JPS5922930A - Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane - Google Patents
Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membraneInfo
- Publication number
- JPS5922930A JPS5922930A JP57132251A JP13225182A JPS5922930A JP S5922930 A JPS5922930 A JP S5922930A JP 57132251 A JP57132251 A JP 57132251A JP 13225182 A JP13225182 A JP 13225182A JP S5922930 A JPS5922930 A JP S5922930A
- Authority
- JP
- Japan
- Prior art keywords
- exchange membrane
- cation exchange
- carboxylic acid
- layer
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
換膜を提供するものであり、その製造方法及び水溶液、
特にハロゲン化物の電気分解におけるその使用法に関し
ている。[Detailed description of the invention] Provides a changing membrane, a method for producing the same, an aqueous solution,
It particularly concerns its use in the electrolysis of halides.
陽イオン交換膜により陽極室と陰極室に分割された電解
槽で塩化アルカリを電解して、水酸化アルカリを製造す
る方法(イオン交換脱法ンにおいて、近年、省エネルギ
ー開発が進行しつつあり、この観点からこの種技術にお
いては、電解電圧を極力低くするよう努力されている。A method of producing alkali hydroxide by electrolyzing alkali chloride in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (In recent years, energy saving development has been progressing in ion exchange deprocessing, and from this point of view Therefore, in this type of technology, efforts are being made to lower the electrolysis voltage as much as possible.
その手段としては、従来、陽極や陰極の材質.組成及び
形状を考慮したり、あるいは用いるイオン交換膜の組成
や、イオン交換基の種類を特定化する等種々の手段が提
案されているが、いずれもそれなりの効果はあるものの
必ずしも工業的に充分満足し得るものではなかった。Conventionally, this method has been based on the material of the anode and cathode. Various methods have been proposed, such as considering the composition and shape, or specifying the composition of the ion-exchange membrane used or the type of ion-exchange group, but although they all have certain effects, they are not necessarily sufficient for industrial use. It wasn't satisfying.
一方近年、SP]lii電解法と称電解波術が注目を集
めてきている。これは電極層と陽イオン交換膜とを一体
化し電解電圧の低減をねらったものもあり、相当の効果
を得ている。又、陽イオン交換膜と電極活性をもたない
、例えば金属酸、化物等からなる多孔層とを一体化させ
、これを食塩電解における隔膜として使用する方法等が
提案されている(特開昭56−75585.特開昭56
−112487、特開昭56−108888等)。On the other hand, in recent years, the SP]lii electrolytic method and the so-called electrolytic wave technique have been attracting attention. Some of these devices aim to reduce the electrolytic voltage by integrating the electrode layer and the cation exchange membrane, and have achieved considerable effects. In addition, a method has been proposed in which a cation exchange membrane is integrated with a porous layer that does not have electrode activity, such as a metal acid, a compound, etc., and is used as a diaphragm in salt electrolysis (Japanese Patent Application Laid-Open No. 56-75585. Japanese Patent Publication No. 1983
-112487, JP-A-56-108888, etc.).
このように、電解電圧を低減せしむる方法として、陽イ
オン交換膜表面上を、あの種の金属及び金属酸化物等か
らなる層でおおうという方法が、一つの流れとなってと
ている。As described above, one trend toward reducing the electrolytic voltage is to cover the surface of the cation exchange membrane with a layer made of certain metals, metal oxides, or the like.
陽イオン交換膜と金属及び/又は金属酸化物を含む層で
おおう方法としては、PTFE等の結合剤を用いて触媒
粒子を焼結成形し、膜面にホットプレスする乾式法(特
開昭53−52297等)、還元側な用い溶液中で膜面
に金属を析出させる湿式法、いわゆる化学メッキ法(%
公昭56−36875、特開昭56−156985)等
が知られている。As a method for covering a cation exchange membrane with a layer containing metal and/or metal oxide, there is a dry method (Japanese Patent Application Laid-Open No. 1983-1993) in which catalyst particles are sintered and formed using a binder such as PTFE and then hot-pressed onto the membrane surface. -52297, etc.), the so-called chemical plating method (%
Publication No. 56-36875, Japanese Unexamined Patent Publication No. 56-156985), etc. are known.
本発明者らは、以上のような観点から乾式法。The present inventors developed the dry method from the above points of view.
湿式法による隔膜の電解性能について銀量研究を重ねた
結果、以下のような結論を導くに至った。As a result of repeated research on silver content regarding the electrolytic performance of diaphragms using the wet method, we came to the following conclusions.
1、乾式法では膜面上への金属層の固着を均一に行なう
ことがむすかしく、ひ(・ては膜の電解性能に再現性を
もたせることがむすかしく・0史に、電解中、金属層の
膜面上からの離脱をまぬがれない。1. In the dry method, it is difficult to uniformly adhere the metal layer onto the membrane surface, and it is difficult to achieve reproducibility in the electrolytic performance of the membrane. The layer cannot be avoided from separating from the film surface.
λ 湿式法では、乾式法に比べ再現性を得るのは容易で
ある。しかしながら、金属か膜表面上にのみ析出するた
め、余端の離脱の区会をま、乾式法以上である。更にこ
の点を改良する目的で固着条件を厳しくすると電流効率
の低下を引き起こしてしまう。λ With the wet method, it is easier to obtain reproducibility than with the dry method. However, since the metal is deposited only on the surface of the film, the separation of the remaining edges is more difficult than the dry method. Furthermore, if the fixing conditions are made stricter for the purpose of improving this point, the current efficiency will be lowered.
本発明者らは、このような結論をふまえて更に検討した
結果、本発明に到達した。The present inventors conducted further studies based on such a conclusion, and as a result, they arrived at the present invention.
すなわち、まず、陽イオン交換膜のカルボン酸基層の表
面に、交換容量が0,90〜1.5mθυ今・乾燥樹脂
のスルホ/酸基を有するパーフルオロカーボン重合体層
を形成させたのち、化学メッキすることによる陽イオン
交換膜のカルボン酸基層上に金)?4を固着せしめる方
法を拶供するものである。That is, first, a perfluorocarbon polymer layer having an exchange capacity of 0.90 to 1.5 mθυ and a sulfo/acid group of the dry resin is formed on the surface of the carboxylic acid base layer of the cation exchange membrane, and then chemical plating is applied. gold on the carboxylic acid base layer of the cation exchange membrane)? This article provides a method for fixing 4.
本発明の中で使用されろ陽イオン交換膜の製造に用いら
れる単量体としては、例えば下記一般式%式%
〔ただし、
R= −CF、 、 −C!F、 −0−OF。The monomers used in the production of the cation exchange membrane used in the present invention are, for example, represented by the following general formula % [where R= -CF, , -C! F, -0-OF.
n=0又は1〜5
m=o又は1
o =0又は1.P=1〜6
X = 502F、 So、Cl、 C0OR,(R,
士1〜5のアルキル基)、 ON、 cow )上
記単相体を用いて製造される陽イオン交換膜の製造に用
いる重合体としては具体的には、例えば下記の重合体を
示すことができる。n=0 or 1-5 m=o or 1 o=0 or 1. P=1~6 X=502F, So, Cl, C0OR, (R,
Specific examples of the polymer used in the production of the cation exchange membrane produced using the above-mentioned single-phase material (1-5 alkyl group), ON, cow) include, for example, the following polymers. .
(A群) OF、 −CF−0−CF、 −CF、 −8o、Fち OF、 −OF、 −8o、F 0F、−OF、−8o、IP 1 CF。(Group A) OF, -CF-0-CF, -CF, -8o, Fchi OF, -OF, -8o, F 0F, -OF, -8o, IP 1 C.F.
0F−OF、−0−OF。0F-OF, -0-OF.
OF、 =C!?、 −8o、? OF。OF, =C! ? , -8o,? O.F.
CF、 −8o、F (B群) 「 Ft C!F−OF。CF, -8o, F (Group B) " Ft C! F-OF.
0−OF、−0000H。0-OF, -0000H.
0?。0? .
OF。OF.
OF、−0000H。OF, -0000H.
■ OF、−CF、−OF、−OF、−000C!H。■ OF, -CF, -OF, -OF, -000C! H.
OF、 −OF、 −COF C!?、−(3F−0−OF、−CF、−COOCH。OF, -OF, -COF C! ? , -(3F-0-OF, -CF, -COOCH.
OF。OF.
0000H。0000H.
O0
1
OF30F、−OF、−OF、−00700
1
OF、 C!F、−OF、−C!F、−C!0
OcH。O0 1 OF30F, -OF, -OF, -00700 1 OF, C! F, -OF, -C! F,-C! 0
OcH.
0 0 1小 CFsCF。0 0 1st grade CFsCF.
出 C00C馬 Oo 1 OF、 CF、−0F2−00F 0 I CF、 OF。Out C00C horse Oo 1 OF, CF, -0F2-00F 0 I CF, OF.
F、(!−CF
0−OF、−(!F、−00IF
A群の中で示した重合体は、スルホン酸基になりつる基
を有するパーフルオロカーボン重合体であり、スルホン
酸基に転換した時の交換基容量が0.5〜1.0 me
q/f’乾燥樹脂の範囲のものを使用することができる
。F. The exchange group capacity at 0.5 to 1.0 me
A range of q/f' dry resins can be used.
B群の中で示した重合体は、カルボン酸基になりうろ基
を有するパーフルオロカーボン重合体であり、カルボン
酸基に転換した時の交換基容量がα6〜t 5 meq
/f・乾燥樹脂の範囲のものを使用することができる。The polymer shown in Group B is a perfluorocarbon polymer that becomes a carboxylic acid group and has a chloro group, and has an exchange group capacity of α6 to t 5 meq when converted to a carboxylic acid group.
/f/dry resin can be used.
これら重合体の中でA群の重合体はその膜の表面を化学
処理して表面のスルホン酸基をカルボン酸基に変換する
か、又はB群の重合体の膜と積層した型で用いられる。Among these polymers, Group A polymers are used either by chemically treating the surface of the membrane to convert the sulfonic acid groups on the surface into carboxylic acid groups, or in a laminated form with a membrane of Group B polymers. .
本発明で用いられる陽イオン交換膜は、50μないし5
00μの厚さで一般に用いられ、膜の比電導度、電流効
率を考慮して適当な厚みを選択する。The cation exchange membrane used in the present invention is 50μ to 5μ
A thickness of 0.00 μm is generally used, and an appropriate thickness is selected in consideration of the specific conductivity and current efficiency of the film.
本発明の第一段階では、カルボン酸基層上にスルホン酸
基を有する重合体層を形成させる。スルホン酸基を有す
る重合体層を形成させるに使用し5る重合体としては、
上記したA群の重合体を用いることができるが、該重合
体の交換容量は19〜1.5 meq/F・乾燥樹脂の
範囲のものを用いる。In the first step of the present invention, a polymer layer having sulfonic acid groups is formed on the carboxylic acid base layer. The polymers used to form the polymer layer having sulfonic acid groups include:
The above-mentioned Group A polymers can be used, but the exchange capacity of the polymers used is in the range of 19 to 1.5 meq/F/dry resin.
スルホン酸基を有する重合体層をカルボン酸基層の表面
に形成させる方法は、例えば、陽イオン交換膜のカルボ
ン酸エステル基層に該重合体を塗布あるいは加熱圧着等
の方法で付着させ、次いで加水分解する方法を挙げるこ
とができる。この際、重合体中に金属、金属酸化物ある
いはゼオライト等の無機物を適当に混合したものを使用
することもできる。もちろん、カルボン酸基層上に重合
体層を形成させる方法は、上記の方法に限定されるもの
ではない。A method for forming a polymer layer having a sulfonic acid group on the surface of a carboxylic acid base layer is, for example, by attaching the polymer to the carboxylic acid ester base layer of a cation exchange membrane by coating or heat-pressing, and then hydrolyzing it. Here are some ways to do it. At this time, it is also possible to use a polymer in which a metal, metal oxide, or inorganic substance such as zeolite is appropriately mixed. Of course, the method for forming the polymer layer on the carboxylic acid base layer is not limited to the above method.
本発明の第二段階では、形成させた重合体層に化学メッ
キする。陽イオン交換膜のカルボン酸基層上に形成させ
たスルホン酸基層に固着させる金属としては、陰極反応
に対して充分な触媒作用を有するものであれば特に制限
はないが、通常は白金、パラジウム、ルテニウム、イリ
ジウム等の白金族金属、銀およびニッケルあるいはこれ
らの混合物が用いられる。これら金属は化学メッキ法で
該膜に固着される。ただし、化学メッキ法自体としては
、通常の方法で特に制限はなく、例えば、陽イオン交換
膜の陰極側にメッキしたい金属塩溶液を、陽極側に還元
剤溶液を対置させて、膜への浸透速度の差を利用してメ
ッキする方法(%開昭55−58954号公報)、金属
塩溶液中に膜を浸漬し、膜内に該金属塩を含浸させた後
、還元剤中に浸漬して膜表面に金属を析出させる方法、
無電解メッキ液を用いる方法等適宜選択でき、また上記
方法を組合せてもよい。In the second step of the invention, the formed polymer layer is chemically plated. The metal to be fixed to the sulfonic acid base layer formed on the carboxylic acid base layer of the cation exchange membrane is not particularly limited as long as it has a sufficient catalytic effect on the cathode reaction, but platinum, palladium, Platinum group metals such as ruthenium and iridium, silver and nickel, or mixtures thereof are used. These metals are fixed to the membrane by chemical plating. However, the chemical plating method itself is a normal method and there are no particular restrictions. For example, a metal salt solution to be plated is placed on the cathode side of a cation exchange membrane, and a reducing agent solution is placed on the anode side, and the metal salt solution permeates into the membrane. A method of plating using the difference in speed (Patent Publication No. 55-58954), in which a membrane is immersed in a metal salt solution, the membrane is impregnated with the metal salt, and then the membrane is immersed in a reducing agent. A method of depositing metal on the membrane surface,
A method using an electroless plating solution can be selected as appropriate, and the above methods may be combined.
また、固着金属の電気伝導度は、1Ω−10−1以上あ
れば充分目的は達成でき5\の伝導度は化学メッキ法で
容易に達成できる。Further, if the electrical conductivity of the fixed metal is 1Ω-10-1 or more, the purpose can be sufficiently achieved, and a conductivity of 5\ can be easily achieved by chemical plating.
本発明の効果は、おおよそ次のように説明することがで
きる。The effects of the present invention can be roughly explained as follows.
カルボン酸基層上に化学メッキする場合は、密着性に欠
ける大きな問題を有していた。これはカルボン酸°基の
pKaがスルホン酸基のそれに比べて大きいこと、また
カルボン酸基を有する層の含水率がスルホン酸基のそれ
に比べて小さいことのため、金属イオンが完全に吸着で
きないため、固着される金炙の密度が小さくなり、密着
性を低下させるものと考えられる。When chemical plating is applied on a carboxylic acid base layer, there is a major problem of poor adhesion. This is because metal ions cannot be completely adsorbed because the pKa of carboxylic acid groups is larger than that of sulfonic acid groups, and the water content of the layer containing carboxylic acid groups is smaller than that of sulfonic acid groups. It is thought that this decreases the density of the adhered Kinro and reduces the adhesion.
これを解決するためには、化学メッキする層が含水率が
高く、かつ、pKaが小さい官能基を有する層を設けて
やればよい。In order to solve this problem, a layer to be chemically plated may have a high water content and a functional group with a low pKa.
そこで本発明では、化学メッキする層に交換膜−″の大
きい、かつ、pKaの小さいスルホン酸基を有する重合
体を付着させて化学メッキすることによって、極めて密
着性の良好な陽イオン交換膜を得ることができた。Therefore, in the present invention, a cation exchange membrane with extremely good adhesion is produced by chemically plating a polymer having a large exchange membrane and a sulfonic acid group with a small pKa on the layer to be chemically plated. I was able to get it.
以下、具体的に効果を示す例を示す。なお、本発明はこ
れら具体例によって何ら制限されるもσ)ではない。Below, we will show examples that specifically demonstrate the effects. Note that the present invention is not limited in any way by these specific examples.
実施例1
CF、 =OF、とOF、 =OF’−0−OF、 −
0F−0−OF、−OF。Example 1 CF, =OF, and OF, =OF'-0-OF, -
0F-0-OF, -OF.
CF。C.F.
し、次いで加水分解することによって交換容量が190
mθq/?・乾燥樹脂の陽イオン交換膜を得た。and then hydrolyzed to increase the exchange capacity to 190
mθq/? - Obtained a dry resin cation exchange membrane.
続いて該膜を五塩化リンガスでスルホニルクロリド化(
2ミル)したのち、還元剤処理することによって、スル
ホン酸基とカルボン酸基の二層構造膜を得た。続いてカ
ルボン酸基をメタノール/塩酸系でエステル化した。Subsequently, the membrane was subjected to sulfonyl chloride treatment with phosphorus pentachloride (
2 mils) and then treated with a reducing agent to obtain a two-layer structure film of sulfonic acid groups and carboxylic acid groups. Subsequently, the carboxylic acid group was esterified with a methanol/hydrochloric acid system.
一方、C!F、=CF、とCF、=C!F−0−OF、
−OF −0−OF、−■
V3
(3F2−8O,F どの共重合体の交換容置が1.
0 meq/り・乾燥樹脂になるように共重合した。続
いて該共重合体を上記で得たフィルムのエステル層上に
熱圧着(160℃、 150 Kg/cm’ ) L
、た。On the other hand, C! F, = CF, and CF, = C! F-0-OF,
-OF -0-OF, -■ V3 (3F2-8O,F Which copolymer exchange container is 1.
Copolymerization was carried out to give a dry resin of 0 meq/liter. Subsequently, the copolymer was thermocompression bonded (160°C, 150 Kg/cm') onto the ester layer of the film obtained above.
,Ta.
次に該フィルムをメタノール/10%苛性ソーダで加水
分解して陽イオン交換膜とした。次に熱圧着した層が反
応処理できるようにセットした。Next, the film was hydrolyzed with methanol/10% caustic soda to obtain a cation exchange membrane. Next, the thermocompression bonded layers were set for reaction treatment.
次に2.5%のアンモニア水1tにH,PtC1,*6
H,0(1f)を溶解し、2時間放置したのち、該膜を
4時間室温下で処理した。水洗を十分に行ったのち、カ
ルボン酸層が陰極側に向くように食塩電解槽を組立てた
。Next, add H, PtC1, *6 to 1 t of 2.5% ammonia water.
After dissolving H,0(1f) and allowing it to stand for 2 hours, the membrane was treated at room temperature for 4 hours. After thorough washing with water, the salt electrolytic cell was assembled so that the carboxylic acid layer faced the cathode side.
陽極としてルテニウム酸化物を被覆1〜たチタンエキス
パンデッドメタル、陰極として鉄製のエキスパンデッド
メタルを用いた。陽極室に飽和食塩水、陰極室に水を供
給して陰極室液の苛性ソーダ#度を35%に保ちつつ温
度90℃、電流、密度30 AA!で電解したところ、
電圧は&15ボルト、電流効率は95%であった。An expanded titanium metal coated with ruthenium oxide was used as an anode, and an expanded metal made of iron was used as a cathode. Saturated salt solution is supplied to the anode chamber and water is supplied to the cathode chamber to maintain the caustic soda concentration of the cathode chamber solution at 35% while maintaining the temperature at 90°C, current, and density at 30 AA! When electrolyzed with
The voltage was &15 volts and the current efficiency was 95%.
運転3ケ月後も°゛はくり″は生じなかった。No "peeling" occurred even after three months of operation.
比較例1
実施例1で用いたフィルムに、熱圧着を施さないで実施
例1と同様の方法で、カルボン酸層に化学メッキした。Comparative Example 1 A carboxylic acid layer was chemically plated on the film used in Example 1 in the same manner as in Example 1 without applying thermocompression bonding.
実施例1と同様の運転をしたところ、電圧は3.30ボ
ルトで電流効率は92%であった。運転約1ケ月後に6
はくり”が生じていた。When the same operation as in Example 1 was carried out, the voltage was 3.30 volts and the current efficiency was 92%. 6 after about 1 month of driving
"Peeling" had occurred.
比較例2
実施例1で用いたフィルムに熱圧着を施し、本発明の処
理を行わすに1実施例1と同様の運転をしたところ、電
圧は3.32ボルトで電流効率は95%であった。Comparative Example 2 The film used in Example 1 was thermocompressed and subjected to the treatment of the present invention. When the same operation as in Example 1 was performed, the voltage was 3.32 volts and the current efficiency was 95%. Ta.
比較例3
実施例1で用いた二層構造膜をそのまま、実施例1と同
様の運転をしたところ、電圧は五45ボルトで電流効率
は95%であった。Comparative Example 3 When the two-layer structure membrane used in Example 1 was operated in the same manner as in Example 1, the voltage was 545 volts and the current efficiency was 95%.
実施例2
OF、 =(!F、と
OF、 =C!F−0−OF、 −0F−0−OF、
−OF、 −80,FCF。Example 2 OF, =(!F, and OF, =C!F-0-OF, -0F-0-OF,
-OF, -80,FCF.
との共重合体から得られたフィルム(スルホン酸基に転
化したときの交換容量α9mθv9・乾燥樹脂)とOF
、 =CF、とCF、 =OF−0−OF、−0F−0
−CF、−(3F、−C!0OCH。A film obtained from a copolymer with (exchange capacity α9mθv9 when converted to sulfonic acid group, dry resin) and
, =CF, and CF, =OF-0-OF, -0F-0
-CF, -(3F, -C!0OCH.
CF3
との共重合体から得られたフィルム(カルボン酸基に転
化゛した時の交換容量1.0 meq/f・乾燥樹脂)
とを熱圧着して一枚のフィルムに成形した。Film obtained from copolymer with CF3 (exchange capacity 1.0 meq/f when converted to carboxylic acid group, dry resin)
These were heat-pressed and formed into a single film.
次に該フィルムの両面に、CF、 =CF、 とCF、
=Cl0−CF、−0F−0−OF2−OF、 −8
o、F0F。Next, on both sides of the film, CF, =CF, and CF,
=Cl0-CF, -0F-0-OF2-OF, -8
o, F0F.
との共重合体(スルホン酸基に転化した時の交換膜&#
1.0 meq/?乾燥[11!lr)を熱圧着(16
0’C。Copolymer with (exchange membrane when converted to sulfonic acid group)
1.0 meq/? Drying [11! lr) by thermocompression bonding (16
0'C.
1sOKp/α2 )した。1sOKp/α2).
次に該フィルムをメタノール/10%苛性ソーダで加水
分解l−て陽イオン交換膜を得た。Next, the film was hydrolyzed with methanol/10% caustic soda to obtain a cation exchange membrane.
該膜を2.5%のアンモニア水1tにH,PtO7,−
6H,0(12)を溶解し2時間放置した溶液中、室温
下で30分間浸漬した。水洗を十分に行ったのち、50
℃で2時間NaBH4(α01%)を用いて還元1−だ
。The membrane was dissolved in 1 t of 2.5% ammonia water with H,PtO7,-
It was immersed for 30 minutes at room temperature in a solution in which 6H,0(12) was dissolved and left for 2 hours. After thoroughly washing with water,
Reduce 1- with NaBH4 (α01%) for 2 hours at °C.
このようにして得られた陽イオン交換膜を実施例1と同
様の方法で運転したところ、次のような性能を示した。When the cation exchange membrane thus obtained was operated in the same manner as in Example 1, it exhibited the following performance.
電流効率 95% 電 圧 五10ポルト 運転3ケ月後も6は(す”は生じなかった。Current efficiency 95% Electric voltage 510 ports Even after 3 months of operation, 6(su) did not occur.
比較例4
実施例2で用いた膜、すなわち、C!F、=OF、とO
F、 =C!F−0−OF、−0F−0−OF、−OF
、 −8o、 ?Fs
との共重合体から得られたフィルム(スルホン酸基に転
化した時の交換膜量α9 meq/f・乾燥樹脂)とC
!F、 =CF、と
C!F、 =OF−0−OF、 −0F−0−OF、
−(1!F、 −000CH。Comparative Example 4 The membrane used in Example 2, that is, C! F, =OF, and O
F, =C! F-0-OF, -0F-0-OF, -OF
, -8o, ? A film obtained from a copolymer with Fs (exchange film amount α9 meq/f when converted to sulfonic acid group, dry resin) and C
! F, =CF, and C! F, =OF-0-OF, -0F-0-OF,
-(1!F, -000CH.
0F。0F.
との共重合体から得られたフィルム(カルボン酸基に転
化した時の交換膜t1. Omeq/?・乾燥樹脂)と
を熱圧着して一枚のフィルムに成型した膜をメタノール
/10%苛性ソーダで加水分解して陽イオン交換とし得
た。該膜を実施例1と同様の方法で運転したところ、性
能は次のとおりであった。A film obtained from a copolymer with (exchange membrane t1. Omeq/?・dry resin when converted to carboxylic acid groups) is thermo-compressed and formed into a single film, and then mixed with methanol/10% caustic soda. It was hydrolyzed to obtain cation exchange. When the membrane was operated in the same manner as in Example 1, the performance was as follows.
電流効率 95%
電 圧 五55ボルト
比較例5
実施例2の中で化学メッキを行わずして実施例1と同様
の方法で運転したところ、性能は次のとおりであった。Current efficiency: 95% Voltage: 555 volts Comparative Example 5 When the same method as in Example 1 was used in Example 2 without performing chemical plating, the performance was as follows.
電流効率 95%
電 圧 五2oボルト
比較例6
比較例4の中で用いた膜に直接実施例2と同様の方法で
化学メッキしたのち、実施例1と同様の方法で運転した
ところ、性能は次のとおりであった。Current efficiency: 95% Voltage: 52 o volts Comparative Example 6 The membrane used in Comparative Example 4 was directly chemically plated in the same manner as in Example 2, and then operated in the same manner as in Example 1. It was as follows.
電流効率 92% 電 圧 3.15ボルト 運転1ケ月後に°はくり”が生じていた。Current efficiency 92% Electric voltage 3.15 volts After one month of operation, peeling occurred.
実施例3
CF、 =CF、と
CF、 =CF−0−OF、 −CF−0−CF、 −
CF、 −000cH。Example 3 CF, =CF, and CF, =CF-0-OF, -CF-0-CF, -
CF, -000cH.
OF。OF.
との共重合体から得られたフィルム(カルボン酸基に転
化した時の交換容量1.3 meυ今・乾燥樹脂。A film obtained from a copolymer with (exchange capacity 1.3 meυ when converted to carboxylic acid groups, now dry resin).
厚さ7ミル)を得た。A thickness of 7 mils was obtained.
次に、OF、 ==CF、 と
OF、 =CF−0−(:!F、 −0F−0−(3F
、 −OF、 −8o、?警
OF。Then OF, ==CF, and OF, =CF-0-(:!F, -0F-0-(3F
, -OF, -8o,? Police OF.
との共重合体(スルホン酸基に転化した時の交換容量1
.0 meq/f・乾燥樹脂)を該フィルムの両面に熱
圧着(160℃、 15 QKf/cm2) した。Copolymer with (exchange capacity when converted to sulfonic acid group 1
.. 0 meq/f/dry resin) was thermocompression bonded (160°C, 15 QKf/cm2) onto both sides of the film.
次に該フィルムをメタノール/10%苛性ソーダで加水
分解して陽イオン交換膜を得た。Next, the film was hydrolyzed with methanol/10% caustic soda to obtain a cation exchange membrane.
該膜を′2.5%のアンモニア水11 K H,PtC
1,・6H20(12)を溶解し2時間放置した溶液中
、室温下で30分間浸漬した。水洗を十分に行ったのち
、50℃で2時間NaBH4(0,01%)を用いて還
元した。The membrane was soaked in 2.5% ammonia water 11K H, PtC.
1,.6H20 (12) was dissolved and left for 2 hours, and the sample was immersed at room temperature for 30 minutes. After thorough washing with water, reduction was performed using NaBH4 (0.01%) at 50°C for 2 hours.
該膜を実施例1と同様の方法で運転したところ、次のよ
うな性能を示した。When the membrane was operated in the same manner as in Example 1, it exhibited the following performance.
電流効率 94% 電 圧 五25ボルト 運転後3ケ月も“はくり”は生じなかった。Current efficiency 94% Electric voltage: 525 volts No "peeling" occurred even after 3 months of operation.
比較例7
実施例3で用いた膜、OF、 =OF、 とay、
=CF−0−OF、 −CF−0−CF、 −OF、
−0000!H。Comparative Example 7 The membrane used in Example 3, OF, =OF, and ay,
=CF-0-OF, -CF-0-CF, -OF,
-0000! H.
CF3
との共重合体から(カルボン酸基に転化した時の交換膜
% 1−5 meq/S’・乾燥樹脂、厚さ7ミル)を
メタノール/10%苛性ソーダで加水分解して陽イオン
交換膜を得た。A cation exchange membrane was obtained by hydrolyzing a copolymer with CF3 (exchange membrane % when converted to carboxylic acid group: 1-5 meq/S', dry resin, thickness 7 mil) with methanol/10% caustic soda. I got it.
該膜を実施例1と同様の方法で運転したところ、次のよ
うな性能を示した。When the membrane was operated in the same manner as in Example 1, it exhibited the following performance.
電流効率 94%
電 圧 五45ポルト
比較例8
比較例7で用いた膜に実施例4の化学メッキを直接施し
た膜を実施例1と同様の方法で運転したところ、次のよ
うな性能を示した。Current efficiency 94% Voltage 545 ports Comparative Example 8 When the membrane used in Comparative Example 7 was directly coated with the chemical plating of Example 4 in the same manner as Example 1, the following performance was obtained. Indicated.
直流効率 93% 電 圧 五35ボルト 運転1ケ月で1はくり”が生じた。DC efficiency 93% Electricity voltage: 535 volts One peeling occurred after one month of operation.
比較例9
実施例3の中で化学メッキを施こさないで実施例1と同
様の運転をしたところ、次のような性能を示した。Comparative Example 9 When the same operation as in Example 1 was performed in Example 3 without chemical plating, the following performance was exhibited.
電流効率 94%
電 圧 五35ボルト
実施例4
実施例2で用いたと同様の陽イオン交換膜、すなわち、
OF、=OF、 と
CP、 =C!F−0−OF、 −0F−0−OF、
−OF、 −80,′I!■
CF3
との共重合体から得られたフィルム(スルホン酸基に転
化したときの交換容量(L9mθq/f・乾燥樹脂)と
OF、 =OF、と
OF、=OF−〇−OF、−0F−0−OF、−CP、
−000CH3CF3
との共重合体から得られたフィルム(カルボン酸基に転
化した時の交換容量1.0mθq、/r・乾燥樹脂)と
を熱圧着して一枚のフィルムに成型した。Current efficiency: 94% Voltage: 535 volts Example 4 A cation exchange membrane similar to that used in Example 2, i.e.
OF, =OF, and CP, =C! F-0-OF, -0F-0-OF,
-OF, -80,'I! ■ Film obtained from copolymer with CF3 (exchange capacity when converted to sulfonic acid group (L9mθq/f・dry resin) and OF, =OF, and OF, =OF-〇-OF, -0F- 0-OF, -CP,
A film obtained from a copolymer with -000CH3CF3 (exchange capacity 1.0 mθq when converted to carboxylic acid group, /r dry resin) was thermocompressed and molded into a single film.
次に該フィルムのカルボン酸エステル層側ニCF、 =
CF、とOF、 =OF−0−C!F、 −0F−0−
OF、−OF、−8o、F響
OF3
との共−世合体(スルホン酸基に転化した時の交換容量
1.0 meq/f・乾燥樹脂)を熱圧着(160’C
;。Next, CF on the carboxylic acid ester layer side of the film, =
CF, and OF, =OF-0-C! F, -0F-0-
The co-merger with OF, -OF, -8o and F-Kyo OF3 (exchange capacity 1.0 meq/f when converted to sulfonic acid group, dry resin) was thermocompressed (160'C).
;.
150Kf/cPIIりシた。150Kf/cPII.
次に該フィルムなメタノール710%苛性ソーダで加水
分解して陽イオン交換膜を得た。Next, the film was hydrolyzed with methanol 710% caustic soda to obtain a cation exchange membrane.
該膜をカルボン酸層側が反応できるようにセットしたの
ち、硫酸ニッケルの水溶液(0,01%)で30分処理
し水洗を十分に行ったのち、50℃で2時間ヒドラジン
水溶液((101%)を用いて還元した。このようにし
て得られた陽イオン交換膜を実施例1と同様の方法で運
転したところ、次の−ような性能を示した。After setting the membrane so that the carboxylic acid layer side can react, it was treated with an aqueous solution of nickel sulfate (0.01%) for 30 minutes, thoroughly washed with water, and then treated with an aqueous solution of hydrazine ((101%) at 50°C for 2 hours. When the cation exchange membrane thus obtained was operated in the same manner as in Example 1, it exhibited the following performance.
電流効率 95% 電 圧 五15ボルト 運転3ケ月後も1はくり”は生じなかった。Current efficiency 95% Electric voltage: 515 volts Even after 3 months of operation, no "1 peeling" occurred.
実施例5
実施例2の中で、OF、 =OF、 とOF、 =O
F−0−OF、 −0F−0−OF、 −OF、 7S
O,FFs
との共重合体(スルホン酸基に転化した時の交換容量が
1.0 meq/P・乾燥樹脂)を熱圧着する場合、該
共重合体中に40%のZr0tを添加して圧着した以外
は実施例2と全く同様にして化学メッキした陽イオン交
換膜を得た。Example 5 In Example 2, OF, =OF, and OF, =O
F-0-OF, -0F-0-OF, -OF, 7S
When thermocompression bonding a copolymer with O, FFs (exchange capacity when converted to sulfonic acid group is 1.0 meq/P, dry resin), 40% Zr0t is added to the copolymer. A chemically plated cation exchange membrane was obtained in the same manner as in Example 2 except that it was crimped.
このようにして得られた陽イオン交換膜を実施例1と同
様の方法で運転したところ、次のような性能を示した。When the cation exchange membrane thus obtained was operated in the same manner as in Example 1, it exhibited the following performance.
電流効率 95% 電 圧 五〇5ボルト 運転5ケ月後も”はくり”は生じなかった。Current efficiency 95% Electric voltage 505 volts No "peeling" occurred even after 5 months of operation.
特許出願人 東洋曹達工業株式会社Patent applicant: Toyo Soda Kogyo Co., Ltd.
Claims (1)
量がα90〜1.5 m13q7乍・乾燥樹脂のスルホ
ン酸基を有するパーフルオロカーボン固着せしめる方法
。 Z 陽イオン交換膜としてカルボン酸基を有する陽イオ
ン交換膜を使用する特許請求の範囲第1項記載の方法。 A IQイオン交換膜としてスルホン酸基層とカルボ
ン酸基層とが多層状になっている陽イオン交換膜を使用
する特許請求の範囲第1項記載の方法。 4、固着される金属が、白金、パラジウム、ルテニウム
、イリジウム、銀、ニッケルあるいはこれらの混合物か
ら選ばれる%許請求の範囲第1,2あるいは3項記載の
方法。[Scope of Claims] 1. A method of fixing perfluorocarbon having an exchange capacity α90 to 1.5 m13q7 and having a sulfonic acid group of a dry resin on the surface of a carboxylic acid base layer of a cation exchange membrane. Z. The method according to claim 1, wherein a cation exchange membrane having a carboxylic acid group is used as the cation exchange membrane. The method according to claim 1, wherein a cation exchange membrane having a multilayer structure of a sulfonic acid base layer and a carboxylic acid base layer is used as the A IQ ion exchange membrane. 4. The method according to claim 1, 2 or 3, in which the metal to be fixed is selected from platinum, palladium, ruthenium, iridium, silver, nickel or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57132251A JPS5922930A (en) | 1982-07-30 | 1982-07-30 | Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57132251A JPS5922930A (en) | 1982-07-30 | 1982-07-30 | Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5922930A true JPS5922930A (en) | 1984-02-06 |
Family
ID=15076901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57132251A Pending JPS5922930A (en) | 1982-07-30 | 1982-07-30 | Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5922930A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5039382A (en) * | 1987-06-12 | 1991-08-13 | Asahi Glass Company, Ltd. | Method for producing an alkali metal hydroxide |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026497A (en) * | 1983-07-25 | 1985-02-09 | Mitsubishi Electric Corp | Overvoltage protecting circuit of dc bus type inverter |
-
1982
- 1982-07-30 JP JP57132251A patent/JPS5922930A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026497A (en) * | 1983-07-25 | 1985-02-09 | Mitsubishi Electric Corp | Overvoltage protecting circuit of dc bus type inverter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5039382A (en) * | 1987-06-12 | 1991-08-13 | Asahi Glass Company, Ltd. | Method for producing an alkali metal hydroxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58501823A (en) | Electrolytic cell with narrow gap | |
JPS6356316B2 (en) | ||
JP6328114B2 (en) | Method for preparing a catalyst material | |
JP4697378B2 (en) | Gas diffusing electrode, method for producing the same, conductive ionic conductor, and electrochemical device | |
US20060173084A1 (en) | Bipolar membrane and method of making same | |
JPH07116630B2 (en) | Method for producing improved solid polymer electrolyte structure | |
JPS63114993A (en) | Novel electrode | |
JPS60251290A (en) | Manufacture of potassium hydroxide | |
US4822544A (en) | Dry process for fabricating a unitary membrane-electrode structure | |
JPS6261119B2 (en) | ||
JPH0631457B2 (en) | Multilayer structure for electrode-membrane assembly and electrolysis method using same | |
JPS5922930A (en) | Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane | |
JPH08269761A (en) | Water electrolytic cell and its production | |
JPH09219206A (en) | Electrochemical element | |
EP0222911A1 (en) | Highly durable low-hydrogen overvoltage cathode and a method of producing the same | |
KR850001181B1 (en) | Ion-exchange membrane electrolytic apparatus and process for producing the same | |
CN109148895A (en) | A kind of method of the electrochemistry roughening treatment of anode current collector of lithium ion battery | |
JPS60141885A (en) | Ion exchange membrane-electrode joined body to be used for electrolysis of aqueous alkali metal salt solution | |
JP2725799B2 (en) | Method for producing lead oxide-containing film electrode material | |
JPS58176222A (en) | Fixation of metal on cation exchange membrane | |
JPH02259090A (en) | Production of ozone by electrolysis | |
JPS58171588A (en) | Structure of joined body | |
JPH01208489A (en) | Catalytic electrode and production thereof | |
JPS58181882A (en) | Method for fixedly depositing metal on surface of cation exchange membrane | |
JPS629690A (en) | Conductive circuit board and improvement in conductivity thereof |