially eliminated. It was discovered that it can be done. According to the present invention, the electrode is formed through the gas- and liquid-permeable porous layer that does not function as an electrode,
Preferably, the electrode is placed in contact with the porous layer, but the electrode and the cation exchange membrane are not in direct contact with each other. Therefore, since the electrolysis in the present invention occurs on the electrode separated from the ion exchange membrane by a specific porous layer, the generated gas does not come into direct contact with the ion exchange membrane, and the generated gas does not affect the membrane due to gas generation. It won't cause any trouble. Furthermore, in the case of an electrolytic cell configured in this manner, the cell voltage is unexpectedly low. For example, the cell voltage is lower than that of an electrolytic cell in which a porous electrode is placed in direct contact with the membrane without intervening the specific porous layer. In the present invention, the porous layer formed on the surface of the ion exchange membrane that is permeable to gas and liquid and does not function as an electrode can be either conductive or non-conductive, and its material can also be organic. It may be inorganic or inorganic. When a conductive porous layer is employed, it is formed so that the overvoltage is greater than that of an electrode disposed through the porous layer. In many cases where a conductive material is used, the specific porous layer is formed from a material that itself has a higher overvoltage than the electrode. but,
In some cases, even if the same material as the electrode is used, a porous layer with a higher overvoltage than the electrode can be formed by selecting its shape, and a porous layer that does not function as an electrode can be formed. Further, the specific porous layer is preferably formed from a hydrophilic substance. The material constituting such a specific porous layer varies depending on the type of ion exchange membrane and the type of electrolyte used, but it may be a fluorine-containing material containing a phosphonic acid group, a sulfonic acid group, or a carboxyl group as a cation exchange group. When performing electrolysis using a cation exchange membrane and an alkaline electrolyte, the periodic table -
It is selected from group A, group B, group B, iron group metals, chromium, manganese, etc. alone or alloys, oxides, hydroxides, nitrides, or carbides. In addition, when using a fluorine-containing cation exchange membrane containing sulfonic acid groups or phosphonic acid groups as cation exchange groups and performing electrolysis using a neutral or acidic electrolyte, the periodic table -A group, -B
The metal is selected from simple substances or alloys, oxides, nitrides, carbides, etc. of group metals such as group metals, group B, and iron group metals. In forming the specific porous layer, the above material preferably has a particle size of 0.01 to 300Ό, particularly 0.1 to 300Ό.
Used in the form of a 100Ό powder. At this time, if necessary, binders such as fluorocarbon polymers such as polytetrafluoroethylene and polychlorotrifluoroethylene, celluloses such as carboxymethylcellulose, methylcellulose, and hydroxyethylcellulose, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and Thickening agents such as water-soluble substances such as sodium acrylate, polymethylpynylether, casein, polyacrylamide, etc. are used. These binders or thickeners are preferably used in an amount of 0 to 50% by weight, particularly 0.5 to 30% by weight, based on the powder. At this time, if necessary, the formation of a porous layer can be facilitated by adding an appropriate surfactant such as a long-chain hydrocarbon or fluorinated hydrocarbon, as well as a conductive filler such as graphite. can. In any case, the content of particles forming the porous layer in the formed porous layer is 0.05 to 30 mg/
cm 2 , particularly 0.1 to 1.5 mg/cm 2 . Formation of a specific porous layer from the above materials is described in Japanese Patent Application Laid-open No.
A method similar to that described in Publication No. 54-112398,
Alternatively, after thoroughly mixing the above powder, a binder, a thickener, etc. used as necessary in an appropriate medium, a porous layer cake is obtained on a filter by a filtration method, and the cake is applied to a membrane. It can be attached to the surface of the ion exchange membrane, or the mixture can be made into a paste and applied directly to the surface of the ion exchange membrane by screen printing or the like. The porous layer formed on the ion exchange membrane surface is then preferably molded using a press molding machine.
It is heated and pressed onto the membrane surface at 80 to 220° C. and 1 to 150 kg/cm 2 , preferably partially embedded in the membrane surface. Thus, the porous layer formed on the membrane surface preferably has a porosity of 10 to 99%, particularly 25 to 95%, and a thickness of preferably 0.01 to 200%.
A suitable value is Ό, particularly 0.1 to 100Ό. Further, the average pore diameter is preferably 0.01 to 200Ό. In the present invention, any type of electrode can be used as the electrode disposed through the specific porous layer, and for example, a porous electrode such as a porous plate, a mesh, or an expanded metal is used. Porous electrodes with appropriate porosity can be used, and multiple plate-shaped electrodes can be stacked together. However, when using multiple electrodes with different porosity, It is preferable to place smaller ones on the membrane side. Thus, as the anode, platinum group metals, their conductive oxides or their conductive reduced oxides, iron group metals, etc. are usually used, while as the cathodes, platinum group metals, their conductive oxides, iron group metals, etc. is used. In addition, platinum group metals include platinum, rhodium,
Examples include ruthenium, palladium, and iridium, and iron group metals include iron, cobalt, nickel, Raney nickel, stabilized Raney nickel,
Examples include stainless steel, alkali-etched stainless steel (Japanese Patent Publication No. 54-19229), Raney-Nickelmetki cathode (Japanese Patent Application Laid-Open No. 112785-1985), Rodan-Nickelmetki cathode (Japanese Patent Application Laid-open No. 115676-1981). If a porous electrode is used, it can be formed from the material itself forming the anode or cathode. However, when platinum group metals or conductive oxides thereof are used, it is preferable to coat the surface of an expanded valve metal such as titanium or tantalum with these substances. In the present invention, when the above-mentioned anode or cathode is arranged through a porous layer having no electrode activity formed on the membrane surface, the electrode is preferably arranged in contact with the porous layer to reduce the cell voltage. It is effective to make However, these anodes or cathodes do not necessarily need to be placed in contact with the porous layer, and may be placed at appropriate intervals as the case requires. Further, when only one of the anode and the cathode is disposed via a porous layer having no electrode activity according to the present invention, the anode or cathode which is the opposite electrode may be the above-mentioned porous electrode or other known porous layer. The electrode may be placed directly on the anode side or the cathode side of the cation exchange membrane. If it takes these electrodes,
They may be provided in contact with the ion exchange membrane surface, or may be provided at intervals. The ion exchange membrane used in the present invention is made of a polymer containing a cation exchange group such as a carboxyl group, a sulfonic acid group, a phosphonic acid group, or a phenolic hydroxyl group. It is particularly preferable to employ combination. As such a fluorine-containing polymer, for example, a copolymer of a vinyl monomer such as tetrafluoroethylene or chlorotrifluoroethylene and a fluorovinyl monomer containing an ion exchange membrane such as a sulfonic acid, carboxylic acid, or phosphoric acid group is used. Ru. Among these, it is particularly preferable to use monomers that can form the following polymerized units (a) and (b), since hydrogen can be obtained with relatively high current efficiency.

【匏】【formula】

【匏】 ここではC1又は−CF3であり、
X′は又はCF3CF2であり、は〜で
あり、は次のものから遞ばれる。
[Formula] Here, X is F, C1, H or -CF 3 ,
X' is X or CF 3 (CF 2 )m, m is 1 to 5, and Y is selected from the following:

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

はずもに〜10であり、Rfは、−
又は炭玠数〜10のパヌフルオロアルキル基か
ら遞ばれる。たた、は、−SO3M−OOM又は
加氎分解によりこれらの基に転化しうる−
SO2F−CN−COF又は−COORであり、は
氎玠又はアルカリ金属、は炭玠数〜10のアル
キル基を瀺す。 本発明においお䜿甚される陜むオン亀換膜はむ
オン亀換容量が、奜たしくは0.5〜4.0ミリ圓量
グラム也燥暹脂、特には0.8〜2.0ミリ圓量グラ
ム也燥暹脂であるのが奜たしい。かかるむオン亀
換容量を䞎えるため、䞊蚘(ã‚€)及び(ロ)の重合単䜍か
らなる共重合䜓からなるむオン亀換暹脂の堎合、
奜たしくは(ロ)の重合単䜍が奜たしくは〜40モル
、特には〜25モルであるのが適圓である。 本発明で䜿甚される陜むオン亀換膜は、必ずし
も䞀皮の重合䜓から圢成する必芁はなく、たた䞀
皮類のむオン亀換基だけを有する必芁はない。䟋
えば、むオン亀換容量ずしお、陰極偎がより小さ
い二皮類の重合䜓の積局膜、陰極偎がカルボン酞
基などの匱酞性亀換基で、陜極偎がスルホン酞基
などの匷酞性亀換基をも぀むオン亀換膜も䜿甚で
きる。 これらのむオン亀換膜は埓来既知の皮々の方法
で補造され、たた、これらのむオン亀換膜は必芁
により奜たしくはポリテトラフルオロ゚チレンな
どの含フツ玠重合䜓からなる垃、網などの織物、
䞍織垃又は金属補のメツシナ、倚孔䜓などで補匷
するこずができる。たた、本発明のむオン亀換膜
の厚みは、奜たしくは20〜500Ό、奜たしくは50
〜400Όにせしめられる。 これらむオン亀換膜の衚面に、奜たしくは結合
しお圢成される䞊蚘陜極及び陰極偎の倚孔質局
は、むオン亀換膜の有するむオン亀換基の分解を
招かないように、適宜のむオン亀換基の圢態䟋え
ばカルボン酞基のずきは、その゚ステル型で、ス
ルホン酞基の堎合には、−SO2F型で、圧力及び熱
の䜜甚により結合させる。 次に本発明を実斜䟋を甚いおさらに詳しく説明
する。 実斜䟋  重量のメチルセルロヌス氎溶液10郚の増粘
剀に察しお、粒埄Ό以䞋の倉性ポリテトラフル
オロ゚チレンポリテトラフルオロ゚チレン衚面
をテトラフルオロ゚チレンずCF2CFOCF2
COOCH3の共重合䜓で被芆した粒子、以䞋倉性
PTFEず蚘すを7.0重量含む氎分散液2.5郚お
よび粒埄25Ό以䞋の酞化チタン粉末郚を混合
し、予め充分混合した埌、む゜プロピルアルコヌ
ル郚およびシクロヘキサノヌル郚を添加し、
再混緎しおペヌストを埗た。 該ペヌストをメツシナ数200、厚さ60Όのステ
ンレス補スクリヌンでその䞋に厚さΌのスクリ
ヌンマスクを斜した印刷板およびポリりレタン補
のスキヌゞヌを甚いお被印刷基材である、むオン
亀換容量が1.70meq也燥暹脂、厚さ210Όを
有するポリテトラフルオロ゚チレンずCF2CFO
CF23COOCH3の共重合䜓から成るむオン亀換
膜の䞀面に20cm×25cmの倧きさにスクリヌン印刷
した。 むオン亀換膜の䞀面に埗られた印刷局を空気䞭
で也燥し、ペヌストを固化させた。䞀方むオン亀
換膜のもう䞀方の面に党く同様にしお25Ό以䞋の
粒埄を有する酞化チタンをスクリヌン印刷した。
しかる埌枩床140℃、成型圧力30Kgcm2の条件で
印刷局をむオン膜に圧着埌90℃、25重量の苛性
カリ氎溶液に浞挬しお前蚘むオン膜を加氎分解す
るず共にメチルセルロヌスを溶出せしめた。 該むオン亀換膜䞊に埗られた酞化チタン局は厚
さ20Ό、倚孔率70を有し、酞化チタンが1.5
mgcm2含たれおいた。 次にむオン膜の陜極偎にニツケルの゚キスパン
デドメタル短埄2.5mm、長埄mmを、たた陰
極偎にSUS304゚キスパンデドメタル短埄2.5
mm、長埄5.0mmを52の苛性゜ヌダ氎溶液䞭で
150℃で52時間゚ツチング凊理し、䜎い氎玠過電
圧を有するようにした陰極を0.01Kgcm2の圧力で
むオン膜に加圧接觊させ、陜極宀に30の苛性カ
リ氎溶液を、陰極宀に氎を䟛絊し぀぀、陜極宀、
陰極宀の苛性カリ濃床を20に保ち぀぀100℃で
電解を行い以䞋の結果を埗た。 電流密床dm2 槜電圧
 40 1.71 60 1.88 実斜䟋  実斜䟋においお、むオン亀換膜ずしおCF2
CF2ずCF2CFOCF2CFCF3OCF2CF2SO2F
ずの共重合䜓からなる陜むオン亀換膜むオン亀
換容量0.87meq也燥暹脂、膜厚125Όを䜿
甚し、倚孔質局を構成する材料ずしお五酞化タン
タルを䜿甚した以倖は実斜䟋ず党く同様にしお
電解を行い以䞋の結果を埗た。 電流密床dm2 槜電圧
 40 1.74 60 1.95 実斜䟋  実斜䟋においお甚いた五酞化タンタルを付着
させた陜むオン亀換膜を甚いお、電極ずしおはタ
ンタルをPt―Irで被芆した20メツシナの金網を甚
いお、の垌硫酞を䟛絊しながら電解を行぀た
以倖は実斜䟋ず同様に電解を行い以䞋の結果を
埗た。 電流密床dm2 槜電圧
 40 1.51 60 1.65 比范䟋 実斜䟋においお陜むオン亀換膜に倚孔質局を
付着させなか぀た以倖は実斜䟋ず党く同様にし
お電解を行い以䞋の結果を埗た。 電流密床dm2 槜電圧
 40 2.12 60 2.25
x, y, z are all 0 to 10, and Z, Rf are -
F or a perfluoroalkyl group having 1 to 10 carbon atoms. A also represents -SO 3 M, -OOM or - which can be converted into these groups by hydrolysis.
SO2F : -CN, -COF or -COOR, M represents hydrogen or an alkali metal, and R represents an alkyl group having 1 to 10 carbon atoms. The cation exchange membrane used in the present invention preferably has an ion exchange capacity of 0.5 to 4.0 milliequivalents/
Preferred is gram dry resin, especially 0.8 to 2.0 meq/gram dry resin. In order to provide such an ion exchange capacity, in the case of an ion exchange resin made of a copolymer consisting of the polymerized units of (a) and (b) above,
Preferably, the amount of polymerized units (b) is preferably 1 to 40 mol%, particularly 3 to 25 mol%. The cation exchange membrane used in the present invention does not necessarily need to be formed from one type of polymer, nor does it need to have only one type of ion exchange group. For example, there are laminated membranes of two types of polymers with smaller ion exchange capacity on the cathode side, and ion exchange membranes with weakly acidic exchange groups such as carboxylic acid groups on the cathode side and strong acidic exchange groups such as sulfonic acid groups on the anode side. Can be used. These ion exchange membranes are manufactured by various conventionally known methods, and if necessary, these ion exchange membranes are preferably made of fabrics such as cloth or net made of a fluorine-containing polymer such as polytetrafluoroethylene,
It can be reinforced with non-woven fabric, metal mesh, porous material, etc. Further, the thickness of the ion exchange membrane of the present invention is preferably 20 to 500Ό, preferably 50Ό
It is forced to ~400Ό. The porous layers on the anode and cathode side, which are preferably bonded to and formed on the surface of these ion exchange membranes, are formed in an appropriate form of ion exchange groups so as not to cause decomposition of the ion exchange groups possessed by the ion exchange membrane. For example, in the case of a carboxylic acid group, it is bonded in its ester form, and in the case of a sulfonic acid group, it is bonded in its -SO 2 F type by the action of pressure and heat. Next, the present invention will be explained in more detail using examples. Example 1 Modified polytetrafluoroethylene with a particle size of 1 Όm or less (the polytetrafluoroethylene surface was mixed with tetrafluoroethylene and CF 2 =CFOCF 2
Particles coated with a copolymer of COOCH 3 , hereafter modified
2.5 parts of an aqueous dispersion containing 7.0% by weight of PTFE (hereinafter referred to as PTFE) and 5 parts of titanium oxide powder with a particle size of 25Ό or less are mixed together, and after thorough mixing in advance, 2 parts of isopropyl alcohol and 1 part of cyclohexanol are added,
A paste was obtained by kneading again. The paste was applied to a printing substrate with an ion exchange capacity of 1.70meq using a printing plate with a mesh count of 200, a 60Ό thick stainless steel screen with an 8Ό thick screen mask underneath, and a polyurethane squeegee. /g dry resin, polytetrafluoroethylene with thickness 210Ό and CF 2 =CFO
Screen printing was performed on one side of an ion exchange membrane made of a copolymer of (CF 2 ) 3 COOCH 3 to a size of 20 cm x 25 cm. The printed layer obtained on one side of the ion exchange membrane was dried in air to solidify the paste. On the other hand, titanium oxide having a particle size of 25 ÎŒm or less was screen printed on the other side of the ion exchange membrane in exactly the same manner.
Thereafter, the printed layer was pressed onto the ion membrane at a temperature of 140°C and a molding pressure of 30 kg/cm 2 , and then immersed in a 25% by weight aqueous potassium hydroxide solution at 90°C to hydrolyze the ion membrane and elute methylcellulose. The titanium oxide layer obtained on the ion exchange membrane has a thickness of 20Ό and a porosity of 70%, with a titanium oxide layer of 1.5
Contained mg/ cm2 . Next, on the anode side of the ion membrane, use nickel expanded metal (breadth diameter 2.5 mm, long axis 5 mm), and on the cathode side, use SUS304 expanded metal (breadth diameter 2.5 mm).
mm, major axis 5.0 mm) in a 52% caustic soda aqueous solution.
The cathode, which has been etched at 150°C for 52 hours to have a low hydrogen overpotential, is brought into pressure contact with the ion membrane at a pressure of 0.01 Kg/ cm2 , and a 30% caustic potassium aqueous solution is placed in the anode chamber and water is placed in the cathode chamber. While supplying the anode chamber,
Electrolysis was carried out at 100℃ while maintaining the caustic potassium concentration in the cathode chamber at 20%, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 40 1.71 60 1.88 Example 2 In Example 1, as an ion exchange membrane, CF 2 =
CF 2 and CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
Example 1 except that a cation exchange membrane (ion exchange capacity 0.87meq/g dry resin, membrane thickness 125Ό) consisting of a copolymer of Electrolysis was carried out in exactly the same manner and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 40 1.74 60 1.95 Example 3 Using the cation exchange membrane to which the tantalum pentoxide used in Example 2 was attached, tantalum was replaced with Pt-Ir as the electrode. Electrolysis was carried out in the same manner as in Example 1, except that electrolysis was carried out using a coated 20-mesh wire mesh while supplying 3% dilute sulfuric acid, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 40 1.51 60 1.65 Comparative example Electrolysis was carried out in the same manner as in Example 1 except that the porous layer was not attached to the cation exchange membrane in Example 1. The results were obtained. Current density (A/dm 2 ) Cell voltage (V) 40 2.12 60 2.25

Claims (1)

【特蚱請求の範囲】  陜極及び陰極間を陜むオン亀換膜で区画した
電解槜の陰極宀に氎を䟛絊しお電解するこずから
なる氎玠の補造方法においお、前蚘陜極及び陰極
の少なくずも䞀方が陜むオン亀換膜面に圢成され
た電極ずしお䜜甚しないガス及び液透過性の倚孔
質局を介しお配眮されおいるこずを特城ずする氎
玠の補造方法。  電極ずしお䜜甚しない倚孔質局が、倚孔率10
〜99及び厚さ0.01〜200Όを有する特蚱請求の
範囲第項蚘茉の補造方法。  陜むオン亀換膜が、スルホン酞基、カルボン
酞基、又はリン酞基を有する含フツ玠重合䜓から
なる特蚱請求の範囲第項〜第項蚘茉の補造方
法。
[Scope of Claims] 1. A hydrogen production method comprising supplying water to a cathode chamber of an electrolytic cell in which an anode and a cathode are partitioned by a cation exchange membrane for electrolysis, wherein at least one of the anode and the cathode is an anode. A method for producing hydrogen, characterized in that the membrane is disposed through a gas- and liquid-permeable porous layer that does not function as an electrode and is formed on the surface of an ion-exchange membrane. 2 The porous layer that does not act as an electrode has a porosity of 10
99% and a thickness of 0.01 to 200Ό. 3. The manufacturing method according to claims 1 and 2, wherein the cation exchange membrane is made of a fluorine-containing polymer having a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group.
JP55137785A 1980-10-03 1980-10-03 Production of hydrogen Granted JPS5763683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55137785A JPS5763683A (en) 1980-10-03 1980-10-03 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55137785A JPS5763683A (en) 1980-10-03 1980-10-03 Production of hydrogen

Publications (2)

Publication Number Publication Date
JPS5763683A JPS5763683A (en) 1982-04-17
JPS6125787B2 true JPS6125787B2 (en) 1986-06-17

Family

ID=15206780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55137785A Granted JPS5763683A (en) 1980-10-03 1980-10-03 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPS5763683A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282286A (en) * 1987-05-13 1988-11-18 Shiba Kenzaburo Electrolytic cell for water
KR100925750B1 (en) 2007-09-20 2009-11-11 삌성전Ʞ죌식회사 Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
TW201504477A (en) * 2013-07-17 2015-02-01 Industrie De Nora Spa Electrolysis cell of alkali solutions

Also Published As

Publication number Publication date
JPS5763683A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4909912A (en) Ion exchange membrane cell and electrolytic process using thereof
US4319969A (en) Aqueous alkali metal chloride electrolytic cell
JPH0116630B2 (en)
US4465570A (en) Process for producing hydrogen
JPS6059996B2 (en) Alkali chloride electrolysis method
JPS634918B2 (en)
JPH0115525B2 (en)
EP0061080B1 (en) Ion exchange membrane electrolytic cell
JPS6317913B2 (en)
JPS621652B2 (en)
EP0139133B1 (en) Electrolytic cell for the electrolysis of an alkali metal chloride
JPS6125787B2 (en)
JPS6223075B2 (en)
JPS6341990B2 (en)
JPS6341989B2 (en)
JPS5940231B2 (en) Method for producing alkali hydroxide
JPS6214036B2 (en)
JPH0151550B2 (en)
JPH0219848B2 (en)
JPS6259190B2 (en)
JPS6053756B2 (en) Ion exchange membrane electrolyzer
JPS6343474B2 (en)
JPS6259186B2 (en)
JPS6221074B2 (en)
JPS6123876B2 (en)