JPS6154116B2 - - Google Patents

Info

Publication number
JPS6154116B2
JPS6154116B2 JP56200039A JP20003981A JPS6154116B2 JP S6154116 B2 JPS6154116 B2 JP S6154116B2 JP 56200039 A JP56200039 A JP 56200039A JP 20003981 A JP20003981 A JP 20003981A JP S6154116 B2 JPS6154116 B2 JP S6154116B2
Authority
JP
Japan
Prior art keywords
group
membrane
metal
cation exchange
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56200039A
Other languages
Japanese (ja)
Other versions
JPS58104189A (en
Inventor
Tooru Kyota
Hideo Shuyama
Katsunori Orisaka
Osamu Nakagawa
Michiji Ookai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP56200039A priority Critical patent/JPS58104189A/en
Publication of JPS58104189A publication Critical patent/JPS58104189A/en
Publication of JPS6154116B2 publication Critical patent/JPS6154116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳现な説明】 本発明は、金属が衚面䞊に固着した陜むオン亀
換膜を提䟛するものであり、その補造方法及び氎
溶液、特にハロゲン化物の電気分解におけるその
䜿甚法に関しおいる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cation exchange membrane with metals fixed on its surface, and relates to its preparation and use in aqueous solution, particularly halide electrolysis.

陜むオン亀換膜により陜極宀ず陰極宀に分割さ
れた電解槜で塩化アルカリを電解しお、氎酞化ア
ルカリを補造する方法むオン亀換膜法におい
お、近幎、省゚ネルギヌ開発が進行し぀぀あり、
この芳点からこの皮技術においおは、電解電圧を
極力䜎くするよう努力されおいる。その手段ずし
おは、埓来、陜極や陰極の材質、組成及び圢状を
考慮したり、あるいは甚いるむオン亀換膜の組成
や、むオン亀換基の皮類を特定化する等皮々の手
段が提案されおいるが、いずれもそれなりの効果
はあるものの必ずしも工業的に充分満足し埗るも
のではなか぀た。
In recent years, energy-saving development has been progressing in the method of producing alkali hydroxide by electrolyzing alkali chloride in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method).
From this point of view, in this type of technology, efforts are being made to lower the electrolysis voltage as much as possible. Various methods have been proposed in the past, such as considering the material, composition, and shape of the anode and cathode, or specifying the composition of the ion exchange membrane used and the type of ion exchange group. Although all of them have certain effects, they are not necessarily fully satisfactory industrially.

䞀方近幎、SPE電解法ず称する技術が泚目を集
めおきおいる。これは電極局ず陜むオン亀換膜ず
を䞀䜓化し電解電圧の䜎枛をねら぀たものであ
り、盞圓の効果を埗おいる。又、陜むオン亀換膜
ず電極掻性をもたない、䟋えば金属酞化物等から
なる倚孔局ずを䞀䜓化させ、これを食塩電解にお
ける隔膜ずしお䜿甚する方法等が提案されおい
る。特開昭56−75583、特開昭56−112487、特開
昭56−108888等。
On the other hand, in recent years, a technology called SPE electrolysis has been attracting attention. This is aimed at reducing the electrolysis voltage by integrating the electrode layer and the cation exchange membrane, and has achieved considerable effects. Furthermore, a method has been proposed in which a cation exchange membrane and a porous layer having no electrode activity, such as a metal oxide, are integrated, and this is used as a diaphragm in salt electrolysis. (JP-A-56-75583, JP-A-56-112487, JP-A-56-108888, etc.).

このように、電解電圧を䜎枛せしむる方法ずし
お、陜むオン亀換膜衚面䞊を、ある皮の金属及び
金属酞化物等からなる局でおおうずいう方法が、
䞀぀の流れずな぀おきおいる。
As described above, one method for reducing the electrolysis voltage is to cover the surface of the cation exchange membrane with a layer made of certain metals, metal oxides, etc.
It is becoming a trend.

陜むオン亀換膜ず金属及び又は金属酞化物を
含む局でおおう方法ずしおは、PTFE等の結合剀
を甚いお觊媒、粒子を焌結成圢し、膜面にホツト
プレスする也匏法特開昭53−52297等、還元剀
を甚い溶液䞭で膜面に金属を析出させる湿匏法、
いわゆる化孊メツキ法特公昭56−36873、特開
昭56−136985等が知られおいる。
As a method for covering a cation exchange membrane with a layer containing metal and/or metal oxide, there is a dry method (Japanese Unexamined Patent Application Publication No. 1983-1983) in which catalysts and particles are sintered and formed using a binder such as PTFE, and then hot-pressed onto the membrane surface. -52297, etc.), a wet method in which the metal is deposited on the membrane surface in a solution using a reducing agent,
The so-called chemical plating method (Japanese Patent Publication No. 56-36873, Japanese Patent Publication No. 56-136985) is known.

本発明者らは、以䞊のような芳点から也匏法、
湿匏法による隔膜の電解性胜に぀いお鋭意研究を
重ねた結果、以䞋のような結論を導くに至぀た。
From the above points of view, the present inventors developed a dry method,
As a result of intensive research on the electrolytic performance of diaphragms using the wet method, we came to the following conclusions.

 也匏法では膜面䞊ぞの金属局の固着を均䞀に
行なうこずがむずかしく、ひいおは膜の電解性
胜に再珟性をもたせるこずがむずかしい。曎に
電解䞭、金属局の膜面䞊からの離脱をたぬがれ
ない。
1. In the dry method, it is difficult to uniformly adhere the metal layer onto the membrane surface, and in turn, it is difficult to achieve reproducibility in the electrolytic performance of the membrane. Furthermore, during electrolysis, the metal layer cannot be avoided from detaching from the film surface.

 湿匏法では、也匏法に比べ再珟性を埗るのは
容易である。しかしながら、金属が膜衚面䞊に
のみ析出するため、金属の離脱の床合は、也匏
法以䞊である。曎にこの点を改良する目的で固
着条件を厳しくするず電流効率の䜎䞋を匕き起
こしおしたう。
2. It is easier to obtain reproducibility with wet methods than with dry methods. However, since the metal is deposited only on the film surface, the degree of metal removal is higher than that of the dry method. Furthermore, if the fixing conditions are made stricter for the purpose of improving this point, the current efficiency will be lowered.

本発明者らは、このような結論をふたえ、曎に
研究を重ねた結果、膜面䞊に予め金属粒子を埋め
蟌んだ埌に曎に該膜面䞊に化孊メツキを斜すこず
により、驚くべきこずに、膜面䞊に非垞に匷固に
しかも均䞀に結合した金属局を有する陜むオン亀
換膜が再珟よく埗られるこずを芋い出し本発明に
至぀た。
Based on this conclusion, the present inventors conducted further research and surprisingly found that by pre-embedding metal particles on the film surface and then chemically plating the film surface, The present inventors have discovered that a cation exchange membrane having a metal layer bonded very strongly and uniformly on its surface can be obtained with good reproducibility, leading to the present invention.

該膜を食塩の電解甚隔膜ずしお甚いおも金属局
の離脱はほずんどなく、長期にわた぀お䜎電圧及
び高電流効率を瀺した。
Even when this membrane was used as a diaphragm for salt electrolysis, there was almost no separation of the metal layer, and it exhibited low voltage and high current efficiency over a long period of time.

すなわち、本発明は、陜むオン亀換基および
又は陜むオン亀換基になり埗る基を有するパヌフ
ルオロカヌボン重合䜓膜に金属を圧着せしめたの
ち、陜むオン亀換基になる埗る基を甚いた堎合は
陜むオン亀換基に転換させたのち、化孊メツキを
行なうこずからなる方法である。
That is, the present invention provides cation exchange groups and/or
Alternatively, after pressing a metal onto a perfluorocarbon polymer membrane that has a group that can become a cation exchange group, if a group that can become a cation exchange group is used, convert it to a cation exchange group, and then chemical plating. It is a method that consists of doing things.

本発明で甚い埗るパヌフルオロカヌボン重合䜓
は、陜むオン亀換基及び又は陜むオン亀換基に
なり埗る基を有するものであり、これら基ずしお
は、スルホン酞基−SO3M䜆しは氎玠原子あ
るいは金属原子、スルホン酞基の前駆䜓である
ずころの−SO2F、−SO2Cl、カルボン酞基−
COOM䜆しは氎玠原子あるいは金属原子、カ
ルボン酞基の前駆䜓であるずころの−COF、−
COOFは炭玠数〜のアルキル基及び−
CNを挙げるこずができる。曎に該重合䜓ずしお
は、䟋えば、䞋蚘䞀般匏で瀺す重合䜓が挙げら
れ、 〔ただし、 R′−CF3、−CF2−−CF3 又は〜 又は 又は、〜 −SO3Mは氎玠原子あるいは金属原
子、 −SO2F、−SO2Cl −COOMは氎玠原子あるいは金属原
子、 −COOR1R1〜のアルキル基、 −CN、−COF〕 又、䞊蚘二成分系に第䞉成分あるいは第四成分
を加えお重合した重合䜓も䜿甚できる。
The perfluorocarbon polymer that can be used in the present invention has a cation exchange group and/or a group that can become a cation exchange group, and these groups include a sulfonic acid group (-SO 3 M, where M is a hydrogen atom). or metal atoms), −SO 2 F, −SO 2 Cl, which are precursors of sulfonic acid groups, and carboxylic acid groups (−
COOM (where M is a hydrogen atom or metal atom), -COF, which is a precursor of a carboxylic acid group, -
COOF (R is an alkyl group having 1 to 5 carbon atoms) and -
CN can be mentioned. Furthermore, examples of the polymer include a polymer represented by the following general formula, [However, R' = -CF 3 , -CF 2 -O-CF 3 n = 0 or 1 to 5 m = 0 or 1 o = 0 or 1, p = 1 to 6 X = -SO 3 M (M is hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl -COOM (M is a hydrogen atom or metal atom), -COOR 1 (R 1 = alkyl group of 1 to 5), -CN, -COF] or A polymer obtained by adding a third component or a fourth component to the above two-component system can also be used.

具䜓的には、䟋えば以䞋のものを瀺すこずがで
きる。
Specifically, the following can be shown, for example.

これら重合䜓においお亀換基容量が0.5meq/
也燥暹脂〜1.5meq/也燥暹脂になるように調節
するのが奜たしい。
In these polymers, the exchange group capacity is 0.5meq/g
It is preferable to adjust the amount of dry resin to 1.5 meq/g dry resin.

本発明では、膜状に成圢したこれら重合䜓を単
独で甚いるこずができるのはもちろんであるが、
スルホン酞基もしくは該基に倉換できる基ずカル
ボン酞基もしくは該基に倉換できる基ずが混圚す
る圢、奜たしくはスルホン酞基もしくは該基に倉
換できる基を有する重合䜓ず、カルボン酞基もし
くは該基に倉換できる基を有する重合䜓が片偎ず
぀の局状ずな぀た圢のものも甚いるこずができ
る。
In the present invention, these polymers molded into a membrane can of course be used alone, but
A polymer having a mixture of a sulfonic acid group or a group that can be converted into this group and a carboxylic acid group or a group that can be converted into this group, preferably a polymer having a sulfonic acid group or a group that can be converted into this group, and a carboxylic acid group or a group that can be converted into this group. A polymer having a group that can be converted into a group formed in a layer on one side can also be used.

このような膜状物は、スルホン酞基もしくは該
基に倉換できる基を有する重合䜓䟋えば(A)矀の
重合䜓ず、カルボン酞基もしくは該基に倉換で
きる基をも぀重合䜓䟋えば(B)矀の重合䜓ずを
各々膜状に成圢したのち、䞡者をはり合せるこず
によ぀お埗るこずができるし、又、スルホン酞基
もしくは該基に倉換できる基のみをも぀重合䜓の
膜状物の片偎のみを化孊凊理し、これら基をカル
ボン酞基もしくは該基に倉換するこずのできる基
に倉えるこずによ぀おも埗るこずができる。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into this group (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to this group (for example, (B) group polymers) can be obtained by forming them into a membrane and then gluing them together.Also, it is possible to obtain polymers having only sulfonic acid groups or groups that can be converted into sulfonic acid groups. It can also be obtained by chemically treating only one side of the membrane and converting these groups into carboxylic acid groups or groups that can be converted into carboxylic acid groups.

曎に又、カルボン酞基もしくは該基に倉換でき
る基のみをも぀重合䜓の膜状物の片偎のみを化孊
凊理し、これら基をスルホン酞基もしくは該基に
倉換するこずのできる基に倉えるこずによ぀おも
埗るこずができる。又、甚いる膜の厚さは、50ÎŒ
〜500Όが䞀般的に甚いられ、膜の比電導床、電
流効率を考慮しお適圓な厚みを遞択する。
Furthermore, by chemically treating only one side of the polymer film having only carboxylic acid groups or groups that can be converted into such groups, these groups can be converted into sulfonic acid groups or groups that can be converted into such groups. You can get it even if you twist it. Also, the thickness of the membrane used is 50Ό
~500Ό is generally used, and an appropriate thickness is selected by considering the specific conductivity and current efficiency of the film.

本発明の第の段階は、膜面䞊ぞの金属の圧着
である。甚いる金属はΌ〜100Όの粒子状のも
のが奜たしく、又、膜面䞊に均䞀に分散させるた
めに予めPTFE等の結合剀を甚いお金属粒子を薄
膜䞊に成圢したものであ぀おもさし぀かえない。
圧着にあた぀おは、金属粒子をふるい等の操䜜あ
るいは前述した金属粒子を結合剀により薄膜化し
たものを甚いるこず等により膜面䞊に均䞀に分散
させるこずが必芁である。この均䞀さが充分でな
いず埗られる金属の固着状態が䞍均䞀ずなり電解
性胜の向䞊ぞの寄䞎が少なくなる。
The first step of the invention is the compression of metal onto the membrane surface. The metal used is preferably in the form of particles of 1 Ό to 100 Ό, and metal particles may be formed into a thin film using a binder such as PTFE in advance to ensure uniform dispersion on the film surface. .
For pressure bonding, it is necessary to uniformly disperse the metal particles on the film surface by using a sieve or the like or by using a thin film of the metal particles described above with a binder. If this uniformity is not sufficient, the resulting metal fixation state will be non-uniform and its contribution to improving electrolytic performance will be reduced.

圧着する金属の量は10m2圓り0.1mgから100mgの
範囲にあるのが奜たしい。圧着する金属の量が
0.1mg/cm2以䞋だず次段階で行なう化孊メツキの均
䞀性及び析出した金属の膜面䞊ぞの接着匷床が䞍
充分ずなる。又、圧着する金属の量が100mg/cm2以
䞊だず、次段階で化孊メツキを行な぀おも前述し
た也匏法に芋られる欠点を補うこずができない。
The amount of metal to be crimped is preferably in the range 0.1 mg to 100 mg per 10 m 2 . The amount of metal to be crimped
If it is less than 0.1 mg/cm 2 , the uniformity of the chemical plating performed in the next step and the adhesion strength of the deposited metal to the film surface will be insufficient. Furthermore, if the amount of metal to be crimped is 100 mg/cm 2 or more, even if chemical plating is performed in the next step, the drawbacks seen in the dry method described above cannot be compensated for.

圧着はプラスチツク成圢甚ずしお甚いられおい
る通垞のホツトプレスを甚いるこずができるし、
本のロヌル間に、膜ず金属粉を同時に通過させ
るこずにより、連続的に埋蟌むこずも可胜であ
る。この時圧着に芁する枩床、圧力及び時間は、
膜䞭に存圚する亀換基あるいは亀換基に倉換でき
る基の皮類、量及び重合䜓の分子量、分子量分垃
によ぀お異なるこずはもちろんであるが、通垞、
枩床50℃〜350℃、圧力Kg/cm2〜500Kg/cm2時間
秒〜10分の条件が遞ばれる。
For crimping, a normal hot press used for plastic molding can be used,
Continuous embedding is also possible by passing the membrane and metal powder simultaneously between two rolls. The temperature, pressure and time required for crimping at this time are:
Of course, it varies depending on the type and amount of exchange groups present in the membrane or groups that can be converted into exchange groups, and the molecular weight and molecular weight distribution of the polymer, but usually,
Temperature 50℃~350℃, Pressure 5Kg/cm 2 ~500Kg/cm 2 hours 1
Conditions from seconds to 10 minutes are selected.

本発明の第段階は、第段階で金属を埋蟌ん
が膜面䞊に化孊メツキを斜す段階である。䜆し、
該重合䜓膜が陜むオン亀換基になりうる基を含む
堎合は、化孊凊理により陜むオン亀換基に転換さ
せたのち第段階に入る。
The second stage of the present invention is a stage in which metal is buried in the first stage and chemical plating is applied on the film surface. however,
If the polymer membrane contains a group that can become a cation exchange group, it is converted into a cation exchange group by chemical treatment and then enters the second stage.

本発明でいうずころの化孊メツキ法ずは、通垞
行なわれおいる方法で特に制限はなく、䟋えば、
膜の片面にメツキしたい金属塩溶液を、そしお他
方の偎に還元剀溶液を察眮させお膜ぞの浞透速床
の差を利甚しおメツキする方法特公昭56−
36873号、金属塩溶液䞭に膜を浞挬し、膜内に該
金属塩を含浞させた埌、還元剀䞭に浞挬しお膜衚
面に金属を析出させる方法、無電解メツキ液を甚
いる方法等適宜遞択でき、又、䞊蚘方法を組合せ
おもよい。
The chemical plating method referred to in the present invention is a commonly used method and is not particularly limited. For example,
A method of plating by placing a metal salt solution to be plated on one side of the membrane and a reducing agent solution on the other side, taking advantage of the difference in permeation speed into the membrane (Special Publications 1983-
36873), a method in which a membrane is immersed in a metal salt solution to impregnate the membrane with the metal salt, and then immersed in a reducing agent to deposit metal on the membrane surface, a method using an electroless plating solution, etc. It can be selected as appropriate, and the above methods may be combined.

以䞊のようにしお膜面䞊に固着する金属の皮類
は、䜿甚環境に耐えるものであればよく、䟋え
ば、癜金、パラゞりム、ルテニりム及びむリゞり
ム等の癜金族金属、金、銀及びニツケル等から遞
択される。又、本発明の第段階で膜䞭に埋蟌む
金属ず、第段階でメツキする金属ずが異な぀お
いおもよく、又、数段にわけお化孊メツキを行な
う堎合、各々の段階で金属の皮類が異な぀おいお
もかたわない。
The metal that is fixed on the film surface in the above manner may be selected from metals that can withstand the usage environment, such as platinum group metals such as platinum, palladium, ruthenium, and iridium, gold, silver, and nickel. Ru. Furthermore, the metal embedded in the film in the first step of the present invention may be different from the metal plated in the second step, and when chemical plating is performed in several steps, the metal embedded in the film in the first step may be different from the metal plated in the second step. It does not matter if the metal types are different.

本発明の金属固着は、膜の片面だけに斜しおも
かたわないし、又、䞡面に斜すこずもできる。䞡
面に金属固着を斜す堎合、双方の金属が同じもの
であ぀おもよいし、又、異な぀おいおもよい。
The metal fixation of the present invention may be applied to only one side of the membrane, or may be applied to both sides. When metal fixing is applied to both sides, the metals on both sides may be the same or different.

膜の片面だけに金属固着を斜す堎合、該面は食
塩電解の際、陰極偎に向く膜面であるこずが奜た
しい。
When metal fixing is applied to only one side of the membrane, it is preferable that this side is the membrane side facing the cathode during salt electrolysis.

以䞊のようにしお埗られる金属の固着した陜む
オン亀換膜は、食塩の電気分解プロセスにおいお
陜極宀ず陰極宀ずを分割する隔膜ずしお甚いるこ
ずができる。この堎合甚いる陰極ずしおは、䜿甚
環境に耐え、反応に察しお充分な觊媒䜜甚を有す
るもので、か぀、生成ガスの抜けを劚げるこずの
ない構造のものであればよく、通垞甚いられる陰
極であればよい。䟋えば、鉄、軟鋌、ニツケル、
ステンレススチヌル等の材質で、金網、゚キスパ
ンデツドメタル、栌子状、瞊棧型、パンチドメタ
ル等の倚孔性のものが挙げられるが、䜕らこれに
限定されるものではない。
The cation exchange membrane with fixed metal obtained as described above can be used as a diaphragm for dividing an anode chamber and a cathode chamber in a salt electrolysis process. The cathode used in this case may be one that can withstand the operating environment, has a sufficient catalytic effect for the reaction, and has a structure that does not hinder the escape of the produced gas, and may be any commonly used cathode. Bye. For example, iron, mild steel, nickel,
Materials such as stainless steel and porous materials such as wire mesh, expanded metal, lattice, vertical lattice, and punched metal may be used, but the material is not limited thereto.

又、陜極に぀いおも、䜿甚環境に耐え、目的ず
する反応に察しお充分な觊媒䜜甚を有する通垞の
陜極が䜿甚され、䟋えば、黒鉛又はチタン、タン
タル、タングステン、ゞルコニりム、ニオブ等の
バルブ金属の衚面に癜金、パラゞりム、ルテニり
ム、むリゞりム等の癜金族金属、癜金族金属の酞
化物又は癜金族金属の酞化物ずバルブ金属の酞化
物を混合しお被芆した倚孔性陜極が䜿甚される。
電解に際し、これら電極は、膜面あるいは膜衚面
䞊の固着金属に接觊しおおもよいし、又、離れお
いおもよい。
As for the anode, a normal anode that can withstand the usage environment and has sufficient catalytic activity for the desired reaction is used. A porous anode coated with a platinum group metal such as platinum, palladium, ruthenium, or iridium, an oxide of a platinum group metal, or a mixture of an oxide of a platinum group metal and an oxide of a valve metal is used.
During electrolysis, these electrodes may be in contact with the membrane surface or the fixed metal on the membrane surface, or they may be separated.

以䞋、具䜓䟋によ぀お本発明の方法を説明す
る。尚、本発明はこれら具䜓䟋によ぀お䜕ら限定
されるものではない。
The method of the present invention will be explained below using specific examples. Note that the present invention is not limited to these specific examples.

実斜䟋  ずを・・−トリクロロ−・・トリフ
ルオロ゚タン䞭、パヌフルオロプロピオニルペル
オキシドを開始剀ずしお共重合し、重合䜓を埗た
スルホン酞基ずしおの亀換容量は0.91meq/也
燥暹脂。これをポリマヌずする。
Example 1 were copolymerized in 1,1,2-trichloro-1,2,2-trifluoroethane using perfluoropropionyl peroxide as an initiator to obtain a polymer (exchange capacity as sulfonic acid group was 0.91 meq/g). dry resin). This is called Polymer A.

同様にしお ずの共重合䜓を埗たカルボン酞基ずしおの亀換
容量は1.1meq/。これをポリマヌずする。
in the same way (Exchange capacity as carboxylic acid group was 1.1 meq/g). This will be referred to as B polymer.

次にポリマヌを100Όの厚さで、ポリマヌ
を75Όの厚さで各々フむルムに成型したのち、こ
れらフむルムを枚重ね合せ熱圧着し、枚のフ
むルムずした。これをフむルムずする。
Next, Polymer A was molded into films with a thickness of 100 ÎŒm and Polymer B with a thickness of 75 ÎŒm, respectively, and these two films were stacked and thermocompressed to form one film. This will be referred to as film 1.

癜金の埮粒子平均粒埄〜10Ό50mgを50ml
の氎に懞濁させ、これにポリテトラフルオロ゚チ
レンPTFEの懞濁液を、PTFEの量が癜金に
察し、重量比でになるように加え、撹拌
埌、該懞濁液を倚孔性PTFEシヌト䞊に吞匕過
し、PTFE䞊に癜金粒子が均䞀に分散した薄局が
茉぀たフむルムを埗た。該フむルムをフむルム
ずする。
50ml of 50mg of platinum fine particles (average particle size 5-10Ό)
A suspension of polytetrafluoroethylene (PTFE) was added to this in such a manner that the weight ratio of PTFE to platinum was 1/6, and after stirring, the suspension was The film was suctioned onto a porous PTFE sheet to obtain a film with a thin layer of platinum particles uniformly dispersed on the PTFE. The film is called Film 2.
shall be.

該薄局䞭には癜金がmg/cm2の割合で含たれお
いた。
Platinum was contained in the thin layer at a rate of 5 mg/cm 2 .

フむルムのポリマヌ偎にフむルムを、癜
金薄局がポリマヌに接するようにのせ、この状
態でホツトプレスにより160℃、100Kg/cm2、分
の条件で加圧し、癜金の薄局をフむルム䞊に付
着させ、その埌倚孔性PTFE膜を取り陀き、癜金
が膜面に密着した重合䜓膜を埗た。匕続き該重合
䜓膜を20のNaOH氎溶液ずメタノヌルの混合液
に70℃で15時間浞挬しお、膜䞭に存圚する−
SO2F、−COOCH3を加氎分解しおむオン亀換膜
ずした。
Place film 2 on the B polymer side of film 1 so that the thin platinum layer is in contact with polymer B, and in this state pressurize with a hot press at 160°C, 100 kg/cm 2 for 1 minute, and press the thin platinum layer onto the film. After that, the porous PTFE membrane was removed to obtain a polymer membrane in which platinum was adhered to the membrane surface. Subsequently, the polymer film was immersed in a mixture of 20% NaOH aqueous solution and methanol at 70°C for 15 hours to remove the - present in the film.
An ion exchange membrane was prepared by hydrolyzing SO 2 F and -COOCH 3 .

その埌、該むオン亀換膜をゞメチルアミンボラ
ンを含む癜金の無電解メツキ液に浞挬しお、膜面
の癜金埮粒子䞊に癜金を化孊メツキした。
Thereafter, the ion exchange membrane was immersed in a platinum electroless plating solution containing dimethylamine borane to chemically plate platinum on the platinum fine particles on the membrane surface.

以䞊のようにしお、カルボン酞局䞊に癜金が均
䞀に、しかも匷固に密着したカルボン酞−スルホ
ン酞局構造のむオン亀換膜を埗た。
In the manner described above, an ion exchange membrane having a carboxylic acid-sulfonic acid two-layer structure in which platinum was uniformly and firmly adhered to the carboxylic acid layer was obtained.

実斜䟋  ニツケルの埮粒子平均粒埄30Ό以䞋50mgを
50mlの氎に懞濁させ、これにポリテトラフルオロ
゚チレンSTFEの懞濁液をPTFEがニツケル
に察し重量比でになるように加え、撹拌
埌、該懞濁液を倚孔性PTFEシヌト䞊に吞匕過
し、PTFEシヌト䞊にニツケル粒子が均䞀に分散
した薄局がの぀たフむルムを埗た。該フむルムを
フむルムずする。
Example 2 50mg of nickel fine particles (average particle size 30Ό or less)
Suspend it in 50ml of water, add a suspension of polytetrafluoroethylene (STFE) so that the weight ratio of PTFE to nickel is 1/9, and after stirring, add the suspension to porous PTFE. A thin layer of nickel particles uniformly dispersed on the PTFE sheet was obtained by suctioning the film onto the sheet. This film will be referred to as film 3.

フむルムを実斜䟋で埗たフむルム䞊に実
斜䟋ず同様にしお圧着し、ニツケルが膜面に密
着した重合䜓膜を埗た。匕続き該重合䜓を実斜䟋
ず同じ加氎分解条件䞋におきむオン亀換膜ずし
た。
Film 3 was pressure-bonded onto Film 1 obtained in Example 1 in the same manner as in Example 1 to obtain a polymer film in which nickel adhered to the film surface. Subsequently, the polymer was subjected to the same hydrolysis conditions as in Example 1 to form an ion exchange membrane.

こうしお埗たニツケルが膜面に密着したむオン
亀換膜を曎に塩化ニツケル及び氎玠化ホり玠ナト
リりムを含む無電解メツキ济に浞挬しお膜面のニ
ツケル埮粒子䞊にニツケルを化孊メツキした。
The thus obtained ion exchange membrane with nickel adhered to the membrane surface was further immersed in an electroless plating bath containing nickel chloride and sodium borohydride to chemically plate nickel on the nickel fine particles on the membrane surface.

以䞊のようにしお、カルボン酞局䞊に癜金が均
䞀に、しかも匷固に密着したカルボン酞−スルホ
ン酞局構造のむオン亀換膜を埗た。
In the manner described above, an ion exchange membrane having a carboxylic acid-sulfonic acid two-layer structure in which platinum was uniformly and firmly adhered to the carboxylic acid layer was obtained.

実斜䟋  実斜䟋においお、癜金薄膜䞭に含たれる癜金
量をmg/cm2からmg/cm2ずした他は、実斜䟋ず
同様に行な぀たずころ、同様にカルボン酞局䞊に
癜金が匷固に密着したカルボン酞−スルホン酞
局構造のむオン亀換膜が埗られた。
Example 3 The same procedure as in Example 1 was carried out except that the amount of platinum contained in the platinum thin film was changed from 5 mg/cm 2 to 1 mg/cm 2 . Carboxylic acid-sulfonic acid 2 with tightly adhered
An ion exchange membrane with a layered structure was obtained.

実斜䟋  実斜䟋においおフむルムを枚䜜補し、倚
孔性PTFEが倖偎になるようにフむルムを䞡偎
からはさむようにし、同様の条件で加圧し、癜金
薄局をフむルムの䞡偎に付着させ、その埌倚孔
性PTFE膜を取り陀き、癜金が膜䞡面に密着した
重合䜓膜を埗た。匕続き該重合䜓膜を実斜䟋ず
同じ加氎分解条件䞋におきむオン亀換膜ずした。
その埌、曎に実斜䟋ず同様にしお、膜面の癜金
埮粒子䞊に癜金を化孊メツキした。
Example 4 Two films 2 were prepared in Example 1, and film 1 was sandwiched from both sides so that the porous PTFE was on the outside. Pressure was applied under the same conditions to attach a thin platinum layer to both sides of film 1. After that, the porous PTFE membrane was removed to obtain a polymer membrane with platinum adhered to both sides of the membrane. Subsequently, the polymer membrane was subjected to the same hydrolysis conditions as in Example 1 to obtain an ion exchange membrane.
Thereafter, in the same manner as in Example 1, platinum was chemically plated on the platinum fine particles on the film surface.

以䞊のようにしお膜の䞡偎に癜金が均䞀に、し
かも匷固に密着したカルボン酞−スルホン酞局
構造のむオン亀換膜を埗た。
As described above, an ion exchange membrane having a carboxylic acid-sulfonic acid two-layer structure in which platinum was uniformly and firmly adhered to both sides of the membrane was obtained.

比范䟋  実斜䟋で埗たフむルムを加氎分解しおむオ
ン亀換膜ずした。その埌該むオン亀換膜䞊に実斜
䟋ず同様な条件で癜金の無電解メツキを斜すこ
ずを詊みた。しかしながら、該膜面䞊に癜金はほ
ずんど析出せず、又、析出した郚分も膜ぞの密着
性はほずんどなく、枩氎に浞挬するだけで容易に
剥離しおした぀た。
Comparative Example 1 Film 1 obtained in Example 1 was hydrolyzed to obtain an ion exchange membrane. Thereafter, an attempt was made to electrolessly plate platinum on the ion exchange membrane under the same conditions as in Example 1. However, almost no platinum was deposited on the membrane surface, and the deposited portions had almost no adhesion to the membrane and were easily peeled off simply by immersion in hot water.

参考䟋  実斜䟋で埗たカルボン酞局䞊に癜金が固着し
たカルボン酞−スルホン酞局構造のむオン亀換
膜をカルボン酞局が陰極に向くように食塩電解槜
に配眮した。
Reference Example 1 The ion exchange membrane having a carboxylic acid-sulfonic acid two-layer structure in which platinum was fixed on the carboxylic acid layer obtained in Example 1 was placed in a salt electrolytic cell so that the carboxylic acid layer faced the cathode.

陜極ずしおルテニりム酞化物を被芆したチタン
゚キスパンデツドメタル、陰極ずしお鉄補の゚キ
スパンデツドメタルを甚いた。陜・陰極間をmm
ずし、か぀膜の癜金を固着しおいない面を陜極ず
接觊させるために、陰極宀の苛性゜ヌダ氎溶液の
抜き出しのレベルを陜極宀の液レベルに察しお20
cm高くした。
Titanium expanded metal coated with ruthenium oxide was used as the anode, and expanded iron metal was used as the cathode. 3mm between anode and cathode
In addition, in order to bring the surface of the membrane to which platinum is not adhered into contact with the anode, the level at which the caustic soda aqueous solution is extracted from the cathode chamber is set at 20% relative to the liquid level in the anode chamber.
cm higher.

陜極宀に飜和食塩氎、陰極宀に氎を䟛絊しお、
陰極宀の苛性゜ヌダの濃床を35に保ち぀぀、枩
床80℃、電流密床30A/dm2で電解したずころ、電
圧は3.2ボルト、電流効率は96であ぀た。又、
ケ月の運転の間この倀は維持されおおり、膜に
固着した金属の剥離もみられなか぀た。
Supply saturated saline to the anode chamber and water to the cathode chamber.
When electrolysis was carried out at a temperature of 80°C and a current density of 30 A/dm 2 while maintaining the concentration of caustic soda in the cathode chamber at 35%, the voltage was 3.2 volts and the current efficiency was 96%. or,
This value was maintained during 6 months of operation, and no peeling of the metal adhered to the membrane was observed.

䞀方、実斜䟋で無電解メツキを斜さず、癜金
の薄膜を圧着しただけのむオン亀換膜を甚いお、
䞊ず同様の食塩電解を行な぀たずころ、電圧は
3.55ボルト、電流効率96であ぀たが、10日間の
運転の埌、電圧は3.5ボルトにたで䞊昇しおお
り、癜金の膜面䞊からの剥離が芋られた。
On the other hand, in Example 1, using an ion exchange membrane with only a platinum thin film crimped on it without electroless plating,
When the same salt electrolysis as above was carried out, the voltage was
The voltage was 3.55 volts, and the current efficiency was 96%, but after 10 days of operation, the voltage had increased to 3.5 volts, and peeling of the platinum film from the surface was observed.

Claims (1)

【特蚱請求の範囲】  陜むオン亀換基および又は陜むオン亀換基
になり埗る基を有するパヌフルオロカヌボン重合
䜓膜に癜金族金属、金、銀およびニツケルから遞
択される金属のΌ〜100Όの粒子を10m2圓り0.1
mg〜100mg、50〜350℃、〜500Kg/cm2、秒〜10
分の条件䞋に圧着せしめたのち、陜むオン亀換基
になり埗る基を甚いた堎合は陜むオン亀換基に転
換させお、䞊蚘金属から遞択される金属で化孊メ
ツキを行なうこずからなる陜むオン亀換膜䞊に金
属を固着させる方法。  陜むオン亀換基がスルホン酞および又はカ
ルボン酞基からなるパヌフルオロカヌボン重合䜓
膜を䜿甚する特蚱請求の範囲第項蚘茉の方法。  陜むオン亀換基になりうる基が、−SO2F、−
SO2Cl、−COF、−COORは炭玠数〜のア
ルキル基および−CNから遞択される特蚱請求
の範囲第項蚘茉の方法。
[Scope of Claims] 1. Particles of 1 Ό to 100 Ό of a metal selected from platinum group metals, gold, silver, and nickel on a perfluorocarbon polymer membrane having a cation exchange group and/or a group capable of becoming a cation exchange group. 0.1 per 10m2
mg~100mg, 50~350℃, 5~500Kg/ cm2 , 1 second~10
Cation exchange, which consists of crimping under conditions of 10 minutes, then converting the group into a cation exchange group if a group capable of becoming a cation exchange group is used, and chemically plating with a metal selected from the above metals. A method of fixing metal onto a membrane. 2. The method according to claim 1, which uses a perfluorocarbon polymer membrane in which the cation exchange groups consist of sulfonic acid and/or carboxylic acid groups. 3 Groups that can become cation exchange groups are -SO 2 F, -
The method according to claim 1, wherein the method is selected from SO2Cl , -COF, -COOR (R is an alkyl group having 1 to 5 carbon atoms) and -CN.
JP56200039A 1981-12-14 1981-12-14 Method for sticking metal on cation exchange membrane Granted JPS58104189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200039A JPS58104189A (en) 1981-12-14 1981-12-14 Method for sticking metal on cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200039A JPS58104189A (en) 1981-12-14 1981-12-14 Method for sticking metal on cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS58104189A JPS58104189A (en) 1983-06-21
JPS6154116B2 true JPS6154116B2 (en) 1986-11-20

Family

ID=16417803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200039A Granted JPS58104189A (en) 1981-12-14 1981-12-14 Method for sticking metal on cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS58104189A (en)

Also Published As

Publication number Publication date
JPS58104189A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US4389297A (en) Permionic membrane electrolytic cell
JPS6356316B2 (en)
US4299675A (en) Process for electrolyzing an alkali metal halide
WO1980002162A1 (en) Process for producing hydrogen
CA1273315A (en) Process for producing potassium hydroxide
EP0165466B1 (en) Cation exchange fluoropolymer membrane
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
JP4290454B2 (en) Method for producing gas diffusion electrode, electrolytic cell and electrolysis method
JPH0248632B2 (en)
JPS58144488A (en) Multilayer structure for electrode-membrane assembly and electrolytic process thereby
JPS6154116B2 (en)
JPS6039184A (en) Alkali chloride electrolytic cell
JPH0143026B2 (en)
CN1281790C (en) Anode structure of electrolysis type ozone generator and its preparation method
JPS6258622B2 (en)
CN1432664A (en) Water electrolyzing composit membrane electrode
JPS6261673B2 (en)
JPH0237433B2 (en)
JPS6255535B2 (en)
CN1407140A (en) Composite electrode for generation of ozone
JP2658037B2 (en) Method for producing high-purity potassium hydroxide
JPS631391B2 (en)
JPS5922930A (en) Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane
JPS6136074B2 (en)
JPS6316420B2 (en)