JPS58176222A - Fixation of metal on cation exchange membrane - Google Patents

Fixation of metal on cation exchange membrane

Info

Publication number
JPS58176222A
JPS58176222A JP57059591A JP5959182A JPS58176222A JP S58176222 A JPS58176222 A JP S58176222A JP 57059591 A JP57059591 A JP 57059591A JP 5959182 A JP5959182 A JP 5959182A JP S58176222 A JPS58176222 A JP S58176222A
Authority
JP
Japan
Prior art keywords
metal
cation exchange
exchange membrane
membrane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57059591A
Other languages
Japanese (ja)
Other versions
JPS6258622B2 (en
Inventor
Osamu Nakagawa
修 中川
Katsunori Orisaka
折坂 克則
Toru Kiyota
徹 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57059591A priority Critical patent/JPS58176222A/en
Publication of JPS58176222A publication Critical patent/JPS58176222A/en
Publication of JPS6258622B2 publication Critical patent/JPS6258622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To fix a metal on the surface of a cation exchange membrane so as to form a metal coating which is capable of being chemically plated uniformly and has excellent adhesion, by impregnating the cation exchange membrane with a reducing agent, then impregnating the membrane with a metal which forms negative metal complex ions in a solution and thereby effecting chemical plating. CONSTITUTION:A cation exchange membrane, e.g., a membrane obtained from a polymer of the formula (wherein R' is -CF3 or -CF2-O-CF3, n is 0 or 1-5, m is 0 or 1, o is 0 or 1, p is 1-6, x is -SO3M (M is H or a metal atom), -SO2F, -SO2Cl, -COOM (M is the same as above), -COOR1 (R1 is 1-5C alkyl), -CN or COF) is impregnated with a reducing agent (e.g., hydrazine) and then impregnated with a metal salt forming negative metal complex ions in a solution (e.g., aqueous solution of H2PtCl6) to effect chemical plating. It is possible to obtain a cation exchange membrane having a metallic layer fixed extremely strongly and uniformly.

Description

【発明の詳細な説明】 本発明は、金属が表面トに固着した陽イオン交換膜を提
供するものであ怜、その製造方法及び水溶液、特にハロ
ゲン化物の電気発情におけるその使用法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cation exchange membrane having metals adhered to its surface, a method for its preparation, and its use in aqueous solution, particularly halide electroestrus.

陽イオン交換膜により陽極室と陰極室に分割された電解
槽で塩化アルカリを電解して、水酸化アルカリを製造す
る方法(イオン交換膜法)において、近年、省エネルギ
ー開発が進行しつつあ抄、この観点からこの種技術にお
いては、電解電圧を極力低くするよう努力されている。
In recent years, energy saving development has been progressing in the method of producing alkali hydroxide by electrolyzing alkali chloride in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method). From this point of view, in this type of technology, efforts are being made to lower the electrolysis voltage as much as possible.

その手段としては、従来、陽極や陰極の材質9組成及び
形状を考慮したり、あるいは用いるイオン交換膜の組成
や、イオン交換基の種類を特定化する等種々の手段が挿
案されているが、いずれもそれなシの効果はおるものの
必ずしも工業的に充分満足し得る本のではなかった。
Conventionally, various methods have been proposed to achieve this, such as considering the material composition and shape of the anode and cathode, or specifying the composition of the ion exchange membrane used and the type of ion exchange group. Although all of these books had certain effects, they were not necessarily completely satisfactory from an industrial standpoint.

一方近年、8P凭電甥法と称する技術が注目を集めてき
ている。これは電極層と陽イオン交換膜とを一体化し電
解電圧の低減をねらった本のであり、相当の効果を得て
いる。又、陽イオン交換膜と電極活性をもたない、例え
ば金属酸化物等からなる多孔層とを一体化させ、これを
食塩電解における隔膜として使用する方法等が提案され
ている。
On the other hand, in recent years, a technique called the 8P Shōdenneho method has been attracting attention. This book aims to reduce electrolysis voltage by integrating an electrode layer and a cation exchange membrane, and has achieved considerable results. Furthermore, a method has been proposed in which a cation exchange membrane and a porous layer having no electrode activity, such as a metal oxide, are integrated, and this is used as a diaphragm in salt electrolysis.

(%艷昭56−75583.特開昭56−.11248
7、特開昭56−108888等)。
(%Sho 56-75583. JP-A-Sho 56-.11248
7, Japanese Unexamined Patent Publication No. 56-108888, etc.).

このように、市、解電圧を低減せしめる方法とし2て、
陽イオン交換膜表面上を、ある種の金属及び金属酸化物
等からなる層でおおうという方法が、一つの流れとなっ
てきている。
In this way, as a method to reduce the electrolytic voltage,
One method that has become popular is to cover the surface of a cation exchange membrane with a layer made of a certain metal, metal oxide, or the like.

陽イオン交換膜を金属及び/又は金属酸化物を含む層で
おおう方法としては、PT1’FFi等の結合剤を用い
て触媒1粒子を焼結成形し、膜面にホットプレスする乾
式法(特開昭53−52797)筈。
A method for covering a cation exchange membrane with a layer containing a metal and/or metal oxide is a dry method (specifically, a method in which one catalyst particle is sintered and formed using a binder such as PT1'FFi and then hot-pressed onto the membrane surface). 53-52797).

還元剤を用い溶液中で膜面に金属全析出食せる澤873
.1%開昭56−136985)郷が知られている。
Sawa 873 where all metal can be deposited on the membrane surface in a solution using a reducing agent
.. 1% Kaisho 56-136985) township is known.

本発明者らは、以上のような観点から乾式法。The present inventors developed the dry method from the above points of view.

湿式法による隔膜の電解性能について鋭意研究を重ねた
結果、以下のような結論を導くに〒った。
As a result of extensive research into the electrolytic performance of diaphragms using the wet method, we have come to the following conclusions.

1、 乾式法では膜面−ヒへの金属層の固着を均一に行
うことがむずかしく、ひいては膜の電解性能に再現性を
もたせることがむずかしい。
1. In the dry method, it is difficult to uniformly adhere the metal layer to the membrane surface, and it is also difficult to achieve reproducibility in the electrolytic performance of the membrane.

更に電解中、金用層の膜面上からの離脱をまぬがれない
Furthermore, during electrolysis, the gold layer cannot be avoided from detaching from the film surface.

i 湿式法で社、乾式法に比べ再現性を得るのは容易で
ある。しかしながら、金属が膜表面上にのみ不均一に析
出するため、金属の離脱の度合は、乾式法以七である。
It is easier to obtain reproducibility with the wet method than with the dry method. However, since the metal is deposited non-uniformly only on the film surface, the degree of metal separation is seven times higher than that of the dry method.

更にこの点を改食する目的で固yd1条件を−!−くす
ると電流効率の低下を引き起こしてしオう。
Furthermore, for the purpose of revising this point, we set the yd1 condition to −! −, it will cause a decrease in current efficiency.

本発明者らは、このような結論をふまえ、更に研究を重
ねた結果、膜面あるいは膜中に還元剤をj猷−一旺 存在させ、次に溶液中で負の金属鉛体イオンを含浸させ
、化学メッキすることによって陽イオ゛、・交換膜上に
非常に強固にしか4均−に結合した金属層を有する陽イ
オン交換膜を得ることができることを見い出して本発明
を完成させた、 本発明の効果は、おおよそ次のように説明することがで
きる。
Based on this conclusion, the present inventors conducted further research and found that a reducing agent was present on the membrane surface or in the membrane, and then negative metal lead ions were impregnated in a solution. The present invention was completed by discovering that it is possible to obtain a cation exchange membrane having a metal layer very strongly and evenly bonded to the cation exchange membrane by chemical plating. The effects of the present invention can be roughly explained as follows.

正の金属錯体イオンを用いると、膜中の交換基がアニオ
ン基である九め、これらのイオンが選択的に誼基のとこ
ろにと9込まね、その結果、吸着が不均一となってしま
い、膜の性能を低1さ姥てしまう。又、負の金属錯体イ
オンを膜に含浸した場合、均一に含浸はされる本のの吸
着部がかいため、還元剤で処理する段階で還元剤中で還
元が起抄、実質層表11iK化学メッキすることが不可
能である。上記の欠点を解決するため、璽ず、膜中に費
元剤を含浸しておき、次に負の金属錯体イオンを含浸す
ることにより、膜表面あるいけ膜内に均一にこわらのイ
埼′/が導入され、かつ徴元剤が―中に存在しているた
め、化学メッキが容易に起b、その結果、均一4化学メ
ツキが起り、密着性の優れた状態で金属を表面に固着す
る事ができる。
When positive metal complex ions are used, since the exchange groups in the membrane are anion groups, these ions will selectively enter the exchange groups, resulting in non-uniform adsorption. , the performance of the membrane will be degraded. In addition, when the membrane is impregnated with negative metal complex ions, the adsorption part of the membrane, which is uniformly impregnated, is scratched, and reduction occurs in the reducing agent during treatment with the reducing agent. Impossible to plate. In order to solve the above-mentioned drawbacks, by first impregnating the membrane with an additive and then impregnating it with negative metal complex ions, the stiffening agent can be uniformly applied to the membrane surface and inside the membrane. Because / is introduced and the attracting agent is present in -, chemical plating occurs easily.As a result, uniform chemical plating occurs and the metal is fixed to the surface with excellent adhesion. I can do that.

本発明で用い得る陽イオン交換膜は以下の如き重合体よ
シ得ることができる パーフルオロカーボン重合体で陽
イオン交換基及び/又は陽イオン交換基になり得る基を
有するものである。これら基としては、スルホン酸基(
−8o、M但し、Mは水素原子あるいけ金属原子)、ス
ルホン酸基の前駆体であるところの一8ot’F、 −
F2O,C1,カルボン酸基(−C!OOM但し、Mは
水素原子あるいは金属原子)、力A・ボン酸基の前駆体
であるところの−C!OF 。
The cation exchange membrane that can be used in the present invention can be obtained from the following polymers: A perfluorocarbon polymer having a cation exchange group and/or a group that can become a cation exchange group. These groups include sulfonic acid groups (
-8o, M (where M is a hydrogen atom or a metal atom), 18ot'F, which is a precursor of a sulfonic acid group, -
F2O, C1, carboxylic acid group (-C!OOM, where M is a hydrogen atom or a metal atom), -C which is a precursor of a force A/boxylic acid group! OF.

−cooR(Rは炭素数1〜5のアルキル基)及び−C
Nを挙けることができる。該重合体としては、例えば、
下記一般式で示す電合体が挙げられる。
-cooR (R is an alkyl group having 1 to 5 carbon atoms) and -C
I can list N. As the polymer, for example,
Examples include electrocombinants represented by the following general formula.

77/ + OF2− CF、−)−書OF、−CF−)−鵠。77/ +OF2-CF,-)-Sho OF,-CF-)-Mouse.

よ CF。Yo C.F.

cy−n’ 〔ただし、R/= −clF、 、 −ay、−o−a
y。
cy-n' [However, R/= -clF, , -ay, -o-a
y.

n二〇又社1〜5 m二〇又け1 0=(]又は1.p=1〜6 x = −90,M (ad水素原子あるい社会lI原
子)。
n 20-matasha 1 to 5 m 20-matasha 1 0 = (] or 1. p = 1 to 6 x = -90, M (ad hydrogen atom or society II atom).

−曲、F、−8へC1 一〇00M (Mは水素原子あるいけ金属原子)。-C1 to song, F, -8 1000M (M is a hydrogen atom or a metal atom).

−cooy+、 (R,= 1〜5のアルキル基)。-cooy+, (R, = 1 to 5 alkyl group).

−CI+ 、 −COF ) 又、上記二成分系に第三成分あるいは第四成分を加えて
束合した重合体も使用できる。
-CI+, -COF) Furthermore, a polymer obtained by adding a third component or a fourth component to the above two-component system and bundling it can also be used.

%[具体的梳け、例えば以下のものを示すことができる
% [Specific combing, for example, the following can be shown.

(へ群) ■ (!’F、−(?−0(7,−〇′F、−80.F篤 α、−CF−喰、−α、一部、F c’y。(He group) ■ (!'F,-(?-0(7,-〇'F,-80.F Atsushi α, -CF-Kui, -α, Partial, F c’y.

木 CF。wood C.F.

菅 cv−air。Suga cv-air.

’i’t OF、 −CF、 −8(1,F OF、−(’!鳥−80,C1 CF。'i't OF, -CF, -8(1,F OF, -('! Bird-80, C1 C.F.

cv−CF、 −o−CF。cv-CF, -o-CF.

OF、 −CP、 −80,F CF、 −1”n、F (8群) OF。OF, -CP, -80,F CF, -1”n, F (8th group) O.F.

J−CTI 0−OF、−coocz CF。J-CTI 0-OF, -coocz C.F.

OF。OF.

CFtF、−COOOa。CFtF, -COOOa.

CFt−ay、−CFt−CFF、−cooca。CFt-ay, -CFt-CFF, -cooca.

(!F、 −(!F、 −C!OF 1 CF、−CFF−007,−OF、−Cαχ旧。(!F, -(!F, -C!OF 1 CF, -CFF-007, -OF, -Cαχ old.

CF。C.F.

coocH。coocH.

0       0 1 (! FM       CF、−CF、−OF、−C
(1F′0       0 II CF、       CP、−CIF、 −CF、 −
COQIT。
0 0 1 (! FM CF, -CF, -OF, -C
(1F'0 0 II CF, CP, -CIF, -CF, -
COQIT.

0         0 1       床 CF、       CF。0 0 1      floor CF, CF.

T゛ Coo(!FT。T゛ Coo(!FT.

II CF、       (! ?。II CF, (!?.

(!F−OF。(!F-OF.

0−口へ−CF、−C!OF o         coocH。0-to the mouth-CF,-C! OF o coocH.

CF。C.F.

これら重合体において交換基容量が(Lameν僧乾燥
樹脂〜1.5 meq/g乾燥樹脂になるようKl!!
節するのが好ましい。
In these polymers, the exchange group capacity should be set to (Lamenu dry resin ~ 1.5 meq/g dry resin!!
It is preferable to section.

本発明では、膜状に成形したこれら重合体を単独で用い
ることができるのはもちろんであるが、スルホン酸基本
しくは診基に変換できる基とカルボン酸基もしくは一般
に変換できる基とが混在する形、好ましくはスルホン酸
基もしくは該第に変換できる基を有する重合体と、カル
ボン酸基本しくけ該第に変換できる基を有する重合体が
片側ずつに層状となった形のものも用いることができる
In the present invention, it is possible to use these polymers formed into a film alone, but it is also possible to use a sulfonic acid group or a group that can be converted into a diagnostic group and a carboxylic acid group or a group that can be converted in general. It is also possible to use a polymer in which a polymer having a sulfonic acid group or a group that can be converted to the above-mentioned type and a polymer having a carboxylic acid-based group that can be converted to the above-mentioned type are layered on each side. can.

このような膜状物は、スルホン酸基もしくは該第に変換
できる基を有する重合体(例えば(A)群の重合体)と
、カルボン酸基もしくは該第に変換できる基をもつ重合
体(例えば(B)群の重合体)とを各々膜状に成形した
のち、両者をはり合せることによって得ることができる
し、又、スルホン酸基もしくは該第に変換できる基のみ
をもつ重合体の膜状物の片側のみを化学処理し、これら
基をカルボン酸基に変えることによっても得ることがで
きる。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into the above (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to the above (for example, a polymer of group (A)). (B) group polymers) can be obtained by forming them into a film shape and then gluing them together, or a film form of a polymer having only a sulfonic acid group or a group that can be converted into the above group. It can also be obtained by chemically treating only one side of the substance to change these groups to carboxylic acid groups.

更に又、カルボン酸基もしくは該第に変換できる基のみ
をもつ重合体の膜状物の片側のみを化学処理し、これら
基をスルホン酸基に変えることによっても得ることがで
きる。用いる膜の厚さは、50μ〜500μが一般的に
用いられ、膜の比電導度、電流効率を考慮して適当な厚
みを選択する。
Furthermore, it can also be obtained by chemically treating only one side of a film-like polymer having only carboxylic acid groups or groups that can be converted into the above-mentioned groups to convert these groups into sulfonic acid groups. The thickness of the film used is generally 50 μm to 500 μm, and an appropriate thickness is selected in consideration of the specific conductivity and current efficiency of the film.

本発明の第1段階では、この様な重合体膜から得られる
イオン交換膜中に還元剤を含浸させる。
In the first step of the present invention, the ion exchange membrane obtained from such a polymer membrane is impregnated with a reducing agent.

還元剤としては、例えばヒドラジン、 NuFIR,又
けN a II PO*の水溶液を用いることかで負る
As the reducing agent, for example, an aqueous solution of hydrazine, NuFIR, or Na II PO* may be used.

第2段階では、溶液中で負の金属錯体イオンを形成する
金属塩を膜に含浸させる。溶液中で負の金属錯体イオン
を形成する金属塩としては、例えは塩酸に溶解さKたp
acx、 、 a、ptcx・の水溶液。
In the second step, the membrane is impregnated with metal salts that form negative metal complex ions in solution. Examples of metal salts that form negative metal complex ions in solution include K and p dissolved in hydrochloric acid.
Aqueous solution of acx, , a, ptcx.

Kt (Ni (c N) a )の水溶液、 Km 
(Ru (aN)、)の水溶液。
Aqueous solution of Kt (Ni (c N) a), Km
Aqueous solution of (Ru (aN),).

これらの混合液などが挙げられる。A mixture of these liquids and the like can be mentioned.

膜中にこれらの塩を含浸させる時間は数秒ないし数十分
であり、目的の沈着物が得られるまで、還元剤の含浸と
上記の塩を含浸させる工程を繰り返して行えばよい。
The time for impregnating these salts into the membrane is several seconds to several tens of minutes, and the steps of impregnating the reducing agent and impregnating the above-mentioned salts may be repeated until the desired deposit is obtained.

実施例1 OF、司F、とOF、ミF −0−CF、 −0F−0
−α7−CF、−艶、F暑 OF。
Example 1 OF, Tsukasa F, and OF, MiF -0-CF, -0F-0
-α7-CF, -Gloss, F heat OF.

との共重合体(交換容量Q、 92 ミIJ当量/g乾
燥)のフィルム(5ミル)と”x =CF*とCFt和
F−0−CFt −CF−0−CFt −(!F*−C
oo(!Usとの共電OF。
(exchange capacity Q, 92 mm IJ equivalents/g dry) film (5 mils) of copolymer with C
oo(! Shared electricity OF with Us.

合体(交換容量IIL96ミリ当量/g乾燥)のフィル
ム(2ミル)とをはり合せたのち、加水分解(7カルボ
ン酸基とスルホン酸基の2層構造膜を得た。
After bonding with a film (2 mil) of the combined product (exchange capacity IIL 96 meq/g dry), hydrolysis was performed (7 to obtain a two-layer structure membrane of carboxylic acid groups and sulfonic acid groups).

次に該層を、潜水処理したのち、カルボン酸基層のみを
処理できるようにセルにセットした。
Next, this layer was subjected to a diving treatment, and then set in a cell so that only the carboxylic acid base layer could be treated.

次に10容(チのヒドラジン水溶液を含浸したのち、1
5重量%)%Pt01sの水溶液を膜表面に接触含浸さ
せた。次に水で十分洗浄したのち、上記の処理を2回(
但し、1回の接触時間を15分とする。)繰返したのち
10重量14 NaOH水溶液で60〜70℃で処理し
た。
Next, after impregnating with 10 volumes of hydrazine aqueous solution, 1
An aqueous solution of 5 wt %)% Pt01s was contact impregnated onto the membrane surface. Next, after thoroughly washing with water, repeat the above treatment twice (
However, the time for one contact is 15 minutes. ) was repeated and then treated with 10 weight 14 NaOH aqueous solution at 60-70°C.

上記で得たカルボン酸基層上に白金が固着し、たイオン
交換膜のカルボン酸基層が陰極に向くように食塩電解槽
を組み立てた。陽極として、ルテニウム酸化物を被覆し
たチタンエキスパンデッドメタル、陰極として、鉄製の
エキスパンデッドメタルを用いた。陽極と膜、陰極と膜
は、それぞれ加圧接触させた。
A salt electrolytic cell was assembled so that platinum was fixed on the carboxylic acid base layer obtained above and the carboxylic acid base layer of the ion exchange membrane faced the cathode. Titanium expanded metal coated with ruthenium oxide was used as the anode, and expanded metal made of iron was used as the cathode. The anode and the membrane were brought into contact with each other under pressure, and the cathode and the membrane were brought into contact with each other under pressure.

陽極室に飽和食塩水、陰極室に水を供給して、陰極室の
苛性ソーダ濃度を65チに保ちつつ、温度90℃、電流
密度30A/−で電解したところ、電圧は320ボルト
、電流効率は95−であった。又、6ケ月の運転におい
ても電圧は20+mV上列したにすぎなかった。内、上
記の処理を施していかい膜を用いた場合は、電圧は翫4
5ホルトで電流効率は、96−であった。
When saturated saline was supplied to the anode chamber and water was supplied to the cathode chamber, and the caustic soda concentration in the cathode chamber was maintained at 65%, electrolysis was carried out at a temperature of 90°C and a current density of 30A/-, the voltage was 320 volts and the current efficiency was It was 95-. Also, even after 6 months of operation, the voltage increased by only 20+mV. If a clear film is used after the above treatment, the voltage will be 4.
The current efficiency at 5 holts was 96-.

比較例1 実施例1で用いた膜を用いて、還元剤とH,P t C
Isの含浸操作の順序を逆にして行ったとζろ化学メッ
キはほとんどされなかった。
Comparative Example 1 Using the membrane used in Example 1, reducing agent and H, P t C
When the Is impregnation procedure was reversed, almost no zeta-filtration chemical plating was performed.

実施例2 (! ?、−CF、とCFW−”C7’ OC1’I 
OF 0−01% CFW CooCHsCF。
Example 2 (!?, -CF, and CFW-"C7'OC1'I
OF 0-01% CFW CooCHsCF.

との共重合体(交換容湖14ミリ肖量/g乾燥)を7ミ
ルの厚さでフィルムにしたのち、加水分解することによ
って、陽イオン交換膜を得た。
A cation exchange membrane was obtained by forming a 7 mil thick film of a copolymer with (exchange volume: 14 mm/g dry) and then hydrolyzing it.

本陽イオン交換膜を用いて実施例1で示きれたと同一の
後件で白金を固着せしめたのち、実施例1と同様の条件
で運転しな。
After fixing platinum using the present cation exchange membrane under the same conditions as shown in Example 1, the membrane was operated under the same conditions as in Example 1.

@田は、五27ボルトで電流効率は、95チであシ6ケ
月の運転において本、2511Vの上昇にすぎなかった
At 527 volts, the current efficiency was 95 cm, and the increase was only 2511 V after 6 months of operation.

本発明の処理を施していない膜を用いた場合、電圧は五
52ボルト電流効率は?5鴫であった。
When using a membrane that is not treated with the present invention, the voltage is 552 volts. What is the current efficiency? It was 5.

特許出願人 東洋曹達工業株式会社Patent applicant: Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 t 陽イオン交換膜に、還元剤を含浸せしめたのち、溶
液中で負の金属錯体イオンを形成する金属塩を含浸せし
め、化学メッキすることを特徴とする陽イオン交換膜に
金属を固着せしめる方法。 λ 交換基がスルホン酸基からなる陽イオン交換膜を使
用する特許請求の範囲第1項記載の方法。 五 交換基がカルボン酸基から成る陽イオン交換膜を使
用する特許請求の範囲第1項記載の方法。 東 交換基がスルホン酸基とカルボン酸基とから成る多
層構造を有する陽イオン交換膜を使用する特許請求の範
囲第1項記載の方法。 5、固着される金属が白金、パラジウム、ルテニウム、
ニッケルあるいけこれらの混合物から選ばれる特許請求
の範囲第1.2.3または第4項記載の方法。
[Claims] t. A cation exchange membrane characterized in that the cation exchange membrane is impregnated with a reducing agent, then impregnated with a metal salt that forms a negative metal complex ion in a solution, and then chemically plated. A method of attaching metal to 2. The method according to claim 1, wherein a cation exchange membrane in which the λ exchange group is a sulfonic acid group is used. (5) The method according to claim 1, which uses a cation exchange membrane whose exchange groups are carboxylic acid groups. The method according to claim 1, which uses a cation exchange membrane having a multilayer structure in which the exchange groups are composed of sulfonic acid groups and carboxylic acid groups. 5. The metal to be fixed is platinum, palladium, ruthenium,
A method according to claim 1.2.3 or 4, wherein nickel or a mixture thereof is selected.
JP57059591A 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane Granted JPS58176222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059591A JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059591A JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS58176222A true JPS58176222A (en) 1983-10-15
JPS6258622B2 JPS6258622B2 (en) 1987-12-07

Family

ID=13117625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059591A Granted JPS58176222A (en) 1982-04-12 1982-04-12 Fixation of metal on cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS58176222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050142A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Method of producing membrane electrode units for pem fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050142A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Method of producing membrane electrode units for pem fuel cells

Also Published As

Publication number Publication date
JPS6258622B2 (en) 1987-12-07

Similar Documents

Publication Publication Date Title
US4364803A (en) Deposition of catalytic electrodes on ion-exchange membranes
CN108140845A (en) Metal porous body, fuel cell and the method for manufacturing metal porous body
JPS6016518B2 (en) Ion exchange membrane electrolyzer
WO1980002162A1 (en) Process for producing hydrogen
JPS5929676B2 (en) electrolytic cell
US4586992A (en) Process for producing potassium hydroxide
JPH0586971B2 (en)
US4425203A (en) Hydrogen evolution cathode
JPS58176222A (en) Fixation of metal on cation exchange membrane
JPS58144488A (en) Multilayer structure for electrode-membrane assembly and electrolytic process thereby
US4401529A (en) Raney nickel hydrogen evolution cathode
JP2524012B2 (en) Bipolar film and manufacturing method thereof
JPS58199884A (en) Improved cation exchange membrane for electrolysis
US4466868A (en) Electrolytic cell with improved hydrogen evolution cathode
JPS61239566A (en) Improved gas diffusion electrode
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface
JPH0143026B2 (en)
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
US4430186A (en) Electrolytic cell with improved hydrogen evolution cathode
JP2624424B2 (en) Bipolar membrane
JPS58176223A (en) Production of cation exchange membrane having roughened surface
JPH08120100A (en) Fluorine-containing cation-exchange membrane
JPS5922930A (en) Method for adhering metal closely onto base layer of carboxylic acid of cation exchange membrane
JPS6154116B2 (en)